

Homogenization of Spanish mean wind speed monthly series

José A. Guijarro (jguijarrop@aemet.es)

State Meteorological Agency (AEMET), Balearic Islands office, Spain

8th Seminar for Homogenization and Quality Control in Climatological Databases (Budapest, 12-14 May 2014)

Wind is important for many economic areas:

- Agriculture (moduling evapotranspiration)
- Water resources (controlling evaporation from dams and natural surfaces)
- ► Leisure (outdor activities, sailing, ...)
- Renewable energy production
- ▶ ⇒ Interest to study its variability and trends

- Wind is important for many economic areas:
 - Agriculture (moduling evapotranspiration)
 - Water resources (controlling evaporation from dams and natural surfaces)
 - ► Leisure (outdor activities, sailing, ...)
 - Renewable energy production
- ▶ ⇒ Interest to study its variability and trends

- Wind is important for many economic areas:
 - Agriculture (moduling evapotranspiration)
 - Water resources (controlling evaporation from dams and natural surfaces)
 - ► Leisure (outdor activities, sailing, ...)
 - Renewable energy production
- ▶ ⇒ Interest to study its variability and trends

- Wind is important for many economic areas:
 - Agriculture (moduling evapotranspiration)
 - Water resources (controlling evaporation from dams and natural surfaces)
 - Leisure (outdor activities, sailing, ...)
 - Renewable energy production
- ▶ ⇒ Interest to study its variability and trends

- Wind is important for many economic areas:
 - Agriculture (moduling evapotranspiration)
 - Water resources (controlling evaporation from dams and natural surfaces)
 - Leisure (outdor activities, sailing, ...)
 - Renewable energy production
- ▶ ⇒ Interest to study its variability and trends

- Wind is important for many economic areas:
 - Agriculture (moduling evapotranspiration)
 - Water resources (controlling evaporation from dams and natural surfaces)
 - Leisure (outdor activities, sailing, ...)
 - Renewable energy production
- ▶ ⇒ Interest to study its variability and trends

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- ► Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- ► Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- ► Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- ► Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- ► Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

- Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:
 - First trials: Wind runs (km), converted to mean speeds (m/s). a) With ratio normalization; b) standardization of cubic root transformed data
 - Second trials: 07-13-18 wind speed means (8% > wind runs). (Also with both normalizations)
 - Third trials: NCEP reanalysis (alone and with 07-13-18 wind speeds)

- ➤ Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:
 - First trials: Wind runs (km), converted to mean speeds (m/s). a) With ratio normalization; b) standardization of cubic root transformed data
 - Second trials: 07-13-18 wind speed means (8% > wind runs). (Also with both normalizations)
 - ► Third trials: NCEP reanalysis (alone and with 07-13-18 wind speeds)

- Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:
 - First trials: Wind runs (km), converted to mean speeds (m/s). a) With ratio normalization; b) standardization of cubic root transformed data
 - Second trials: 07-13-18 wind speed means (8% > wind runs). (Also with both normalizations)
 - Third trials: NCEP reanalysis (alone and with 07-13-18 wind speeds)

- ➤ Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:
 - First trials: Wind runs (km), converted to mean speeds (m/s). a) With ratio normalization; b) standardization of cubic root transformed data
 - Second trials: 07-13-18 wind speed means (8% > wind runs). (Also with both normalizations)
 - Third trials: NCEP reanalysis (alone and with 07-13-18 wind speeds)

- ➤ Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:
 - First trials: Wind runs (km), converted to mean speeds (m/s). a) With ratio normalization; b) standardization of cubic root transformed data
 - Second trials: 07-13-18 wind speed means (8% > wind runs). (Also with both normalizations)
 - Third trials: NCEP reanalysis (alone and with 07-13-18 wind speeds)

Nr. of WRun data in all stations

Histogram of all data

Correlogram of first difference 100 sampled series

WRun station locations (9 clusters)

Monthly average wind speed (m/s)

Nr. of WSm3 data in all stations

Histogram of all data

Correlogram of first difference 100 sampled series

WSm3 station locations (8 clusters)

