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Abstract–Mountain wave phenomena have been simulated by using a well-known 

general purpose computational fluid dynamic (CFD) simulation system adapted to 

atmospheric flow modeling. Mesoscale effects have been taken into account with a novel 

approach based on a system of transformations and customized volume sources acting in 

the conservation and governing equations. Simulations of linear hydrostatic wave fields 

generated by a two-dimensional obstacle were carried out, and the resulting vertical 

velocity fields were compared against the corresponding analytic solution. Validation 

with laboratory experiments and full-scale atmospheric flows is a very important step 

toward the practical application of the method. Performance measures showed good 

correspondence with measured data concerning flow structures and wave pattern 

characteristics of non-hydrostatic and nonlinear mountain waves in low Reynolds number 

flows. For highly nonlinear atmospheric scale conditions, we reproduced the well-

documented downslope windstorm at Boulder in January 1972, during which extreme 

weather conditions, with a wind speed of approximately 60 m s
–1

, were measured close to 

the ground. The existence of the hydraulic jump, the strong descent of the stratospheric 

air, wave breaking regions, and the highly accelerated downslope wind were well 

reproduced by the model. Evaluation based on normalized mean square error (NMSE), 

fractional bias (FB), and predictions within a factor of two of observations (FAC2) show 

good model performance, however, due to the horizontal shift in the flow pattern, a less 

satisfactory hit rate and correlation value can be observed. 

 

Key-words: complex terrain, gravity waves, CFD simulation, model validation, numerical 

weather prediction 
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1. Introduction 

An extension of the physical model used in general purpose computational fluid 

dynamic (CFD) solvers has been developed recently in order to simulate 

mesoscale atmospheric flow phenomena in the same model with finely 

structured microscale flow around complex geometries (Castro et al., 2008). We 

suggested a novel approach by utilizing a system of transformations and 

additional volume sources in the governing equations. Atmospheric 

stratification, adiabatic temperature change caused by vertical motion, 

baroclinicity, and Coriolis force are taken into account through this method 

(Kristóf et al., 2009). The model uses only one single unstructured grid, and a 

uniform physical description for close- and far-field flow avoiding interpolation 

errors and model uncertainties due to model nesting. The authors intended 

purpose, furthermore, is to create a more general method, which is easy to 

implement in any CFD solver allowing programmable user defined volume 

sources in the governing equations. This new approach can be applied in several 

areas of practice, but before the application of the method, it is an important step 

to validate the model and to understand the capabilities of the technique.  

In the early model validation steps (the implementation of the energy 

source term and the Coriolis force was investigated), large-eddy simulations 

(LES) of small scale thermal convection problems were carried out in order to 

simulate urban heat island circulation problem (Noto, 1996; Lu et al., 1997; 

Cenedese and Monti, 2003). Good qualitative and quantitative agreement was 

found regarding the velocity and temperature profiles and the general flow 

pattern as well. Behavior of a spreading density current has also been simulated 

by solving the unsteady Reynolds averaged Navier-Stokes (URANS) equations, 

to study the behavior of the dynamical model core and compare the differences 

between the incompressible and compressible versions of the model (Kristóf et 

al., 2009). The correct implementation of the Coriolis force was also tested in 

this work.  

These validation cases have the advantage of that they have more control 

over the measured parameters due to the nature of the measuring device. 

However, they have low Reynolds number range, the cases are mainly 

hydrostatic, the vertical extent is limited to a certain height, and the density 

current study used a fixed turbulence viscosity model. 

The purpose of the present paper is to further extend the validation cases 

characterized by non-hydrostatic and strong nonlinear situations. Further 

differences compared to previous validations (Kristóf et al., 2009) are the 

complex topography, the extended simulation domain height incorporating the 

tropopause, and that all the source terms are activated (see Eqs.(30) – (35)). 

Results of gravity wave simulations compared against the corresponding 

analytic solution, small scale water-tank experiments (Gyüre and Jánosi, 2003), 

and full scale observations (Lilly and Zipser, 1972) will be presented. The 
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simulation of such cases has been found to be ideal for testing and evaluating 

mesoscale numerical models due to the presence of complex flow patterns and 

wave breaking phenomena.  

Atmospheric waves form when stable air flow passes over an obstacle. 

Fluid parcels tend to return into their original height due to the restoring forces 

caused by stratification. Various types of oscillatory flow responses occur 

depending on the state of stratification and geometric parameters (Holton, 2004). 

One can see two divisions of mountain waves, vertically propagating and 

trapped lee waves. Mountain waves vertically propagating over a barrier may 

have horizontal wavelengths of many tens of kilometers, even reaching the 

lower stratosphere (Lin, 2007). The vertical propagation of trapped lee waves is 

limited to a certain height due to the presence of a highly stable layer when 

waves can be reflected in such situations. In general, gravity waves can modify 

the local weather situation near mountains: they can create rotor motions, 

hydraulic jumps, and they have the capability of concentrating momentum on 

the lee slopes, or occasionally leading to violent downslope windstorms. (Klemp 

and Lilly, 1975; Simon et al., 2006) Lee waves can be a potential hazard for 

wave gliders, by producing rotors or clear air turbulence. Flow beneath the wave 

crests can be extremely turbulent, thus causing a potential hazard for low-level 

aviation as well (National Research Council, 1983). The simulations of 

atmospheric scale flows around mountains can also have economical importance 

when the future location of a wind farm is to be estimated (Montavon, 1998; 

Lopes da Costa et al., 2006; Palma et al., 2008).  

One can observe mountain waves (Smith et al., 2002) with the help of 

various types of clouds, altocumulus or wave clouds at wave crests. Rotor 

clouds may dye some parts of the wave field if the appropriate amount of 

moisture is present. In some cases they are marked by regularly spaced clouds, 

and may be of great help to the flight of gliders (Lesieur, 2008). 

Several researchers examined mountain waves and established theories to 

describe the basic phenomena (Scorer, 1949; Long, 1953; Doyle and Durran, 

2002; Smith, 2002). One can also find experimental works dealing with the 

examination of flows around small scale, simplified, two-dimensional isolated 

obstacles (Gyüre and Jánosi, 2003). Gravity waves can be a good basis for the 

validation of atmospheric simulation models, as their structure strongly depends 

on the state of stratification. Indeed, one can see numerous works dealing with 

the validation of mesoscale models against mountain waves (Durran and Klemp, 

1983; Yang, 1993; Thunis and Clappier, 2000; Xue et al., 2000), such as the 

ones caused by a severe downslope windstorm event of Boulder. Similar events 

can occur in mountainous regions all over the world (Colle and Mass, 2000; 

Belušič and Klai, 2004). Postevent analysis of severe windstorms are often 

performed to study the future predictability of such events and also to test model 

performance and validity. A recent study dealt with the November 19, 2004 

windstorm in the High Tatras in Slovakia (Simon et al., 2006). The authors 
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concluded that an increased 2.5 km resolution mesoscale model can forecast 

downslope windstorms.  

In the following section the main aspects of numerical models used in 

meteorological codes and in engineering CFD will be compared together with a 

brief description of the model transformations (for the full description see 

Kristóf et al., 2009). Simulation results will be shown in the third section in 

comparison with analytical solutions, water-tank experiments, and full scale 

downlsope windstorm observations. Conclusions and further investigations are 

outlined in Section 4. 

2. Model overview 

In this section a brief overview will be given on the governing equations, 

numerical methods, and parameterizations applied in numerical weather 

prediction (NWP) and CFD models in order to show the similarities and 

differences between the meteorological and engineering assumptions. 

2.1. Meteorological outlook 

The Navier-Stokes (N-S) equitation describes all types of fluid motion of our 

interest. It can be seen that today’s NWP and CFD models are based on these 

equations of different forms.  

2.1.1. Equations, numerical solution 

Modern numerical forecast models are based on a formulation of the dynamical 

equations, which is essentially the formulation proposed by Richardson (Lynch, 

2006):  

 

 rFgvΩ
v

++p
ρ

=
dt

d


1
2  , (1) 

 

where rFgΩv and,p,,,  are the velocity vector, angular velocity of the Earth, 

air density, pressure, gravity term, and the frictional force, respectively. The 

centrifugal force is combined with gravitation in the gravity term g. This form of 

the N-S equation is basic to most work in dynamic meteorology and solved 

together with the continuity and thermodynamic equations and the equation of 

state in NWP-s. After expanding the components of Eq. (1), one arrives to the 

eastward, northward, and vertical components in spherical coordinate system, 

respectively (Holton, 2004): 
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where u ,v, w are the velocity components, a is the curvature of the Earth, is the 

latitude, and Fri are the components of the frictional force. The terms standing 

with 1/a in Eqs. (2) – (4) are so-called curvature terms, and they arise due to the 

curvature of the Earth and often neglected in midlatitude synoptic scale motions.  

The precise form of equations depends on the vertical coordinate system 

chosen as well, such as pressure coordinates, log pressure coordinates, sigma 

coordinates, hybrid coordinates, etc. (Kasahara, 1974; Klemp et al., 2007; Saito 

et al., 2007). Furthermore, the variables may be decomposed into mean and 

perturbation components. Equation systems using perturbation variables reduce 

the truncation errors in the horizontal pressure gradient calculations, in addition 

to reducing machine rounding errors in the vertical pressure gradient and 

buoyancy calculations. For this purpose, new variables are defined as 

perturbations from a hydrostatically-balanced reference state, and reference state 

variables are defined to satisfy the governing equations for an atmosphere at 

rest. (Skamarock et al., 2005) As an example, in the hydrostatic model version 

of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), the state 

variables are explicitly forecasted while in the non-hydrostatic model version 

(Dudhia, 1993) or in the more advanced Weather Research and Forecasting 

modeling system (WRF), pressure, temperature, and density are defined in terms 

of a reference state and perturbation components. When Reynolds averaging is 

applied, various covariance terms will appear in the system, representing 

turbulent fluxes. For many boundary layers, the magnitudes of the turbulent flux 

terms are of the same order as the other terms in Eqs. (2) – (4). In these cases 

one cannot neglect these fluxes even if it is not of direct interest.  

There are tendencies towards higher spatial resolution models, but the 

resolution of most NWP models is yet too coarse to resolve boundary layer 

eddies, and parameterizations of them are usually necessary as the complete 

energy cascade cannot be resolved. (The High Resolution Limited Area models 

(HIRLAM), or ALADIN operate on horizontal grids in the range of 1–10 km.) 

Thus a number of turbulent mixing and filtering formulations were developed in 

the past. Some of these filters are for numerical reasons. For example, 
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divergence damping filters acoustic modes from the solution. Other filters 

represent sub-grid processes that cannot be resolved on the given spatial 

resolution.  

2.1.2. Filtering of acoustic modes 

The complete equations of motion (Eqs. (2) – (4)) describes all types and scales 

of atmospheric motion. The elimination of terms on scaling considerations has 

an important advantage of simplified mathematics and filtering of a range of 

unwanted type of motions.  

