New developments of interpolation method MISH: modelling of interpolation error RMSE, automated real time Quality Control

Tamás Szentimrey

Hungarian Meteorological Service

Possible Connection of Topics and Systems

Additive model of spatial interpolation (normal distribution, temperature)

Daily or monthly data for a date

Predictand: $Z(\mathbf{s}_0)$

Predictors (observations): $Z(\mathbf{s}_i)$ (i = 1,...,M; \mathbf{s} location vector)

Statistical Parameters

Local Parameters:

Expected values (spatial trend): $E(\mathbf{s}_i) = E(Z(\mathbf{s}_i))$ (i = 0,...,M)

(Temporal trend: $E(Z(\mathbf{s}_i, t)) = E(\mathbf{s}_i) + \mu(t)$ (year t; i = 0,..., M))

Standard deviations: $D(\mathbf{s}_i) = D(Z(\mathbf{s}_i))$ (i = 0,...,M)

Stochastic parameters

Correlations:

r: predictand-predictors correlation vector,

R: predictors-predictors correlation matrix.

Covariances (from correlations and st. deviations):

c: predictand-predictors covariance vector,

C: predictors-predictors covariance matrix.

Additive (Linear) Interpolation

Interpolation Formula:

$$\hat{Z}(\mathbf{s}_0) = \lambda_0 + \sum_{i=1}^{M} \lambda_i \cdot Z(\mathbf{s}_i)$$
, where $\sum_{i=1}^{M} \lambda_i = 1$.

Root Mean Square Error:
$$RMSE(\mathbf{s}_0) = \sqrt{E\left(\left(Z(\mathbf{s}_0) - \hat{Z}(\mathbf{s}_0)\right)^2\right)}$$

Representativity Value:
$$REP(\mathbf{s}_0) = 1 - \frac{RMSE(\mathbf{s}_0)}{D(\mathbf{s}_0)}$$

Optimal Interpolation Parameters : λ_i (i = 0,...,M) minimize RMSE.

The Optimal Interpolation Parameters are known functions of statistical parameters!

Optimal constant term:
$$\lambda_0 = \sum_{i=1}^{M} \lambda_i (E(\mathbf{s}_0) - E(\mathbf{s}_i))$$

Vector of optimal weighting factors: $\lambda = [\lambda_1, ..., \lambda_M]^T$

$$\lambda = \mathbf{C}^{-1} \left(\mathbf{c} + \frac{\left(\mathbf{l} - \mathbf{1}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{c} \right)}{\mathbf{1}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{1}} \mathbf{1} \right) \qquad \text{(covariance form)}$$

and vector λ can be written as function of parameters:

$$D(\mathbf{s}_0)/D(\mathbf{s}_i)$$
 ($i = 1,...,M$), \mathbf{r} , \mathbf{R} .

Conclusion

The expected values (spatial trend), the standard deviations and the correlations (stochastic part) are climate statistical parameters in meteorology.

That means:

We could interpolate optimally if we knew the climate well!

Modelling of climate statistical parameters

The obtained optimal interpolation formula:

$$\hat{Z}(\mathbf{s}_0) = \sum_{i=1}^{M} \lambda_i (E(\mathbf{s}_0) - E(\mathbf{s}_i)) + \sum_{i=1}^{M} \lambda_i Z(\mathbf{s}_i) ,$$

where the weighting factors: $\lambda = \mathbf{C}^{-1} \left(\mathbf{c} + \frac{\left(\mathbf{1} - \mathbf{1}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{c} \right)}{\mathbf{1}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{1}} \mathbf{1} \right)$

Unknown statistical parameters:

 $E(\mathbf{s}_0) - E(\mathbf{s}_i)$ (do not depend on temporal trend of climate change),

$$D(\mathbf{s}_0)/D(\mathbf{s}_i)$$
 ($i = 1,...,M$), \mathbf{r} , \mathbf{R} .

Modelling: can be based on long station data series $Z(\mathbf{S}_k, t)$ (t = 1,..., n) belonging to the stations \mathbf{S}_k (k = 1,..., K). Sample in space and in time!

Difference between Geostatistics and Meteorology Amount of information for modelling the statistical parameters.