WSm3 at 2916A(82), VITIGUDINO

Homogenization results

	Outliers	Breaks	mRMSE	mSNHT		
Wind runs (WRun):						
Ratios	71	268	0.3795	8.297		
$z(x^{1/3})$	75	240	0.4062	9.242		
07-13-18 means (WSm3):						
Ratios	38	360	0.4638	10.640		

Selected reanalysis grid points

Correlogram of first difference series

WSRe station locations (4 clusters)

WSRe at GR13(13), GR13

Homogenization results

	Outliers	Breaks	mRMSE	mSNHT		
Wind runs (WRun):						
Ratios	71	268	0.3795	8.297		
$z(x^{1/3})$	75	240	0.4062	9.242		
07-13-18 means (WSm3):						
Ratios	38	360	0.4638	10.640		
NCEP reanalysis (WSRe, only 3 refs.):						
Ratios	0	31	0.4184	10.170		
$z(x^{1/3})$	0	36	0.3986	8.276		

Observed + reanalysis joint series

Show 07-13-18 + Reanalysis (WSjn) results

Homogenization results

	Outliers	Breaks	mRMSE	mSNHT
Wind runs (WRun):				
Ratios	71	268	0.3795	8.297
$z(x^{1/3})$	75	240	0.4062	9.242
07-13-18 means (WSm3):				
Ratios	38	360	0.4638	10.640
NCEP reanalysis (WSRe, only 3 refs.):				
Ratios	0	31	0.4184	10.170
$z(x^{1/3})$	0	36	0.3986	8.276
07-13-18 + NCEP (WSjn):				
Ratios	38/0	356/26	0.5272	10.510
$z(x^{1/3})$	110/3	362/31	0.5608	10.390

Annual trends (m/s/century)

WSjn-s2 monthly trends (m/s/century)

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- ▶ 76 (68 + 8) series for 1961-2011
- ▶ 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- ▶ 14 series (18%) found inhomogeneous (all from AEMET)
- -.54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- ▶ 76 (68 + 8) series for 1961-2011
- ▶ 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- ▶ 14 series (18%) found inhomogeneous (all from AEMET)
- ▶ -.54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- 76 (68 + 8) series for 1961-2011
- ► 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- ▶ 14 series (18%) found inhomogeneous (all from AEMET)
- -.54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- ▶ 76 (68 + 8) series for 1961-2011
- ► 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- ▶ 14 series (18%) found inhomogeneous (all from AEMET)
- -.54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- 76 (68 + 8) series for 1961-2011
- ▶ 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- ▶ 14 series (18%) found inhomogeneous (all from AEMET)
- -.54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- 76 (68 + 8) series for 1961-2011
- ▶ 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- ▶ 14 series (18%) found inhomogeneous (all from AEMET)
- -.54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

- ► Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
 - Study of 07-13-18 means / Wind runs relations in AWS 10' data
 - Find the best reference series (NCEP? ERA? Other?)
 - Study the spatial distribution of trends and compare with sea surface trends

- ► Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
 - Study of 07-13-18 means / Wind runs relations in AWS 10 data
 - Find the best reference series (NCEP? ERA? Other?)
 - Study the spatial distribution of trends and compare with sea surface trends

- ► Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
 - Study of 07-13-18 means / Wind runs relations in AWS 10 data
 - ▶ Find the best reference series (NCEP? ERA? Other?)
 - Study the spatial distribution of trends and compare with sea surface trends

- ► Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
 - Study of 07-13-18 means / Wind runs relations in AWS 10' data
 - ► Find the best reference series (NCEP? ERA? Other?)
 - Study the spatial distribution of trends and compare with sea surface trends

- ► Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
 - Study of 07-13-18 means / Wind runs relations in AWS 10' data
 - ► Find the best reference series (NCEP? ERA? Other?)
 - Study the spatial distribution of trends and compare with sea surface trends

- ► Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
 - Study of 07-13-18 means / Wind runs relations in AWS 10' data
 - Find the best reference series (NCEP? ERA? Other?)
 - Study the spatial distribution of trends and compare with sea surface trends

- ► Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
 - Study of 07-13-18 means / Wind runs relations in AWS 10' data
 - ► Find the best reference series (NCEP? ERA? Other?)
 - Study the spatial distribution of trends and compare with sea surface trends