These high-frequency acoustic modes would limit the time step during the 

calculation. To circumvent, different time discretization techniques are 

developed, see, e.g., the Runge-Kutta time-split scheme in Wicker and 

Skamarock (2002) or Almut and Herzog (2007). The efficiency of the time-split 

scheme arises from that the large time step Δt is much larger than the acoustic 

time step Δτ, so the most costly calculations are only done in the less-frequent 

large steps. There are less efficient methods than the leapfrog-based models (e.g. 

in MM5 or WRF) resulting typically a factor of two greater time step. In the 

non-hydrostatic model of MM5, a semi-implicit scheme based on Wilhelmson 

and Klemp (1978) is used to filter the acoustic waves, while in the hydrostatic 

model, a split-explicit scheme based on Madala (1981) is used to filter gravity 

waves from the solution. The time differencing in MM5 is extensively discussed 

in Grell et al. (1995). In highly complicated systems, also involving pollution 

transport and chemical reactions, efficient operator splitting methods are 

developed recently to reduce computational time. The method is well spread in 

related fields of applied mathematics (Geiser, 2008) and in circulation and 

pollution models (Havasi et al., 2001; Faragó, 2006; Kocsis et. al, 2009) 

2.1.3. Planetary boundary layer (PBL) and surface-layer schemes, turbulence, 

closure problem 

NWP and air pollution models must contain proper treatment for the PBL since 

it couples energy, momentum, and mass transfer between the land and 

atmosphere. The importance of its modeling is increasing nowadays due to 

environmental requirements, including human health, urban air quality, local 

and global warming trends, or homeland security problems. The PBL 

parameterization is especially important for predicting pollutant transport and 

dispersion (Lundquist and Chan, 2006). 

In order to solve the equations of motion (Eqs. (2) – (4)), closure 

assumptions must be made to approximate the unknown fluxes as a function of 

known quantities and parameters (Holton, 2004).  Turbulent fluxes provide a 

lower boundary condition for the vertical transport done in the PBL schemes. 

The PBL schemes determine the flux profiles within the well-mixed boundary 

layer and the surface layer providing tendencies of temperature, moisture, and 
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horizontal momentum in the entire column. Thus, when a PBL scheme is 

activated, explicit vertical diffusion is de-activated assuming that the PBL 

scheme will handle the process. Most PBL schemes apply dry mixing, but can 

also include moisture effects in the vertical stability that determines the mixing. 

The schemes are one-dimensional, since the horizontal large gradients cannot be 

resolved, and assume a clear scale separation between sub-grid eddies and 

resolved eddies. This assumption is less clear below a certain grid size, where 

boundary layer eddies may start to be resolved. In these situations the scheme is 

replaced by a fully three-dimensional local sub-grid turbulence scheme such as 

the turbulent kinetic energy (TKE) diffusion scheme (see in the WRF model: 

Knievel et al., 2007; Nagy, 2010). Numerical simulations of PBL have been 

performed by many authors in the past resulting in different model complexity 

ranging from very simple zero dimensional parameterization to 3-D high 

resolution models. In the following sections a brief description will be given on 

the commonly used closure models.  
 

2.1.3.1. First order closure 
 

Operational NWP, emergency response, and air-quality models usually are of a 

RANS type (solving Reynolds averaged Navier-Stokes equations), and they 

employ first- or 1.5-order turbulence closures. The simplest turbulent transport 

parameterization is the first-order closure based on the K-theory (Corrsin, 1975; 

Wyngaard and Brost, 1984; Holtslag and Moeng, 1991; Stull, 1993). It is robust 

and requires low computational resources but gives poor approximation in the 

boundary layer, where the scale of typical turbulent eddies is strongly dependent 

on the distance to the surface and static stability. In many cases the most intense 

eddies have scales comparable to the boundary layer depth, and there the 

momentum and heat fluxes are not proportional to the local gradient of the 

mean. In much of the mixed layer, heat fluxes are positive even with neutral 

conditions.  

To improve the model behavior, alternative approaches have been 

developed. An example is the modified first-order closure (Townsend, 1980; 

Troen and Mahrt, 1986; Hong and Pan, 1996). This scheme employs a counter-

gradient flux for heat and moisture in unstable situations. It uses enhanced 

vertical flux coefficients in the PBL, and the PBL height is determined from a 

critical bulk Richardson number (Ri). It handles vertical diffusion with an 

implicit local scheme, and it is based on local Ri in the free atmosphere (Rifree).  

In spite of its drawbacks, the first-order closure based models remain the 

most popular parameterization for stable conditions, although alternative 

approaches have been used for the daytime convective period, e.g., the 

Blackadar (BK) non-local mixing scheme (Blackadar, 1976; Zhang and Anthes, 

1982) and non-local K-theory (Hong and Pan, 1996). The BK scheme is a first-

order hybrid local and nonlocal scheme in which eddy diffusivity, a function of 
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the local Ri number, is applied to the stable and forced convective regimes, 

while nonlocal mixing is used for free convective cases. The BK scheme’s 

closure is based on an expression for the mass that is exchanged between 

individual layers in the boundary layer.  

Recent improvements of first order schemes include the Yonsei University 

model (YSU, Hong et al., 2006) or the asymmetrical convective models ACM1 

(Pleim and Chang, 1992) and ACM2 (Pleim, 2007). YSU is based on the K 

profile for the convective cases as a function of local wind shear and local Rifree. 

It also considers non-local mixing by adding a non-local gradient adjustment 

term to the vertical diffusion equation. Moreover, it contains additional terms to 

describe entrainment at the top of PBL proportional to the surface flux. For 

stable cases, the original mixing coefficient (Hong et al., 2006) is replaced by an 

enhanced diffusion based on the bulk Ri number between the surface and top 

layers (Hong, 2010). The ACM1 and ACM2 models are modifications of the BK 

scheme. In ACM1 the symmetrical downward transport of BK scheme is 

replaced by an asymmetrical layer-by-layer model. In order to produce more 

realistic vertical profiles, the ACM2 model, a combination of local and non-

local closures, was introduced (Pleim, 2007), that adds an eddy diffusion 

component to the non-local transport. With this addition the ACM2 scheme can 

better represent the shape of the vertical profiles in the near surface region. Both 

ACM1 and ACM2 models are available in the MM5 and WRF solvers.  

 

2.1.3.2. Higher order closures 
 

Given the known drawbacks of these simpler models, new approaches are 

developed with increasing complexity of turbulence description. The Gayno–

Seaman (GS) scheme is a 1.5-order local closure scheme that computes eddy 

diffusivities based on local vertical wind shear, stability, turbulent kinetic energy 

(TKE) predicted by a prognostic equation (Shafran et al., 2000), and length 

scale. The Eta PBL scheme, also known as the Mellor-Yamada-Janjic (MYJ) 

scheme (Janjic, 1990; Mellor and Yamada, 1982, Janjic, 1996, 2002), is a level-

1.5 local closure scheme that computes vertical eddy diffusivities based on TKE 

predicted by a prognostic equation as a function of local vertical wind shear, 

stability, and turbulence length scale. The effects of the viscous sub-layer are 

taken into account through variable roughness length for temperature and 

humidity (Zilitinkevich, 1995). Other more sophisticated schemes are based on 

ensemble-averaged turbulence models (Xue et al., 1996) with varying orders of 

closure (e.g., Mellor and Yamada, 1974; Wyngaard et al., 1974; Andre et al., 

1978). These schemes often perform remarkably well under horizontally 

homogeneous conditions in modeling the horizontally (ensemble) averaged 

profiles of quasi-conservative quantities. However, the 3-D structures of the 

boundary layer is not predicted well. They are more complicated, and require 

solving equations of higher order moments, limiting their practical application 
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(Lee et al., 2006). Several researcher proposed modifications to the original MY 

model improving the master length scale equation (Sušelj and Sood, 2010) or the 

pressure-strain, pressure –temperature covariance closures (Nakanishi and 

Niino, 2009) 

Other researchers, however, showed that there is little gain in accuracy with 

increasing scheme complexity using different turbulence parameterizations. 

Increasing the complexity of the turbulence parameterization not just increased 

the computational resources but did not show obvious improvement, sometimes 

producing equally poor, if not worse, predictions (Zhong et al., 2007) of the 

simulated mean and turbulent properties in the boundary layer, even around 

complex regions (Berg et al., 2005).  

Traditional PBL schemes were adequate for flat, horizontally homogeneous 

surfaces under steady-state conditions with different stratification. They cannot 

cope, however, with increased-resolution models that require more detailed and 

accurate representations of physical processes (Baklanov et al., 2011). 

Therefore, different approaches are developed where the calculation of eddies 

was done explicitly in the PBL using 3-D high resolution models. Since only a 

small portion of the turbulence is handled by the subgrid scale (SGS) scheme, 

the results are less sensitive to turbulence closure assumptions. The first LES 

models and work in this area was pioneered by Deardorff (1974a,b). For PBL 

applications, LES models typically require horizontal resolutions on the order of 

100 m (see, e.g., ARPS, MESO-NH codes), and they are typically used for 

research applications (e.g., Weigel et al., 2007). Deardorff (1980) designed a 

simplified 1.5-order closure scheme that requires the solution of only one 

additional prognostic equation for the SGS turbulent kinetic energy, where the 

eddy coefficient was assumed to be proportional to the square root of TKE. This 

scheme has been widely used by researchers (Klemp and Wilhelmson, 1978) to 

handle SGS turbulence in cloud-scale models. Such models have a horizontal 

resolution in the order of 1 km, and they are expected to resolve cloud structures 

and limited turbulent eddies.  

2.2.  Engineering outlook 

CFD tools have been in use for decades with success for solving engineering 

related problems involving broad range of physics. Spatial scales are extended to 

urban scales to handle flows involving pollution dispersion and can be even 

extended to mesoscale problems by the presented transformation method. 

Therefore, it is interesting to show the main aspects and some of the current 

problems of CFD solvers in this field. 

2.2.1. Governing equations, simulation of turbulent flows 

In engineering CFD, continuity, momentum, and energy equations are usually 

solved based on the finite volume method in an unsteady conservative form. 
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Because of numerous advantages of the finite volume method, it is widely 

spread among commercial and open source fluid mechanical solvers. Although 

the instantaneous Navier–Stokes equations exactly define all fluid flow, it is 

essentially impossible to solve these equations for turbulent flows over domains 

of significant spatial scale. Therefore, the exact equations are often Reynolds 

averaged to create a set of equations that can be solved for the spatial scales of 

engineering interest. The current adaptation method was developed for the 

commercial fluid mechanical solver ANSYS-FLUENT, but it can be 

implemented in other solvers as well, having user defined function (UDF) 

capabilities such as the commercial codes ANSYS-CFX and StarCD or the open 

source solver Openfoam. Through UDF-s, the user can modify the governing 

equations of the CFD code by adding appropriate source/sink terms to the 

equations.  