Geostatistics

<u>Information:</u> only the actual predictors $Z(\mathbf{s}_i)$ (i = 1,...,M). Single realization in time!

Meteorology

<u>Information:</u> Stations with long data series. Sample in space and in time! <u>Consequently</u> the climate statistical parameters in question (expectations, covariances) for the stations are essentially known.

Much more information for modelling!

Theorem

Let us assume for the daily values within a month:

i, Expected values and standard deviations:

$$E_t(\mathbf{s}_0) - E_t(\mathbf{s}_i) = e_{0i}, \quad D_t(\mathbf{s}_0) / D_t(\mathbf{s}_i) = d_{0i} \quad (i = 1,...,M; t = 1,...,30)$$

ii, Correlations:

$$\operatorname{corr}\left(Z_{t_1}\left(\mathbf{s}_{i_1}\right), Z_{t_2}\left(\mathbf{s}_{i_2}\right)\right) = r_{i_1 i_2}^{S} \cdot r_{t_1 t_2}^{T} \quad \left(i_1, i_2 = 1, ..., M; \ t_1, t_2 = 1, ..., 30\right)$$

 $r_{i_1i_2}^S$: correlation structure in space, $r_{t_1t_2}^T$: correlation structure in time.

Then the Optimum Interpolation Parameters for the daily values and monthly mean are identical: $\lambda_{i,t} = \lambda_{i,month}$ (i = 0,...,M; t = 1,...,30).

Moreover the Representativity Values for the daily values and monthly mean are also identical: $REP_t(\mathbf{s}_0) = REP_{month}(\mathbf{s}_0)$ (t = 1,...,30).

Remark about interpolation error RMSE

(to charactarize quantitatively the uncertainties of interpolation)

$$RMSE(\mathbf{s}_0) = \sqrt{(D^2(\mathbf{s}_0) - \mathbf{c}^T \mathbf{C}^{-1} \mathbf{c}) + (1 - \mathbf{1}^T \mathbf{C}^{-1} \mathbf{c})^2 \cdot \frac{1}{\mathbf{1}^T \mathbf{C}^{-1} \mathbf{1}}}$$

$$REP(\mathbf{s}_0) = 1 - \frac{RMSE(\mathbf{s}_0)}{D(\mathbf{s}_0)}$$
 depends on the parameters:

$$D(\mathbf{s}_0)/D(\mathbf{s}_i)$$
 ($i = 1,...,M$), \mathbf{r} , \mathbf{R} .

If
$$D(\mathbf{s}_0)/D(\mathbf{s}_i) = 1$$
 ($i = 1,...,M$) then,

$$REP(\mathbf{s}_0) = 1 - \sqrt{(1 - \mathbf{r}^T \mathbf{R}^{-1} \mathbf{r}) + (1 - \mathbf{1}^T \mathbf{R}^{-1} \mathbf{r})^2 \cdot \frac{1}{\mathbf{1}^T \mathbf{R}^{-1} \mathbf{1}}}$$

Modelling of monthly statistical parameters in MISH

- i, Spatial expected values (spatial trend) E(s)
- ii, Spatial standard deviations $D(\mathbf{s})$
- iii, Spatial correlations $r(\mathbf{s}_1, \mathbf{s}_2)$

Remark: Support program ANOVA (Analysis Of Variance) for modelling part, in order to evaluate the modelling results.

Interpolation applications for monthly and daily data

$$\hat{Z}(\mathbf{s}_0) = \lambda_0 + \sum_{i=1}^{M} \lambda_i \cdot Z(\mathbf{s}_i) , \quad REP(\mathbf{s}_0) = 1 - \frac{RMSE(\mathbf{s}_0)}{D(\mathbf{s}_0)}$$

The Optimum Interpolation Parameters λ_i (i = 0,...,M) and Representativity Value $REP(\mathbf{s}_0)$ can be calculated from the above modelled monthly parameters.

