

REPUBLIC OF SLOVENIA MINISTRY OF AGRICULTURE AND THE ENVIRONMENT

SLOVENIAN ENVIRONMENT AGENCY

Remote sensing products for drought monitoring in Slovenia

Gal Oblišar Slovenian Enviorenment Agency, Agrometeorology dep.

Training course on the use of satellite products for drought monitoring and agro-meteorological applications Budapest , Hungary, 24-28. April.2017

Climate in Slovenia

- Slovenia has precipitation amounts in all seasons.
- In mountainous regions of western Slovenia rainfall accumulations exceeding 4000 mm/year.

Map indicating average yearly rainfall accumulations in 1971–2000 in Slovenia (M. Dolinar, Slovenian Environment Agency).

Drought severity in Slovenia

- In the last decade there have been several occurrences of severe droughts causing more than 200 million EUR of economic damage in agriculture.
- Particularly SW and NE parts of Slovenia are prone to drought impacts.
- These drought occurrences necessitate a careful monitoring of drought evolution, its severity and its spatial extent.

Application of remote sensing data –

EUMETSAT LSA SAF products (Satellite Application Facility on Land Surface Analysis)

- ✓ FVC (Fraction of Vegetation Cover) can be used to detect "green" vegetation
- \checkmark LSA SAF product spatial resolution cca 5 km
- Vineyards one of best options form homogene cultivated area in Slovenia

EUMETSAT LSA SAF products

Summer FVC Accumulations (20120601 - 20120831)

FVC anomaly accumulations in June - August 2012 over Slovenia.

Water balance in Summer 2012 over Slovenia (ARSO).

-good spatial corelation

FVC Anomaly Accumulations from 2006-06-01 to 2006-09-30

FVC Anomaly Accumulations from 2007-06-01 to 2007-09-30

FVC anomaly accumulations over Slovenia in June-September 2006.

FVC anomaly accumulations over Slovenia in June-September 2007.

Drought monitoring in Slovenia application of Copernicus LAND data

+ improved spatial resolution (~ 300x1000m)
+ easier location of homogene surfaces

-potential problems with large time steps

- reference under construction

Ground truth, precision problem, time step

LAI time series for one corresponding LSA-SAF pixel

Drought monitoring in Slovenia application of Copernicus LAND data

LAI monthly average anomaly over Slovenia, June- August 2013

Preparation for parallel point time series production

ka 3: BIZELJSKO 46,0447° S 15,7143° V

Slika 6: MURSKA SOBOTA 46,6639° S 16,2321° V

Selection of pixels from corresponding LSA-SAF grid; two vineyard areas (left column) and two crop growing areas (right column)

Conclusions

- Vegetation indices found useful for monitoring possible droughtinduced vegetation stress
- FVC/FCOVER and LAI preferred over NDVI (possible ground truth)
- LSA SAF valuable auxiliary information (despite coarse resolution)
- Currently, most valuable information deduced from point time series. Need for objective recognition of drought patterns

Thank you for your attention!