The governing equations (Eqs. (5) – (7)) are solved by using the Boussinesq 

approximation (Eq. (10)) for the density.  
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In the equation system T,ρ,p,
~~~~v are the transformed field variables of 

velocity, pressure, density, and temperature. cp and β are the specific heat 

capacity of dry air at constant pressure and the thermal expansion coefficient. 
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From the velocity vector ( kjiv w+v+u= ~~ ) only the vertical component was 

affected by the transformation. τ contains the viscous and turbulent stresses, 

kg g=   is the gravitational force per unit mass, and g = 9.81[N kg
–1

]. In the 

presented system the turbulent transport is modeled by the realizable k– 

turbulence model with full buoyancy effects (Eqs. (8) – (9)) developed by Shih 

et al. (1995). σk and σε are the turbulent Prandtl numbers for k and  , 

respectively. The turbulent viscosity μt and the turbulent heat conduction 

coefficient tK  are evaluated on the basis of turbulence kinetic energy (k) and 

dissipation rate () fields (Launder and Spalding, 1972). The constant values of 

C1ε , C2ε , the expressions of C1 and C3ε , the turbulence production and buoyancy 

terms Gk and Gb, modulus of mean rate-of-strain tensor S can be referred either 

from CFD literature (Shih et al., 1995) or from software documentation (ANSYS 

Inc., 2012) of the applied simulation system. ρ0 and T0 are reference (sea level) 

values of density and temperature.  

Volume sources ST, Sk, and S in Eqs. (7) – (9), as well as vector 

kjiF wvu S+S+S=  in Eq. (6), are functions of local values of field (prognostic) 

variables, and used for adjusting the model to handle mesoscale effects. The 

components of the Coriolis force are included in F through Su, Sv, and Sw.  

Reynolds averaging introduces other unknowns into the equation system, 

the so-called Reynolds stresses. Since there is no existing general formula for 

the description of these stresses, large number of engineering turbulence models 

were developed applicable to certain flow features, but there are no turbulence 

models that would be generally applicable to all kind of turbulent flows. The 

modeling of these virtual stresses is still a major part of the today’s turbulence 

modeling science. Different versions of two equation models are used in CFD 

for turbulence modeling. The most popular are versions of the k– model or 

other two equation models. These versions are denoted as linear eddy viscosity 

models, which adopt the Boussinesq approximation, implying an isotropic eddy 

viscosity. There were attempts using two equation models in NWP codes. An 

example is the implementation of a version of the k–model by Hanjalic and 

Launder (1972) in the MESO-NH meteorological code. It was not used 

extensively since, according to the authors, the current version did not give 

satisfactory results. The disadvantage of these eddy viscosity models is that they 

give an unrealistic representation of the normal turbulent stresses. This 

representation of the turbulent stresses produces fairly good results as long as 

only one of the turbulent stresses is dominant in the momentum equations. 

Further downside is that in more complicated flows, where more than one of the 

normal stresses is important, the ability of a turbulence model to predict normal 

stress anisotropy becomes significant. This motivates the development and 

application of nonlinear k– models (Gatski and Jongen, 2000) and other more 

advanced models, such as LES or hybrid RANS-LES models.  
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2.2.2. Stratification and turbulence models 

One can find several works on the application of turbulence models in neutral 

conditions (Richards and Hoxey, 1993; Blocken et al., 2007; Hargreaves and 

Wright, 2007). Stable stratification, however, causes drainage flows over uneven 

topography, intermittent turbulence, low-level jets, gravity waves, flow 

blocking, intrusions, and meandering, thus posing challenges in modeling of 

stable stratification (Lee et al., 2006).  

Several problems can be identified regarding the maintenance of turbulence 

profiles with distance (Huser et al., 1997) dissipating turbulence early 

downstream of the obstacle (Hanna et al., 2006). Treatment of these 

inconsistencies is the modification of the model constants of existing models 

(Duynkerke, 1988), adding source terms to the turbulent dissipation rate (TDR) 

equation for  or a non-constant formulation for the C1 parameter (Freedman 

and Jacobson, 2003; Pontiggia et al., 2009). Vendel et al. (2010) proposed an 

inlet pressure profile and flux condition for the ground in order to define an 

appropriate downwind boundary condition for the stable or unstable cases. 

Although CFD models are currently slow to be used for real-time 

emergency response, they can be used for planning purposes and to guide 

parameterizations of real-time wind flow models. A good example of a 

dispersion model that is parameterized based on the CFD results is the Quick 

Urban and Industrial Complex dispersion modeling system (Williams et al., 

2004). As computing power has become more affordable, CFD has become an 

increasingly valuable tool for studying urban flow. These models explicitly 

account for building geometry and require minimal parameterizations (Balczó et 

al., 2011; Balogh and Kristóf, 2010). With the current model transformation, one 

can take into account mesoscale effects in the same numerical model with finely 

resolved topography.  

2.2.3.  System of transformations 

The proper representation of Coriolis force, compressibility, and stratification 

effects is achieved by a system of transformations. These adjust the governing 

equations solved by the CFD solver through user defined volume source or sink 

terms. The CFD solver operates with transformed field variables (Eqs. (5) – (10)). 

Relations between untransformed physical quantities ( wz,ρ,p,T, ) and 

transformed ones ( w~,z~,ρ~,p~,T
~

) are defined by Eqs. (11) – (15). 

 

 T+TT
~

=T 0 , (11) 

 p+p~Ce=p+p~

ρ

ρ
=p zδ

0

, (12) 
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 ρ+ρρ~=ρ 0 , (13) 

  










ref

refzδ
z~z~

C

δ
e

δ
=z ln

1
, (14) 

 
zδeCw~=w~

ρ

ρ
=w 10 

, (15) 

 

where  is the density parameter described  by Eq. (18) and zref  is a reference 

altitude (Eq. (20)). Zero subscipt denotes values at ground level. The vertical 

extent of the atmosphere is ―compressed‖ below a well-defined bound ( δC / ) 

described by Eq. (14), thus δCz /~  , when z , where C, described by Eq. 

(19), acts as a switch between the description of stratosphere and troposphere.  

The model utilizes an (x, y, z) Cartesian coordinate system. The Jacobian of the 

transformation of coordinate z can be calculated according to Eq. (16). 1J   

when 0z~  , and therefore the geometrical transformation has a negligible effect 

close to ground.  

 

  zδC=
z~d

dz
=J 1 exp

. (16) 

 

In this zone, the original form of the Cartesian equations existing in the 

CFD solver gives a good enough description for the flow close to the surface. 

2.2.4. Reference profiles 

The relationship between the absolute physical quantities and the field variables 

in the CFD solver are based on the reference profiles (distinguished by over-

bars) Eqs. (21) – (29). It can be optimized to have the least possible deviation 

from the hydrostatic equilibrium and can simplify the specification of the initial 

conditions. These terms depend only on the vertical coordinate using 

approximation of the polytrophic atmosphere, as according to Eqs. (21) – (29). 

The original transformation expressions (Kristóf et al., 2009) that were valid 

below an altitude of 11 km have been extended to incorporate the tropopause 

and the lower stratosphere up to an altitude of 25 km. For simplicity, the 

following double valued constants are introduced to describe these layers: 
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













 tp

tpt

zz,

z<z,γ=γ

when0

when , (17) 

 















 tps

tpt

zz,δ

z<z,δ=δ

when

when , (18) 

 

  


















tp
tp

tp

zz,
ztδsδe

z<z,=C

when

when1 , (19) 

where subscripts t and s denote values for the troposphere and stratosphere, and 

ztp is the tropopause altitude. In the stratospheric region we use ztp as a reference 

altitude, therefore: 

 

 















 tptp

tpref

zz,z

z<z,=z

when

when0 . (20) 

 

Using the above notations, the reference profiles for the troposphere will read 

as: 

 

 zγT=T tt 0 , (21) 

 tt
t

γR

g

T

zγT
p=p 







 

0

0
0 , (22) 

 
ztδ

t eρ=ρ


0 , (23) 

 















 


0

1ln
T

zγ

γRz

Rγg
=δ t

t

t
t . (24) 

The reference profiles in the stratospheric region are based on an isothermal 

temperature profile, therefore: 
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 tps T=T , (25) 

 
 tpsδ

tps

zz
ep=p


, (26) 

 
 tpsδ

tps

zz
eρ=ρ


, (27) 

 

tp
s

RT

g
=δ . (28) 

 

By using the above notations, the universal density profile reads: 

 

 
zδ

0 eCρ=ρ 
. (29) 

 

The constant values in Eqs. (21) – (29) can be optimized for a given case, but the 

standard ICAO (Manual of the ICAO Standard Atmosphere, Doc 7488, 1993) 

temperature and pressure profiles, based on the following constants, have been 

found to be suitable references for simple applications: γt = 0.0065 
o 

C m
–1

, 0T = 

15 
o 

C, 0p = 1.01325 · 10
5
 Pa, 0 =1.225 kg m

-3
, R = 287.05 J kg

-1 
K

-1
, δt = 10

-4 
.
 

m
-1

 

2.2.5. Volume sources 

The volume sources (Eqs. (30) – (35)) have been calculated according to Eqs. 

(20)–(25) by utilizing the UDF capability of the system.  

 Jw~fvSu 00   , (30) 

 fuρ=Sv 0 , (31) 

       2
0

1
00

12
0 1 w~p~JJugTT

~
JuJSw     , (32) 

   JγΓw~cρ=S pT  0 , (33) 

  γΓ
μ

gβ=S
t

t
k 

Pr
, (34) 
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  γΓ
μ

gβ
k

ε
CC=S

t

t
ε 

Pr
3ε1ε . (35) 

 

In the above expressions, tμ and tPr are the turbulent viscosity and turbulent 

Prandtl number, φΩ=f sin2  and cos2Ωl  are the Coriolis parameters, φ  is 

the average latitude, and Ω  is the angular velocity of Earth. Moisture transport is 

not taken into account in the mathematical model, therefore the dry adiabatic 

temperature gradient appearing in Eqs. (19) – (21), is calculated according to 

the assumption of a dry adiabatic process:  = g/cp = 0.00976 
o
C m

–1
. 

2.2.6. A simplified model version for water-tank experiments 

Validation against small scale water tank experiments requires the adjustment of 

the transformation expressions. The working medium is liquid and the vertical 

extent of the device is small, therefore the atmospheric pressure variation with 

the vertical coordinate is negligible. Compressibility is not taken into account 

consequently ( = 0, z=z ~ , and δt = 0). The vertical reference profiles for 

pressure and density are 00 , ppρ=ρ tt  .  Due to the very weak turbulence 

characterizing these experiments, a laminar approach or LES method should be 