ANOVA (Analysis Of Variance) examination

Partitioning of Total Variance of station data series

$$\hat{V} = \frac{1}{M \cdot n} \sum_{j=1}^{M} \sum_{t=1}^{n} \left(Z(\mathbf{s}_{j}, t) - \hat{E} \right)^{2} = \frac{1}{M} \sum_{i=1}^{M} \left(\hat{E}(\mathbf{s}_{i}) - \hat{E} \right)^{2} + \frac{1}{M} \sum_{i=1}^{M} \hat{D}^{2}(\mathbf{s}_{i}) = \hat{S}_{space}^{2} + \hat{D}_{time}^{2}$$

 $\hat{S}_{space}^{\,2}$ is the variance of spatial trend, $\hat{D}_{time}^{\,2}$ is the mean temporal variance.

CARPATCLIM ANOVA results for months in Hungary

	1	2	3	4	5	6	7	8	9	10	11	12
Tx												
D _t :	2.67	3.24	2.69	1.87	1.96	1.64	1.71	1.98	1.96	1.83	2.43	2.11
s_s :	1.00	1.23	1.33	1.21	1.31	1.34	1.37	1.39	1.43	1.34	1.21	1.02
Tn												
D _t :	2.76	2.88	1.86	1.35	1.20	1.12	1.21	1.18	1.29	1.67	1.97	2.12
S_s :	0.85	0.85	0.83	0.88	0.91	0.87	0.90	0.88	0.82	0.77	0.70	0.80
R												
D _t :	22.5	22.9	21.3	25.6	36.2	39.0	39.3	40.7	36.5	35.7	33.3	27.9
S_s :	7.1	5.9	6.9	7.8	7.8	8.9	9.3	10.5	10.2	8.3	10.8	8.6

New modelling parts in MISH

iv, Modelling of temporal daily autocorrelations $\rho(\mathbf{s})$ per months. v, Modelling of daily standard deviations $D_{daily}(\mathbf{s})$ per months.

This development is based on the modelled autocorrelation $\rho(\mathbf{s})$. Let us assume the daily data of a given month constitute an AR(1) process with common standard deviation $D_{daily}(\mathbf{s})$ and temporal autocorrelation $\rho(\mathbf{s})$. Then $D_{daily}(\mathbf{s})$ can be estimated by using the monthly standard deviation $D_{month}(\mathbf{s})$:

$$D_{daily}(\mathbf{s}) \approx \sqrt{30 \cdot \frac{1-\rho}{1+\rho}} \cdot D_{month}(\mathbf{s})$$

Consequently the first two spatiotemporal moments can be modelled for daily and monthly data by MISH!

Modelling of Present Climate in MISH

Example

Mean temperature data in September for 10 arbitrary locations somewhere in Hungary

index	lambda	fi
1	17.30	47.00
2	17.30	47.20
3	17.30	47.40
4	17.30	47.60
5	17.30	47.80
6	17.60	45.80
7	17.60	46.00
8	17.60	46.20
9	17.60	46.40
10	17.60	46.60

Location 1	indice 2	s: 3	4	5	6	7	8	9	10		
Monthly Expected Values:											
14.59 14.99 14.95 15.06 15.16 15.16 15.13 15.08 15.01 15.05 Daily Expected Values:											
_	14.99			15.16	15.16	15.13	15.08	15.01	15.05		
Monthly Standard Deviations:											
1.34	1.62	1.68	1.67	1.68	1.66	1.72	1.66	1.61	1.64		
Daily S											
2.84	3.44	3.47	3.46	3.47	3.60	3.73	3.58	3.48	3.46		
Tempora	l Daily	Autoco	rrelati	ons:							
0.74	0.74	0.75	0.75	0.75	0.73	0.73	0.73	0.73	0.74		
Matrix of Spatial Autocorrelations:											
1.00	0.99										
0.99	1.00			0.98		0.96			0.98		
0.99	0.99		0.99			0.95			0.97		
0.98	0.99		1.00			0.93					
0.97	0.98	0.99	0.99			0.91			0.94		
0.96	0.95	0.94	0.91	0.90		0.99	0.99		0.98		
0.97	0.96	0.95	0.93	0.91		1.00			0.98		
0.97	0.96		0.93								
0.98	0.97	0.96	0.95	0.93		0.99			0.99		
0.98	0.98	0.97	0.96	0.94	0.98	0.98	0.99	0.99	1.00		