used instead of the k– model. The Coriolis force usually has a negligible effect 

in such experiments, and therefore, 0=Ω  can be assumed.  

These assumptions will simplify the source term acting on the energy 

equation: 

 

 γw~cρ=S pincompT, 0. . (36) 

 

The values of dzTd=γ / , cp, β, and 0T  for water-tank simulations can be 

calculated according to the temperature or density gradient of the fluid, 

maintaining the same Brunt-Väisälä frequency and material properties of the 

experiment.  

2.2.7.  Nesting 

In NWP models the simplest method is the ―one-way‖ downward nesting, where 

the outer model provides 4D boundary conditions to the inner higher resolution 

domain. In some cases it can be provided, if the mesoscale model horizontal 

resolution is as fine as a few hundred meters. The one-way nesting technique, in 

the Advanced Regional Prediction System (ARPS), allows adjustments in 

vertical resolution between grids, which is important for LES mode, where the 
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grid aspect ratio should be kept close to unity. In more advanced ―two-way‖ 

nesting, the nested finer domain and the outer coarser domain interact at every 

time step of the outer coarse grid and, the microscale model provides lower 

boundary-condition to the outer domain. ―With current computer capacities, this 

can be done within small parts of the mesoscale domain, which creates 

inconsistencies with the remaining parts of that domain.‖ (Baklanov et al., 2011) 

The current implementation of two-way nesting schemes in WRF or MM5 does 

not allow higher vertical resolution in the inner nesting levels, because the 

number of vertical levels must be the same for all levels (Michioka and Chow, 

2008). Another problem that also exists in the CFD field is the velocity and 

length scale changes across the boundaries of nesting levels. This is especially 

important when the complex high resolution topography generates nonlinear 

motions close to these boundaries. One may also expect the damping of low 

frequency motions passing through the boundary and as a consequence 

providing an improper upstream turbulence field for the inner microscale model. 

The advantage of the CFD approach is that it allows arbitrary mesh 

refinements in the simulation domain, resulting a continuous change of field 

variables around the finely resolved region. The possibility of nesting also exists 

in the CFD solver allowing different mesh resolution either horizontally or 

vertically on both sides of the domain interface, but one can avoid it with the 

existing mesh refinement options (ANSYS Inc., 2012). In the following case 

studies, structured quad meshes can be used (without additional interfaces) due 

to the simplicity of the underlying geometries. 

3. Results and discussion 

The application of the model transformation will be presented in this section. 

Results will be compared against the analytical solution of linear, hydrostatic 

mountain wave field. Nonlinear and non-hydrostatic simulation cases are then 

compared to small scale water-tank experiments, and finally, a full scale 

nonlinear and non-hydrostatic downslope windstorm case will be shown against 

an inter-comparison study of NWP models and field measurements. 

3.1. Verification with analytic solution 

The simulations were compared with the analytic solution of a linear hydrostatic 

wave field. A Witch of Agnesi curve was used for the relief geometry, 

 

 
22 a+x

a
h=z(x) , (37) 
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where h and a are the obstacle height and half width, respectively. This 

geometry has been used extensively in the literature (Wurtele et al., 1996), as an 

analytic solution can be derived for this shape. In order to obtain comparable 

results with water-tank experiments, the following material properties and 

working conditions were used: 

 

=ρ0 998 kgm
–3

, 0T  = 27 
o
C, β = 0.000207 K

–1
, –γ = 832 K m

–1
, U= 0.25 ms

–1
.  

The Reynolds number, based on the inlet flow speed (U) and the obstacle 

height (h), was about 2500; therefore a laminar model was used. Compressibility 

and the Coriolis force were not taken into account. Free-slip wall and symmetry 

boundary conditions were applied at the lower and upper boundaries. A constant 

velocity and static pressure profile were prescribed as inlet and outlet conditions. 

The model was initialized with constant 0

~
T=T , 0

~ p=p , and uniform horizontal 

velocity 0

~
U=U . 

Based on the linear wave theory (Eq. (38)), an analytic solution can be 

found for hydrostatic problems with a constant Scorer parameter (l). The Scorer 

parameter is usually a function of the vertical coordinate, and it is derived from 

the wave equation for atmospheric gravity waves with an assumption of a two-

dimensional, non-viscous, adiabatic flow (Smith, 1979; Durran, 1990). This 

parameter is most often used to forecast the existence of trapped lee waves, 

which can be expected when l decreases strongly with height. This is especially 

true if l decreases suddenly in the mid-troposphere due to the presence of a 

stable layer dividing the troposphere into a highly and a weekly stable layer. The 

square root of the parameter l (Eq. (40)) has units of wave number. The wave 

number of the lee wave (l) lies between lupper of the upper layer and llower of the 

lower layer. Wide mountain ranges generate vertically propagating waves of 

wave numbers less than lupper. Small obstacles, that force wave numbers greater 

than llower, produce waves that will vanish with height. 

For hydrostatic problems, the development of the full analytic solution has 

been summarized by several researchers (Alaka, 1960; Smith, 1979). The 

combined governing equations were resulted in the deep Boussinesq equation 

(Eq. (38)) for w. The Scorer parameter l is defined by Eq. (38) and Eq. (39): 
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where w is the perturbation vertical velocity, 
z

zg
=N






)(

0




 is the Brunt-

Väisälä frequency, U is the inlet flow speed, ρ is the fluid density, and z is the 

vertical coordinate, respectively. For incompressible flow only the first two 

terms remain. 

 

 
2

2

2

2
2 1

dz

Ud

UU

N
=(z)l  . (40) 

 

The first term on the right-hand side dominates in our case, and additionally, if a 

uniform velocity profile (U = U0) and Brunt-Väisälä frequency (N) are used, 

Eq. (40) simplifies to: 

 

 
U

N
=l . (41) 

 

With the help of the Scorer formula, flows can be categorized on the basis of the 

following two dimensionless quantities: 

 

 la=Fx ,   lh=Fz . (42) 

 

When 1>>Fx , the flow is essentially hydrostatic, while non-hydrostatic effects 

become important when 1~Fx  (Schumann et al., 1987). Regarding the linearity, 

when 1<<zF , the flow is linear and nonlinear effects dominate, when the value 

approaches to 1~Fz . The borders are, however, not well-defined, and that is 

why one can find test cases marked as moderately hydrostatic or moderately 

nonlinear (Thunis and Clappier, 2000). Calculating these parameters using 

a = 2 m and h = 0.01 m, one can find that our setup is linear and hydrostatic with 

l = 5.32 m
–1

, Fx = 10.64, and Fz = 0.0532. In the case of hydrostatic flow, an 

analytic solution exists (Eq. (43)) for the vertical velocity field w(x, z), based on 

Eq. (38):  
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The vertical velocity contours have been plotted against the corresponding 

analytic solution on Fig. 1. The agreement between the two solutions is very 

good, with the magnitude of the vertical velocity in the numerical solution being 

only slightly smaller. The locations of velocity maxima, in the case of the CFD 

results, are shifted only moderately downward in the vertical direction. 

 

 

Fig. 1. Contour plots of the vertical velocity (w [mm s
–1

]), obtained from the analytic 

solution based on Eq. (43) (left) and from CFD calculations (right). The solution is 

obtained for U = 0.25 m s
–1

, l = 5.32 m
–1

, N = 1.3 s
–1

, a = 2 m, h = 0.01 m. The vertical 

and horizontal scales are normalized by the mountain height (h) and half width (a) 

respectively. Dashed lines represent negative values. 
 

 

In the next section, a set of test cases have been prepared and the results are 

compared against experiments that cover a hydrostatic and nonlinear parameter 

range. The statistical performance measures applied for the comparison are also 

described briefly. 

3.2. Statistical performance measures used during the evaluation 

To quantitatively evaluate the output of the model with observations, Hanna et 

al. (1991, 1993) recommend the use of the following statistical performance 

measures (Chang et al., 2005): the fractional bias (FB), the normalized mean-

square error (NMSE), the fraction of predictions within a factor of 2 of 

observations (FAC2), and the hit rate (HR). Chang and Hanna (2004) suggest 

that a good model would be expected to have about 50% of the predictions 

within a factor of 2 of the observations (i.e., FAC2 > 0.5), a relative mean bias 

within 30% of the mean (i.e., –0.3 < FB < 0.3), a relative scatter of about a 

factor of 2 or 3 of the mean (i.e., NMSE < 4), and a hit rate above 66% 

(HR > 0.66) with an allowed deviation of D = 0.25. The absolute value of the 

model’s fractional bias (FB) is reasonably good if it is less than 0.25. A 

tendency toward overprediction of wind speeds is seen, with the fractional bias 

regularly between 0 and –0.25 (Lundquist and Chan, 2006). The perfect model 

would have the following idealized performances: FAC2
 
=

 
HR

 
=

 
1 and 

FB
 
=

 
NMSE

 
=

 
0. In air quality modeling, typical values of the above statistical 
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measures have been defined as acceptable for model evaluation and also 

correspond to a model acceptance criterion (Chang and Hanna, 2004).  

3.3. Numerical model results compared to small scale water-tank experiments 

Among the experiments focused on topography-induced gravity waves, one can 

find investigations dealing with symmetric and asymmetric obstacles, looking at 

the effect of asymmetry (Gyüre and Jánosi, 2003), determining surface drag by 

numerical simulations (Klemp and Lilly, 1975) and numerically examining the 

wave breaking characteristics (Doyle et al., 2000; Afanasyev and Peltier, 2001). 

The common feature of the former experiments is the experimental apparatus. 

They use mainly the water as working medium, since in water it is relatively 

easy to generate and maintain stable stratification for a longer period of time. 

Usually, this is done by using layered salt water. The achievable range of 

Reynolds number is limited to approximately 10
3
. In spite of this fact, these 

methods are widely used, since there is more control on the parameters and 

conditions, than in real atmosphere.  

Two-dimensional simulations of internal gravity waves have been carried 

out by using symmetric and asymmetric obstacles, in correspondence with the 

experiments performed by Gyüre and Jánosi (2003). Obstacle shapes have been 

characterized by the following function:  

 

 ) 2 ( exp  )( k|x|b–a=xz , (44) 

where a, b, and k are shape parameters and x is the horizontal coordinate of the 

obstacle. Both the symmetric and asymmetric shapes can be described by 

Eq. (44), by prescribing different parameters for the upstream and downstream 

part of the mountain barrier. Measurements were performed in a narrow plexi 

glass tank of 2.4 m
 
×

 
0.087 m

 
×

 
0.4 m filled with linearly stratified salt water, by 

towing the obstacles along the bottom of the tank at a constant speed. The range 

of the experimental parameters (obstacle height h = 0.02 – 0.04 m, towing 

velocity U = 0.01 – 0.15 m s
–1

, and Brunt-Väisälä frequency N = 1.09 – 1.55 s
–1

) 

corresponds to an atmospheric flow up to an elevation of 5 – 10 km for an 

obstacle height of 600 m and a wind speed of 10 – 70 m s
–1

 for a large range of 

hydrostatic state and linearity.  

The flow was considered unsteady, incompressible, and two-dimensional in 

the simulation. Due to the low Reynolds number range, a laminar model was 

used. The domain was discretized with a structured quad grid, using 

150 x 800 quad elements (Fig. 2). Second order time discretization, pressure 

staggering option (PRESTO) for pressure interpolation (ANSYS Inc., 2012), and 

second order upwinding methods were used when solving the momentum and 

energy equations. Compressibility was turned off in this case by using the 

transformation described in Section 2.2.6. 
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Fig. 2. Computational domain and numerical grid in the case of a gentle leeward side 

obstacle.  

 

 

Typically for higher flow velocities, we observed flow separation during 

the simulation of symmetric steep lee-side obstacles. The separation induced 

bubble modified the shape of the leeward side in this case, quasi elongating the 

obstacle (Fig. 3), consequently changing the hydrodynamic characteristics of the 

barrier. Therefore, these cases were excluded from the comparison. 

 

 

 

Fig. 3. Computed streamlines of the velocity field for U/Nh = 0.7 (left) and U/Nh = 1 

(right) showing the elongation of the separation bubble and of the wave lengths for a 

symmetric obstacle.  

 

 

In the numerical model, flow enters into the domain with a uniform inlet 

velocity profile. A moving bottom wall, for simulating the stationary bottom wall 

of the experiment was used. No visible disturbances were observed on the water 

surface, consequently a rigid lid (symmetry) with free slip boundary condition 

was applied in the simulation model. Avoiding the interaction between upward 

propagating and reflected wave fronts, data extraction was made after a short 

transient period, before interference could occur. This period was estimated from 

the vertical group velocity (Gyüre and Jánosi, 2003), which was proportional to 

the towing speed. In those cases where steepening and wave breaking occurred, 

samples were excluded from the averaging of amplitudes and wavelengths. 
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In Table 1, the simulations were categorized into four groups based 

on UaN=Fx /  and UhN=Fz / non-dimensional numbers as described by Eq. (42). 

These groups are nonlinear (NL), moderately nonlinear (M–NL), hydrostatic 

(H), and moderately non-hydrostatic (M–NH) cases. For all cases, the mountain 

height h, was 0.04 m, the leeward half width a, was 0.13 m, the Brunt-Väisälä 

frequency N, was 1.33 s
–1

 and U was the incoming flow velocity corresponding 

to the towing velocities of the obstacle in the survey. 

 
Table 1. List of cases and parameters for the simulation of the gentle leeward side 

obstacle. Vertical structure and linearity categories are: H – hydrostatic, M-NH – 

moderately non-hydrostatic, NL – nonlinear, M–NL – moderately nonlinear  

Case No. U (m s
–1

) Na/U Nh/U Vertical structure Linearity 

1 0.016 10.80 3.33 H  NL 

2 0.032 5.31 1.64   

3 0.037 4.63 1.43   

4 0.041 4.15 1.28   

5 0.048 3.60 1.11   

6 0.053 3.24 1.00   

7 0.077 2.23 0.69 M–NH M–NL 

8 0.106 1.62 0.50   

9 0.160 1.08 0.33   

 

Wavelengths and amplitudes were measured in multiple positions above 

and downstream of the obstacle, by locating the wave fronts and measuring the 

distance between the fronts. The error bars in Fig. 4 show the standard deviation 

of both the measured and simulated values. Circular wave fronts assumed in the 

case when lee waves are generated by a moving point source (Voisin, 1994). As 

shown from the upper part of Fig. 5, the shape of the wave fronts has been 

strongly affected by the obstacle shape, even in the M–NL cases. Here the 

centers of the wave fronts were gradually shifted toward negative coordinates, 

indicating strong wave dispersion. The large error bars of the measurements 

(Fig. 4) represent not only the limited resolution caused by the visualization 

technique (dying of different layers), but are also the consequence of the 

aforementioned strong dispersion of lee waves. 

It was observed that our model performs well in the H–NL range for 

steeper lee-side obstacles, like the one presented in Fig. 3. However, close to the 

M–NH range with the same obstacle, results tend to differ from the experiments. 

This difference may be explained by boundary layer separation effects. At an 

increased velocity, the separation bubble that developed behind the obstacle 

elongated and caused the virtual mountain half width (mountain half width plus 

the horizontal size of the separation) and consequently the normalized wave 

length to almost double. (See the wave field in Fig. 3) 
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Fig. 4. Normalized averaged wave length (λ/h) (left) and normalized averaged wave 

amplitude (A/h) (right) as a function of non-dimensional horizontal flow velocity, in the 

case of the gentle leeward slope. The dotted line represents the wave length obtained from 

a linear theory, based on NU=λ /2π (Scorer, 1949). Filled symbols represent the 

measurements of Gyüre and Jánosi (2003). Error bars indicate the error originating from 

the data extraction technicque and wave dispersion.  

 

 

Fig. 5. Contours of computed streamlines and wave fields from the experiments (courtesy 

of Gyüre and Jánosi, 2003) at Nh/U = 0.69 (the upper two) and Nh/U = 3.33 (the lower 

two) non-dimensional flow velocities.  
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According to experimentalists (Qiu and Xia, 1998; Gyüre and Jánosi, 

2003), the side walls have a negligible overall effect on the experimental results, 

however, the exact location and size of the separation were not captured 

properly, which can possibly be explained by the 3-D structure of the flow 

characterizing the laboratory experiments, due to the boundary layer on the side 

walls interacting with the separation bubble. In the case of a 3-D narrow 

obstacle, the separation bubbles were smaller, as the stratified flow tended to 

flow around the obstacle, instead of flowing over it. The prediction of the 

location of separation is currently a difficult topic, it requires the modeling of 

transitional turbulence and is beyond the scope of this investigation. Avoiding 

separation by using a gentle leeward side obstacle, however, gave both 

qualitative and quantitative agreements concerning the normalized amplitudes 

and wavelengths (Fig. 4). Table 2 shows the performance measures, indicating 

good model performance.  At low inlet velocities (bottom of Fig. 5), where 

wave breaking and rotors occurred, the flow structures, characterized by a high 

nonlinearity, were also captured properly.  

 

 
Table 2. Statistic metrics of normalized wavelength (λ/h) and amplitude (A/h) for water-

tank studies using CFD and experimental data of Gyüre and Jánosi (2003). Definition 

and the applied limits for the statistic metrics are described in Chang et al. (2005) 

Validation metric Abbreviation Limit λ/h A/h Classification 

Correlation coefficient R >0.8 0.95 0.99 good 

Fractional bias FB ±0.3 0.317 0.21 good 

Normalized mean square error NMSE 0–4 0.12 0.05 good 

Hit rate  HR >0.66 0.75 1 good 

Fraction of predictions within a 

factor of two of observations 
FAC2 >0.5 1 1 good 

 

3.4. Model comparison with a full scale event 

3.4.1. Case study 

A relatively well documented and studied event occurred during the winter of 

1972 near Boulder, Colorado, where a severe wind storm, with a strong descent 

of air originating from the higher atmosphere, caused significant damage to the 

environment (Lilly and Zipser, 1972; Brinkman, 1974). The strong tropospheric 

descent is well reflected in the potential temperature contours in Fig. 6a, where 

the contours become denser close to the ground. The accompanying near ground 

downwind was also reported as being especially severe. A hydraulic jump and 

waves also developed behind the mountain (Fig. 6a). 
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Fig. 6. Analysis of the potential temperature (a) and the horizontal velocity component 

(b) from aircraft flight data and sondes taken on January 11, 1972. Aircraft tracks are 

shown by dashed lines with the locations of significant turbulence indicated by plus signs 

(Klemp and Lilly, 1975). 

 

 

The purpose of the present simulation is to show that the model is able to 

capture the main features and nonlinearities of such flows, for example the 

existence of the mentioned nonlinearities. This event became a standard test case 

of researchers (see ,e.g., Xue et al., 2000) for developing simulation models, or to 

reproduce and understand the related mechanisms of such phenomena. A recent 

study dealt with the development of a severe thunderstorm in Budapest. With high 

resolution numerical modeling using MM5, they were able to reproduce the main 

features of the severe convective storm (Horváth et al., 2007). 

Different assumptions are made during similar case studies, in order to 

reduce computational cost, taking the advantage of the quasi two-dimensionality 

of the flow, or simply investigating each flow phenomena separately. Although 

mountain flows are generally three-dimensional, two-dimensionality can be a 
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good assumption for the downslope windstorm case, as the continental divide is 

long compared to its cross section. This is acceptable only if the large scale flow 

is being investigated and the microstructure has only negligible influence on the 

main flow. In some cases these structures have an effect, e.g., by modifying the 

horizontal position of the hydraulic jump. This is due to the increased surface 

friction resulting from a non-slip boundary. In spite these differences in the 

treatment of the lower boundary, the main features of the flow will still remain.  

The elevation of the realistic terrain of the E–W oriented section was 

derived from a 3 arc second resolution SRTM (Shuttle Radar Topographic 

Mission) database. The section was then interpolated for the latitude of 