Modelling of interpolation error RMSE

The modelled Representativity Value is the same

for monthly and daily data:
$$REP(\mathbf{s}_0) = 1 - \frac{RMSE(\mathbf{s}_0)}{D(\mathbf{s}_0)}$$

Consequently the modelled RMSE can be calculated as,

i, for monthly data:
$$RMSE_{month}(\mathbf{s}_0) = D_{month}(\mathbf{s}_0) \cdot (1 - REP(\mathbf{s}_0))$$

ii, for daily data:
$$RMSE_{daily}(\mathbf{s}_0) = D_{daily}(\mathbf{s}_0) \cdot (1 - REP(\mathbf{s}_0))$$

Example MISH output: Predictand location: 17.60 47.40

Predictor Indexes: 12 13 10 30 16 11 14 Weighting Factors: 0.20 0.07 0.20 0.18 0.11 0.13 0.11

Interpolation without Background Information:

Predictand Value: 14.77

Representativity: 0.814 RMSE: 0.57

Interpolation with Background Information:

Predictand Value: 14.74

Representativity: 0.822 RMSE: 0.54

Automated real time Quality Control for daily and monthly data

Test schema of QC procedure at additive, normal model is:

$$\frac{Z(\mathbf{s}_0) - \hat{Z}(\mathbf{s}_0)}{RMSE(\mathbf{s}_0)} \in N(0,1),$$

where $Z(\mathbf{s}_0)$ is the predictand to be controlled, $\hat{Z}(\mathbf{s}_0)$ is the interpolated value using modelled optimal parameters and $RMSE(\mathbf{s}_0)$ is the modelled interpolation error.

During the procedure multiple spatial comparison is tested similarly to the QC procedure built in our MASH method for station data series.

Multiplicative Interpolation Formula of MISH

Optimum Interpolation Formula depends on the probability distribution.

Multiplicative Formula based on lognormal distribution for precipitation sum:

Predictand: $Z(\mathbf{s}_0)$ Predictors: $Z(\mathbf{s}_i)$ (i = 1,...,M)

$$\hat{Z}(\mathbf{s}_0) = \mathcal{G} \cdot \left(\prod_{q_i \cdot Z(\mathbf{s}_i) \geq \mathcal{G}} \left(\frac{q_i \cdot Z(\mathbf{s}_i)}{\mathcal{G}} \right)^{\lambda_i} \right) \cdot \left(\sum_{q_i \cdot Z(\mathbf{s}_i) \geq \mathcal{G}} \lambda_i + \sum_{q_i \cdot Z(\mathbf{s}_i) < \mathcal{G}} \lambda_i \cdot \left(\frac{q_i \cdot Z(\mathbf{s}_i)}{\mathcal{G}} \right) \right)$$

where $\theta > 0$, $q_i > 0$, $\sum_{i=1}^{M} \lambda_i = 1$ and $\lambda_i \ge 0$ (i = 1,...,M), are the interpolation parameters.

The optimum interpolation parameters are uniquely determined by certain climate statistical parameters.

Software

http://www.met.hu/en/omsz/rendezvenyek/homogenizationa
nd_interpolation/software/

MASHv3.03

Multiple Analysis of Series for Homogenization; *Szentimrey, T.*

MISHv2.01

Meteorological Interpolation based on Surface Homogenized Data Basis;

Szentimrey, T.and Bihari, Z.

The main features of MISHv2.01

I. Modelling system for climate statistical parameters in space (expected values, standard deviations, spatiotemporal correlations)

- Based on long homogenized data series and model variables.
- Modelling procedure must be executed only once before the interpolation applications.

II. Spatial interpolation system

- Additive (e.g. temperature) or multiplicative (e.g. precipitation) model and interpolation formula can be used depending on the climate elements.
- Daily, monthly, annual values and many years' means can be interpolated.
- The expected interpolation error RMSE is modelled too.
- Real time Quality Control for daily and monthly data (additive model).
- Capability for application of background information such as satellite, radar forecast data. (with QC: data assimilation)
- Capability for gridding of data series.

There is no royal road!

Thank you for your attention!