40.015 N. The longitudinal coordinates were between 107.100 W and 

103.900 W, giving an approximately 270 km wide section. The new coordinates 

were transformed onto the Universal Transverse Mercator (UTM) coordinates 

and were interpolated onto an approximately 1.5 arc second grid using a bicubic 

spline method. 

Test cases using an idealized geometry have also been examined, where a 

simplified two-dimensional model has been used. In spite of the fact, that the 

real mountain has a plateau-like shape, due to the upstream influence and partial 

blocking, the upstream mountain profile does not affect significantly the 

upstream flow. Due to this fact, a symmetric mountain profile was used in 

several works (Klemp and Lilly, 1975), as well as in this study. The profile 

described by Eq. (37) was used for modeling both the upstream and downstream 

sections of the geometry. Here a =
 10 km and h =

 2 km are the mountain half 

width and height, respectively. The initial temperature and velocity profiles were 

based on the intercomparison study of Doyle et al. (2000). They found that these 

initial conditions were more appropriate for wave breaking tests, and more 

realistic than the conditions used in earlier studies (Peltier and Clark, 1979). 

Conditions favorable for downslope windstorms are usually characterized by 

strong cross mountain winds, and by the presence of a stable layer at the 

appropriate height (Durran, 1986). Both of these conditions were present in the 

studied situation.  

The solution was found to be sensitive to the grid resolution (Doyle et al. 

2000), therefore, in this study a relatively higher resolution grid was used. An 

equidistant grid was applied with a size of 1000 m and adapted to 250 m in two 

steps in the vicinity of the mountain. In the vertical direction the mesh size 

decreased down to 10 m resolution close to the ground. The domain extended 

from 2 to 25 km in the vertical and – 115 to 120 km in the horizontal direction, 

with the mountain crest positioned at x = 0 km. The top boundary was defined as 

symmetry with zero normal velocity, and the bottom was defined as a free-slip 

wall. A standard non-reflective boundary condition (outflow) was applied as an 

outlet. This means that the internal pressure field has been extrapolated to the 

outlet surface, and therefore, no further information on the outlet velocity and 

pressure profiles were required by the system.  
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Second order time discretization, pressure staggering option (PRESTO) for 

pressure interpolation (ANSYS Inc., 2012), and second order upwinding methods 

were used in the momentum and energy equations. Compressibility was 

introduced with the help of the transformation used for model adaption. Moist 

effect and the Coriolis force were not considered during the calculations. 

By using the ANSYS–FLUENT 13 simulation system, the model was 

integrated for a non-dimensional period of time of a/tUt*  = 43.2, based on 

an average inlet flow speed of 30 m s
–1

, which corresponds to a 4-hour flow 

time. The results shown in this section are obtained at *t = 32.4 time instant. 

Results were quantitatively compared to several mesoscale meteorological codes 

using statistical performance measures described in Section 3.2. The summary 

of the comparison can be seen in Table 3. Based on FB, NMSE, and FAC2, the 

idealized model can be considered acceptable. Negative FB values indicate 

lower predicted overall horizontal velocity. The correlation coefficient and hit 

rate, however, show values under the limit. The hit rate was calculated with 5 m s
–

1
 absolute and 10% relative deviation for the velocity and 1 K and 5% for the 

temperature, respectively, since large deviations with a factor of 2 differences 

were realized among the different intercomparision cases presented by Doyle et 

al. (2000). Chang and Hanna (2004) suggest that the model performance should 

not be judged based only on the performance measures but together with the 

comparison of flow patterns or the time evolution of the flow field.  

 

 
Table 3. Statistic metrics calculated for horizontal velocity (U) and potential temperature 

(Θ) for the Boulder windstorm case study comparing CFD and NWP (Doyle et al., 2000) 

model results 

Validation metric Abbreviation Limit U Θ Classification 

Correlation coefficient R >0.8 0.154 0.96 not sufficient 

Fractional bias FB ±0.3 –0.07 –0.056 good 

Normalized mean square error NMSE 0–4 0.396 0.01 good 

Hit rate HR >0.66 0.29 0.56 not sufficient 

Fraction of predictions within a 

factor of two of observations 
FAC2 >0.5 0.7 1 good 

 

 

According to the experiments of Doyle et al. (2000), the results were highly 

time dependent, and therefore, unsteady simulations were executed and time-

averaging was applied on the results. An averaging interval varying from 10 to 

60 minutes was applied during the simulation, and it was found that the value 

and location of the maximum velocity were not affected. The horizontal position 

of the upstream edge of the hydraulic jump however changed significantly. The 

lee-slope wind magnitude varied considerably among the model simulations 
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presented by Doyle et al. (2000), and these differences were also reflected in the 

horizontal position of the hydraulic jump. The location of the upstream edge in 

some models, e.g., the Durran and Klemp (1983) model (DK83) or the 

Eulerian/semi-Lagrangian model (EULAG) was positioned immediately after 

the lee slope, similarly to our results, while in other cases it was positioned 

10 – 25 km downstream of that (e.g., MESONH, RAMS, or RIMS models of the 

same intercomparison). This partially explains the lower HR and R values due to 

the horizontal shift in the flow pattern. Regarding the downslope wind, a higher 

value of maximum horizontal velocity was realized by the simulation than that 

of the onsite measurements. At *t = 32.4, the location of the maximum velocity 

peak was found at approximately 8.5 km downstream of the mountain crest at a 

height of 7 km (Fig. 7). With further integration, the locations of the maxima 

were shifted downstream to approximately 16 km beyond the crest and to a 

lower height of 4 km (bottom of Fig. 7). The magnitudes were not changed 

considerably, stabilizing at around 66 m s
-1

. Regarding the wind speed close to 

the ground, within the lowest 50 m, 51 – 59 m s
–1

 was realized, depending on the 

position along the mountain lee side. The near ground values of velocity 

magnitude were in fair agreement both with the observations and the 

meteorological models. The high instantaneous velocity peaks at higher altitudes 

obtained from the simulation could be partly caused by the lack of moisture 

transport and phase change processes. According to Durran and Klemp (1983), 

the wave response could be even 50% lower if a proper treatment for moist air 

flow is applied. This could significantly affect the properties of wave breaking, 

and consequently the development of a low level jet. 

Several mesoscale codes simulated multiple breaking regions with the 

strongest ones located above the hydraulic jump at an altitude of 12 km and 

above (see the model results of RAMS, MESONH models presented by Doyle et 

al. (2000)). Wave steepening regions were obtained by CFD for the ideal and 

real mountain profiles at a similar altitude (between 10 and 15 km). Using the 

idealized geometry (Fig. 7), this region was weaker. The altitude of the 

maximum steepness above the hydraulic jump in the breaking region was at 

about 12 km with the highest amplitude waves being of 2–2.5 km.  

The present results show smooth downstream isolines. In some of the cases 

of Doyle et al. (2000), the downstream part of the hydraulic jump was 

oscillatory, while in other cases the isolines were smooth. Among the results of 

different mesoscale meteorological solvers, depending on the amount of applied 

eddy diffusivity (Kd), different flow structures were obtained. Smaller Kd values 

usually resulted in smaller wave structures. 
The stratospheric air descent reached the altitude of 5–6 km using the real 

topography which correlates well with the non-hydrostatic mesoscale vorticity 

(TVM) model solution of Thunis and Clappier (2000), or the model 

comparisons presented by Doyle et al. (2000) (CUMM, RAMS, RIMS). The 

descent was even stronger and propagated to lower altitudes in the case of the 



268 

simplified geometry accompanied by high TKE values (see Fig. 7) . The highest 

peaks, even reaching 117 m
2 

s
–2

, can be found around the upstream edge of the 

hydraulic jump and at the wave steepening regions at higher altitudes. The 

maximum value of TKE is reported approximately 15–20 m
2 

s
–2

 in atmospheric 

rotors (Doyle et al., 2002) and even reaches higher values in the case of 

extremely severe turbulence.  

 

 

 

Fig. 7. Contours of horizontal velocity component (left panel) and potential temperature 

(right panel) for an idealized (top) and a real (bottom) mountain shape. The pictures show 

the results at 
*t = 32.4 non-dimensional flow time. Vertical coordinates were magnified 

by a factor of 12 for better visualization. Potential temperature and velocity contour 

intervals are 8
o
C and 5 m s

–1
, respectively. Light and dark grey areas indicate regions 

characterized by turbulent kinetic energy higher than 5 m
2
 s

–2
 and between 5–25 m

2
 s

–2
. 

 

 

Differences in the magnitude of the horizontal velocity may also be related 

to the two-dimensional treatment of the topography if compared to the real 

situation. In three spatial dimensions, the flow can pass around the obstacle, 
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while in 2-D it is forced over it. The test results of Doyle et al. (2000) confirmed 

that a significant reduction in wave breaking could be found for the 3-D case. 

Some of the studies dealing with gravity wave evolution used a frictionless 

lower boundary (Richard et al., 1989). Concerning the bottom boundary 

condition, a more realistic treatment of the ground surface could result in a 

slower movement and different horizontal location of the hydraulic jump. 

4. Summary and conclusions 

We briefly presented an adaptation method applicable to general purpose CFD 

solvers for atmospheric flow simulations, which was based on the application of 

an incompressible fluid model. Mesoscale effects, such as thermal stratification, 

adiabatic cooling caused by hydrostatic pressure driven expansion, 

compressibility, and Coriolis force were taken into account with the help of a 

transformation system and customized volume sources.  

In this paper, simulations were presented around more complex 

geometrical features, idealized barriers, and real terrain, demonstrating the 

capabilities of the CFD based approach. 

Simulations of linear hydrostatic waves were compared to an analytical 

solution, and it was stated that for this regime the code behaved well, and an 

excellent agreement was found.  

Secondly, the simulation results were compared to water-tank experiments 

of two-dimensional mountain waves with different degrees of nonlinearity and 

hydrostacity. A good agreement was found based on the statistical performance 

measures and flow pattern comparison concerning the measured and simulated 

wavelengths and amplitudes. The model evaluation for λ/h gave a correlation 

coefficient of 0.95, fractional bias 0.317, normalized mean square error of 0.12, 

a hitrate value of 0.75 and 100% of predictions within a factor of two of 

observations. The equivalent results for A/h were 0.99 (R), 0.21 (FB), 

0.05 (NMSE), 1 (HR), and 100% (FAC2). The model was also able to capture 

well the location and size of the appearing nonlinear structures, such as the rotor 

that was formed behind the obstacle.  

Simulation of the Boulder windstorm case is ideal for testing and 

evaluating mesoscale numerical models, therefore it was chosen as the third 

object of analysis. The simulation results were compared to the on-site 

observations and a series of modeling experiments that were presented by Doyle 

et al. (2000). Model evaluation has demonstrated reasonable agreement with 

measurements for potential temperature (Θ). The model evaluation statistics 

gave a correlation coefficient of 0.96 and fractional bias –0.056, normalized 

mean square error of 0.01, a hit rate value of 0.56, and 100% of predictions 

within a factor of two of observations. The equivalent results for horizontal 

velocity (U) were 0.154 (R), –0.07 (FB), 0.396 (NMSE), 0.29 (HR) and 
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0.7 (FAC2). Results obtained from our simulations are encouraging with regard 

to the predictability of a low level, highly accelerated channel flow, and upper 

level wave breaking. Close to the ground a very strong lee-side wind was 

realized, accompanied by a well-defined hydraulic jump downstream.  

Using only one single unstructured grid and a uniform physical description 

for close- and far-field flow, one can take the advantage of the model adaption 

in the simulation of mesoscale atmospheric phenomena. In the same model, one 

can investigate the finely structured microscale flow around complex 

geometrical features, such as flow around buildings with pollution dispersion or 

to study the close- and far-field of cooling towers and its effects to the 

environment. 

The implementation and evaluation of non-reflective boundaries is planned 

through a 3-D mountain wave and associated downslope windstorm case study 

and the inclusion of moisture transport and phase change processes is also an 

important further step towards the practical application of the method. 

 
Acknowledgments–This work has been supported by the Hungarian Research Fund under contract 

number OTKA T049573, the National Research and Development Program under contract number 

NKFP 3A/088/2004, and the TÁMOP-4.2.1.B-11/2/KMR-2011-0001 program. The authors are 

thankful for the data support from the SRTM. 

References 

Afanasyev, Y.D. and Peltier, W.R., 2001: Numerical simulations of internal gravity wave breaking in 

the middle atmosphere: the influence of dispersion and three-dimensionalization. J. Atmos. Sci. 

58, 132–153. 

Alaka, M.A., Ed., 1960: The airflow over mountains. WMO Tech. Note 34, [Available from World 

Meteorological Organization, Case Postale 2300, CH-1211 Geneva 2, Switzerland.] 

Almut, G. and Herzog, H.J., 2007: A consistent time-split numerical scheme applied to the 

nonhydrostatic compressible equations. Mon. Weather Rev. 135, 20–36. 

Andre, J.C., DeMoor, G., Lacarrere, P., Therry, G., and Du Vachat, R., 1978: Modelling the 24-hour 

evolution of the mean and turbulent structures of the planetary boundary layer. J Atmos Sci 35, 

1861–1883. 

ANSYS Inc., 2012: FLUENT 13 documentation. In: Fluent User Services Center. [Available online at 

http://www.fluentusers.com/fluent/doc/doc_f.htm., Cited 26. September 2012.] 

Baklanov, A.A., Grisogono, B., Bornstein, R., Mahrt, L., Zilitinkevich, S.S., Taylor, P., Larsen, S.E., 

Rotach, M.W., and Fernando, H.J.S., 2011: The nature, theory, and modeling of atmospheric 

planetary boundary layers. B. Am. Meteorol. Soc. 92, 123–128. 

Balczó, M., Balogh, M., Goricsán, I., Nagel, T., Suda, J.M., and Lajos, T., 2011: Air quality around 

motorway tunnels in complex terrain - Computational Fluid Dynamics modeling and 

comparison to wind tunnel data. Időjárás 115, 179–204. 

Balogh, M. and Krisróf, G., 2010: Fine scale simulation of turbulent flows in urban canopy layers. 

Időjárás 114, 135–148. 

Belušič, D. and Klaič, Z.B., 2004: Estimation of bora wind gusts using a limited area model. Tellus A 

56, 296–307. 

Berg, L.K. and Zhong, S., 2005: Sensitivity of MM5-Simulated Boundary Layer Characteristics to 

Turbulence Parameterizations. J. Appl. Meteorol. 44, 1467–1483.  



271 

Blackadar, A.K., 1976: Modeling the nocturnal boundary layer. Preprints of the Third Symposium on 

Atmospheric Turbulence and Air Quality, Rayleigh, NC, 19–22 October 1976, Amer. Meteor. 

Soc., Boston, 46–49. 

Blocken, B., Stathopoulos, T. and Carmeliet, J., 2007: CFD simulation of the atmospheric boundary 

layer: wall function problems. Atmos. Environ. 41, 238–252. 

Brinkman, W.A.R., 1974: Strong downslope winds at Boulder, Colorado. Mon. Weather Rev. 102, 

592–602. 

Castro, F.A., Santos, C.S. and Palma, J.M.L.M., 2008: Parallelisation of the CFD Code of a CFD-

NWP Coupled System for the Simulation of Atmospheric Flows over Complex Terrain. High 

Performance Computing for Computational Science - VECPAR 2008, 27–38. 

Cenedese, A. and Monti, P., 2003: Interaction between an urban heat island and a sea-breeze flow. A 

laboratory study. J. Appl. Meteorol. 42, 1569–1583.  

Chang, J.C. and Hanna, S.R., 2004: Air quality model performance evaluation. Meteorol. Atmos. 

Phys. 87, 167–196. 

Chang, J.C., Hanna, S.R., Boybeyi, Z. and Franzese, P., 2005: Use of Salt Lake City URBAN 2000 

Field Data to Evaluate the Urban Hazard Prediction Assessment Capability (HPAC) Dispersion 

Model. J. Appl. Meteorol. 44, 485–501.  

Colle, B.A. and Mass, C.F., 2000: High resolution observation and numerical simulation of easterly 

gap flow through the strait of Juan de Fuca on 9–10 December 1995. Mon. Weather Rev. 128, 

2398–2422. 

Corrsin, S., 1975: Limitation of gradient transport models in random walks and in turbulence. Adv. 

Geophys. 18A, 25–60. 

Deardorff, J.W., 1974a: Three-dimensional numerical study of the height and mean structure of a 

heated planetary boundary layer. Bound.-Lay. Meteorol. 7, 81–106. 

Deardorff, J.W., 1974b: Three-dimensional numerical study of turbulence in an entraining mixed 

layer. Bound.-Lay. Meteorol. 7, 199–226. 

Deardorff, J.W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. 

Bound.-Lay. Meteorol. 18, 495–527. 

Doyle, J.D., Durran, D.R., Chen, C., Colle, B.A., Georgelin, M., Grubisic, V., Hsu, W.R., Huang ,C.Y., 

Landau, D., Lin, Y.L., Poulus, G.S., Sun, W.Y., Weber, D.B., Wurtele, M.G., and Xue, M., 2000: 

An intercomparison of model-predicted wave breaking for the 11 January 1972 boulder 

windstorm. Mon. Weather. Rev. 128, 901–914. 

Doyle, J.D. and Durran, D.R., 2002: The Dynamics of mountain–wave induced rotors. J. Atmos. Sci. 

59, 186–201. 

Dudhia, J., 1993: A nonhydrostatic version of the Penn State / NCAR mesoscale model: Validation 

tests and simulations of an Atlantic cyclone and cold front. Mon. Weather Rev. 121, 1493–1513. 

Durran, D.R. and Klemp, J.B., 1983: A Compressible model for the simulation of moist mountain 

waves. Mon. Weather. Rev 111, 2341–2361. 

Durran, D.R., 1986: Another look at downslope windstorms. Part I: The development of analogs to 

supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci. 43, 2527–2543. 

Durran, D.R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex 

Terrain. Meteorol. Monog. 45, 59–81. 

Duynkerke, P.G., 1988: Application of the E–ε turbulence closure model to the neutral and stable 

atmospheric boundary layer. J. Atmos. Sci. 45, 865–880. 

Faragó, I., 2006: Application of the operator splitting method for real-life problems. Időjárás 110, 

379-395. 

Freedman, F.R. and Jacobson, M.Z., 2003: Modification of the Standard  equation for the stable ABL 

through enforced consistency with Monin-Obukhov similarity theory. Bound-Lay Meteorol 106, 

384–410. 

Gatski, T.B. and Jongen, T., 2000: Nonlinear eddy viscosity and algebraic stress models for solving 

complex turbulent flows. Prog. Aerosp. Sci. 36, 655–682. 

Geiser, J., 2008: Iterative operator-splitting methods with higher-order time integration methods and 

applications for parabolic partial differential equations. J. Comput. Appl. Math. 217, 227–242. 

Grell, G.A., Dudhia, J. and Stauffier, D.R., 1995: A description of the fifth-generation Penn 

State/NCAR mesoscale model. NCAR Tech. Note, NCAR/TN-398-398+ST. 



272 

Gyüre, B. and Jánosi, I.M., 2003: Stratified flow over asymmetric and double bell-shaped obstacles. 

Dynam. Atmo.s Oceans 37, 155–170. 

Hanjalic, K. and Launder, B.E., 1972: A Reynolds stress model of turbulence and its application to 

thin shear flows. J. Fluid Mech. 52, 609–638. 

Hanna, S.R., Strimaitis, D.G. and Chang, J.C., 1991: Evaluation of commonly-used hazardous gas 

dispersion models. Vol. II, Hazard Response Modeling Uncertainty (A Quantitative Method). 

Rep. A119/A120 prepared by Earth Tech, Inc., for Engineering and Services Laboratory, Air 

Force Engineering and Services Center, and for the American Petroleum Institute, 334 pp. 

Hanna, S.R., Chang, J.C. and Strimaitis, D.G., 1993: Hazardous gas model evaluation with field 

observations. Atmos. Environ. 27A, 2265–2285. 

Hanna, S.R., Brown, M.J., Camelli, F.E., Chan, S.T., Coirier, W.J., Kim, S. and Reynolds, R.M., 2006: 

Detailed Simulations of Atmospheric Flow and Dispersion in Downtown Manhattan: An 

Application of Five Computational Fluid Dynamics Models. B. Am. Meteorol. Soc. 87, 1713–1726. 

Hargreaves, D.M. and Wright, N.G., 2007: On the use of the k–ε model in commercial CFD software 

to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerod. 95, 355–369.  

Havasi, Á., Bartholy, J., and Faragó, I., 2001: Splitting method and its application in air pollution 

modeling. Időjárás 105, 39–58. 

Holton, J.R., 2004: An Introduction to Dynamic Meteorology. 4th Edition, Academic Press, 192–212 

Holtslag, A.A.M. and Moeng, C.-H., 1991: Eddy diffusivity and countergradient transport in the 

convective atmospheric boundary layer. J. Atmos. Sci. 48, 1690–1698. 

Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East 

Asian summer monsoon. Q. J. Roy. Meteorol. Soc. 136, 1481–1496. 

Hong, S.-Y. and Pan, H.-L., 1996: Nonlocal boundary layer vertical diffusion in a medium-range 

forecast model. Mon. Weather Rev. 124, 2322–2339.  

Hong, S.-Y., Noh, Y, and Dudhia, J., 2006: A new vertical diffusion package with an explicit treatment 

of entrainment processes. Mon. Weather Rev. 134, 2318–2341. 

Horváth, Á., Geresdi, I., Németh, P. and Dombai, F., 2007: The Constitution Day storm in Budapest: 

Case study of the August 20, 2006 severe storm. Időjárás 111, 41–63. 

Huser, A., Nilsen, P.J. and Skatun, H., 1997: Application of k-ε model to the stable ABL: pollution in 

complex terrain. J. Wind Eng. Ind. Aerod. 67–68, 425–436. 

Janjic, Z.I., 1990: The step–mountain coordinates: physical package. Mon. Weather Rev. 118, 1429–1443. 

Janjic, Z.I., 1996: The Mellor-Yamada level 2.5 scheme in the NCEP Eta Model. 11th Conference on 

Numerical Weather Prediction, Norfolk, VA, 19-23 August 1996; Amer Meteor Soc, Boston, 

MA, 333–334. 

Janjic, Z.I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP 

Meso model. NCEP Office Note 437. 

Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. 

Weather Rev. 102, 509–522. 

Klemp, J.B. and Lilly, D.K., 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci. 32, 

320–339. 

Klemp, J.B. and Wilhelmson, R.B., 1978: The simulation of three-dimensional convective storm 

dynamics. J. Atmos. Sci. 35, 1070–1096. 

Klemp, J.B., Skamarock, W.C., and Dudhia, J., 2007: Conservative Split-Explicit Time Integration 

Methods for the Compressible Nonhydrostatic Equations. Mon. Weather Rev. 135, 2897–2913. 

Knievel, J.C., Bryan, G.H. and Hacker, J.P., 2007: Explicit Numerical Diffusion in the WRF Model. 

Mon. Weather Rev. 135, 3808–3824. 

Kristóf, G., Rácz, N., and Balogh, M., 2009: Adaptation of Pressure Based CFD Solvers for Mesoscale 

Atmospheric Problems. Bound.-Lay. Meteorol. 131, 85–103. 

Launder, B.E. and Spalding, D.B., 1972: Lectures in mathematical models of turbulence. Academic 

Press, London, England 1972. 169 pp. 

Lee, S.-M., Giori, W., Princevac, M., and Fernando, H.J.S., 2006: Implementation of a Stable PBL 

Turbulence Parameterization for the Mesoscale Model MM5: Nocturnal Flow in Complex 

Terrain. Bound.-Lay. Meteorol. 119, 109–134. 

Lesieur, M., 2008: Turbulence in Fluids. Fourth edition, Springer, ISBN: 9781402064340. 



273 

Lilly, D.K. and Zipser, E.J., 1972: The front range windstorm of 11 January 1972 – a meteorological 

narrative. Weatherwise 25, 56–63. 

Lin, Y-L., 2007: Mesoscale dynamics. Cambridge University Press, ISBN 9780521808750.  

Long, R.R., 1953: Some aspects of the flow of stratified fluids. I. A theoretical investigation. Tellus 5, 

42–58. 

Lopes da Costa, J.C., Castro, F.A., Palma, J.M.L.M., and Stuart, P., 2006: Computer simulation of 

atmospheric flows over real forests for wind energy resource evaluation. J. Wind Eng. Ind. 

Aerod. 94, 603–620. 

Lu, J., Arya, S.P., Snyder, W.H. and Lawson Jr., R.E., 1997: A laboratory study of the urban heat 

island in a calm and stably stratified environment. Part I: Temperature field. J. Appl. Meteorol. 

36, 1377–1391. 

Lundquist, J.K. and Chan, S.T., 2006: Consequences of urban stability conditions for computational 

fluid dynamics simulations of urban dispersion. J. Appl. Meteorol. Clim. 46, 1080–1097. 

Lynch, P., 2006: The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge 

University Press, Cambridge, ISBN: 0521857295. 

Madala, R.V., 1981: Efficient time integration schemes for atmosphere and ocean models. In ( Book, 

D.L. Ed.) Fine-difference techniques for vectorized fluid dynamics calculations. Springer-

Verlag, New York, 56–74. 

Manual of the ICAO Standard Atmosphere, 1993: Doc 7488-CD, Third Edition, ISBN: 92-9194-004-6. 

Mellor, G.L. and Yamada, T., 1974: A hierarchy of turbulence closure models for planetary boundary 

layers. J. Atmos. Sci. 31, 1791–1806. 

Mellor, G.L. and Yamada, T., 1982: Development of a turbulence closure model for geophysical fluid 

problems. Rev. Geophys. 20, 851–875. 

Michioka, T. and Chow, F.K., 2008: High-resolution large-eddy simulations of scalar transport in 

atmospheric boundary layer flow over complex terrain. J. Appl. Meteorol. Climatol. 47, 3150–

3169. 

Montavon C., 1998: Simulation of atmospheric flow over complex terrain for wind power potential 

assessment. Doctoral thesis, EPFL, Lausanne, doi: 10.5075/epfl-thesis-1855. 

Nagy, A., 2010: Application of WRF model for the meso-g scale processes. MSc Thesis Eötvös 

Loránd University, Departmernt of Meteorology. (In Hungarian)  

Nakanishi, M. and Niino, H., 2009: Development of an Improved Turbulence Closure Model 

for the Atmospheric Boundary Layer. J. Meteorol. Soc. JPN 87, 895–912. 

National Research Council, 1983. Low-Altitude Wind Shear and Its Hazard to Aviation. Washington, 

DC: The National Academies Press, Washington, DC, 1. Print. 

Noto, K., 1996: Dependence of heat-island phenomena on stable stratification and heat quantity in a 

calm environment. Atmos. Environ. 30, 475–485. 

Palma, J.M.L.M., Castro, F.A., Ribeiro, L.F., Rodrigues, A.H.. and Pintod, A.P., 2008: Linear and 

nonlinear models in wind resource assessment and wind turbine micro-siting in complex terrain. 

J. Wind Eng. Ind. Aerod. 96, 2308–2326.  

Peltier, W.R. and Clark, T.L., 1979: The evolution and stability of finite-amplitude mountain waves. 

Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci. 36, 1498–1529. 

Pleim, J.E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. 

Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteorol. 

Climatol. 46, 1396–1409. 

Pleim, J.E. and Chang, J.S., 1992: A non-local closure model for vertical mixing in the convective 

boundary layer. Atmos. Environ. 26A, 965–981. 

Pontiggia, M., Derudi, M., Busini, V., and Rota, R., 2009: Hazardous gas dispersion: A CFD model 

accounting for atmospheric stability classes. J. Hazard Mater. 171, 739–747.  

Qiu, X.-L. and Xia, K.-Q., 1998: Viscous boundary layers at the sidewall of a convection cell. Phys. 

Rev. E 58, 486–491. 

Richard, E., Mascart, P. and Nickerson, E.C., 1989: The role of surface friction in downslope wind 

storms. J. Appl. Meteorol. 28, 241–251. 

Richards, P.J. and Hoxey, R.P., 1993: Appropriate boundary conditions for computational wind 

engineering models using the k– turbulence model. J. Wind Eng. Ind. Aerod. 46–47, 145–153.  



274 

Saito, K., Ishida, J., Aranami, K., Hara, T., Segawa, T., Narita, M., and Honda, Y., 2007: 

Nonhydrostatic atmospheric models and operational development at JMA. J. Meteorol. Soc. 

JPN 85B, 271–304. 

Schumann, U., Hauf, T., Holler, H., Schmidt, H,. and Volkert, H., 1987: A mesoscale model for the 

simulation of turbulence, clouds and flow over mountains: Formulation and validation 

examples. Beitr. Phys. Atmos. 60, 413–446. 

Scorer, R.S., 1949: Theory of waves in the lee of mountains. Q. J. Roy. Meteor. Soc. 75, 41–56. 

Shafran, P.C., Seaman, N.L., and Gayno, G.A., 2000: Evaluation of numerical predictions of boundary 

layer structure during the Lake Michigan Ozone Study (LMOS). J. Appl. Meteorol. 39 412–426. 

Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J., 1995: A new k– eddy-viscosity model for 

high Reynolds number turbulent flows – model development and validation. Comput. Fluids 24, 

227–238. 

Simon, A., Horváth, Á., and Vivoda, J., 2006: Case study and numerical simulations of the November 

19, 2004 severe windstorm in central Europe. Időjárás 110, 91–123. 

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., and Powers, J.G., 

2005: A Description of the Advanced Research WRF Version 2. NCAR/TN–468+STR NCAR 

Technical Note. 

Smith, R.B., 1979: The influence of mountains on the atmosphere. Adv Geophys, Academic Press 21, 

87–230. 

Smith, R.B., 2002: Stratified airflow over mountains. In (Grimshaw, R., Ed.) Environmental Stratified 

Flows, Kluwer Publishing, 119–159. 

Smith, R.B., Skubis, S., Doyle, J.D., Broad, A.S., Kiemle, C. and Volkert, H., 2002: Mountain waves 

over Mont Blanc: Influence of stagnant boundary layer. J. Atmos. Sci. 59, 2073–2092. 

Stull, R.B., 1993: Review of non-local mixing in turbulent atmospheres: Transilient turbulence theory. 

Bound.-Lay. Meteorol. 62, 21–96. 

Sušelj, K. and Sood, A, 2010: Improving the Mellor–Yamada–Janjic parameterization for wind 

conditions in the marine planetary boundary layer. Bound.-Lay. Meteorol. 136, 301–324 

Thunis, P. and Clappier, A., 2000: Formulation and evaluation of a Nonhydrostatic Mesoscale 

Vorticity Model (TVM). Mon. Weather Rev. 128, 3236–3251. 

Townsend, A.A., 1980: The response of sheared turbulence to additional distortion. J. Fluid. Mech. 98, 

171–191. 

Troen, I. and Mahrt, L., 1986: A simple model of the atmospheric boundary layer; sensitivity to 

surface evaporation. Bound.-Lay. Meteorol. 37, 129–148. 

Vendel, F., Lamaison, G., Soulhac, L., Volta, P., Donnat, L., Duclaux, O., and Puel, C., 2010: 

Modelling diabatic atmospheric boundary layer using a RANS CFD code with k-epsilon 

turbulence closure. HARMO13 – 1–4 June 2010, Paris, France – 13th Conference on 

Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes H13-124, 

652–656. 

Voisin, B., 1994: Internal wave generation in uniformly stratified fluids. Part 2. Moving point sources. 

J. Fluid. Mech. 261, 333–374. 

Weigel, A.P., Chow, F.K., and Rotach, M.W., 2007: On the nature of turbulent kinetic energy in a steep 

and narrow Alpine valley. Bound.-Lay. Meteorol. 123, 177–199. 

Wicker, L.J. and Skamarock, W.C., 2002: Time splitting methods for elastic models using forward 

time schemes. Mon. Weather Rev. 130, 2088–2097. 

Wilhelmson, R. and Klemp, J.B., 1978: A numerical study of storm splitting that leads to long-lived 

storms. J. Atmos. Sci. 35, 1974–1986. 

Williams, M.D., Brown, M.J., Singh, B., and Boswell, D., 2004: QUIC-Plume Theory Guide. LANL 

Report: LA-UR-04-0561. 

Wyngaard, J.C., Cote, O.R., and Rao, K.S., 1974: Modeling of the atmospheric boundary layer. Adv. 

Geophys. 18(A), 193–212. 

Wyngaard, J.C. and Brost, R.A., 1984: Top-down and bottom-up diffusion of a scalar in the convective 

boundary layer. J. Atmos. Sci. 41, 102–112. 

Wurtele, M.G., Sharman, R.D., and Datta, A., 1996: Atmospheric lee waves. Annu. Rev. Fluid. Mech. 

28, 429–476. 



275 

Xue, M., Zong, J., and Drogemeier, K.K., 1996: Parameterization of PBL turbulence in a multi-scale 

nonhydrostatic model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, 

Amer Meteor Soc, P2.5. 

Xue, M., Droegemeier, K.K., and Wong, V., 2000: The Advanced Regional Prediction System (ARPS). 

A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model 

dynamics and verification. Meteorol. Atmos. Phys. 75, 161–193. 

Yang, X., 1993: A nonhydrostatic model for simulation of airflow over mesoscale bell-shaped ridges. 

Bound.-Lay. Meteorol. 65, 401–424. 

Zhang, D.-L. and Anthes, R.A., 1982: A high-resolution model of the planetary boundary layer-

sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol. 21, 1594–1609. 

Zhong, S., In, H., and Clements, C., 2007: Impact of turbulence, land surface, and radiation 

parameterizations on simulated boundary layer properties in a coastal environment. J. Geophys. 

Res. 112, D13110, doi:10.1029/2006JD008274. 

Zilitinkevich, S.S., 1995: Non-local turbulent transport: pollution dispersion aspects of coherent 

structure of convective flows. In (Power, H., Moussiopoulos, N., and Brebbia, C.A., Eds.) Air 

Pollution III—Volume I. Air Pollution Theory and Simulation, Computational Mechanics 

Publications, Southampton Boston, 53–60. 


