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Abstract⎯The evolution of the weather can be described by deterministic numerical 
weather forecasting models. Multiple runs of these models with different initial 
conditions and/or model physics result in forecast ensembles which are used for 
estimating the distribution of future atmospheric states. However, these ensembles are 
usually under-dispersive and uncalibrated, so post-processing is required. In the present 
work we compare different versions of Bayesian model averaging (BMA) and ensemble 
model output statistics (EMOS) post-processing methods in order to calibrate 2m 
temperature and 10m wind speed forecasts of the operational ALADIN limited area 
model ensemble prediction system of the Hungarian Meteorological Service. We show 
that compared to the raw ensemble, both post-processing methods improve the calibration 
of probabilistic and accuracy of point forecasts. In case of temperature, the BMA method 
with linear bias correction slightly outperforms the corresponding EMOS technique, 
while the EMOS model shows the best performance for calibrating ensemble forecasts of 
wind speed. 

 
Key-words: Bayesian model averaging, ensemble model output statistics, ensemble 

calibration 

 

1. Introduction 

The evolution of the weather can be described by numerical weather prediction 
(NWP) models, which are capable to simulate the atmospheric motions taking 
into account the physical governing laws of the atmosphere and the connected 
spheres (typically sea or land surface). Without any doubts, these models 
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provide primary support for weather forecasting and decision making. As a 
matter of fact, the NWP models and consequently the weather forecasts cannot 
be fully precise, and on top of that, their accuracy might change with the 
meteorological situation as well (due to the chaotic character of the atmosphere, 
which manifests in being very sensitive to its initial conditions). Therefore, it is 
a relevant request from the users to provide uncertainty estimations attached to 
the weather forecasts. The information related to the intrinsic uncertainty of the 
weather situation and the model itself is very valuable additional information, 
which is generally provided by the use of ensemble technique. The ensemble 
method is based on the accounting of all uncertainties exist in the NWP 
modeling process and its expression in terms of forecast probabilities. In this 
process first, all the uncertainties (possible error sources) of the NWP model are 
listed and then these error sources are quantified. The quantified errors are used 
to determine such perturbations, which are used for the creation of the forecast 
ensemble. In practice, the ensemble method is realized by the exploitation of an 
ensemble prediction system (EPS). An EPS exploits several NWP model runs 
(and these ensemble model members differ within the known uncertainties of 
the initial and boundary conditions, model formulation, etc.) and then evaluates 
the ensemble of forecasts statistically. Ensemble prediction systems are widely 
used by the meteorological community especially for medium-range weather 
forecasts (Buizza et al., 2005), and this tool is becoming more and more popular 
for short range (Iversen et al., 2011) and even ultra-short range (Bouallègue et 
al., 2013) weather prediction.  

One possible improvement area of the ensemble forecasts is the calibration 
of the ensemble in order to transform the original ensemble member-based 
probability density function (PDF) into a more reliable and realistic one. The 
main disadvantage of the method is that it is based on statistics of model 
outputs, and therefore unable to consider the physical aspects of the underlying 
processes. The latter issues should be addressed by the improvements of the 
reality of the model descriptions and particularly the better uncertainty 
descriptions used by the different model realizations.   

From the various modern post-processing techniques (for an overview see, 
e.g., Williams et al., 2014), probably the most widely used methods are the 
Bayesian model averaging (BMA, see, e.g., Raftery et al., 2005; Sloughter et al., 
2007, 2010; Soltanzadeh et al., 2011) and the  ensemble model output statistics 
(EMOS, see, e.g., Gneiting et al., 2005; Wilks and Hamil, 2007; Thorarinsdottir 
and Gneiting, 2010) which are implemented in ensembleBMA (Fraley et al., 
2009, 2011) and ensembleMOS packages of  R. Both approaches provide 
estimates of the densities of the predictable weather quantities and once a 
predictive density is given, a point forecast can be easily determined (e.g., mean 
or median value).  

The BMA method for calibrating forecast ensembles was introduced by 
Raftery et al. (2005). The BMA predictive PDF of a future weather quantity is 
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the weighted sum of individual PDFs corresponding to the ensemble members. 
An individual PDF can be interpreted as the conditional PDF of the future 
weather quantity, provided that the considered forecast is the best one and the 
weights are based on the relative performance of the ensemble members during 
a given training period. 

The EMOS approach, proposed by Gneiting et al. (2005), uses a single 
parametric distribution as a predictive PDF with parameters depending on the 
ensemble members.  

In both post-processing techniques, the unknown parameters are estimated 
using forecasts and validating observations from a rolling training period, which 
allows automatic adjustments of the statistical model to any changes of the EPS 
system (for instance seasonal variations or EPS model updates). EMOS method 
is usually more parsimonious and computationally more effective than BMA, 
but shows less flexibility. E.g., in case of a weather quantity following normal or 
truncated normal distribution the EMOS predictive PDF is by definition 
unimodal, while BMA approach allows multimodality. 

The aim of the present paper is to compare the performance of BMA and 
EMOS calibration on the ensemble forecasts of temperature and wind speed 
produced by the operational limited area model ensemble prediction system of 
the Hungarian Meteorological Service (HMS) called ALADIN-HUNEPS 
(Hágel, 2010; Horányi et al., 2011). 

2. ALADIN-HUNEPS ensemble 

The ALADIN-HUNEPS system of the HMS covers a large part of continental 
Europe with a horizontal resolution of 12 km, and it is obtained with dynamical 
downscaling (by the ALADIN limited area model) of the global ARPEGE based 
PEARP system of Météo France (Horányi et al., 2006; Descamps et al., 2009). 
The ensemble consists of 11 members, 10 initialized from perturbed initial 
conditions and one control member from the unperturbed analysis, implying that 
the ensemble contains groups of exchangeable forecasts.  

The initial perturbations for PEARP are generated with the combination of 
singular vector-based and EDA-based perturbations (Labadie et al., 2012). The 
singular vectors are optimized for 7 subdomains and then combined into 
perturbations. The EDA perturbations are computed as differences between the 
EDA members and the EDA mean (there is a 6-member EDA system running in 
France). These two sets of perturbations are combined into 17 perturbations, 
which are added to and subtracted from the control initial condition. Random 
sets of physical parameterizations (there are 10 sets of different physical 
parameterization packages) are attributed to the forecasts run from the differently 
perturbed initial conditions. All these combinations result in a 35-member (one 
control without perturbation and 34 perturbed members) global ensemble. The 



220 

ALADIN-HUNEPS system simply takes into account (and dynamically 
downscales) the control and the first 10 members of the PEARP system. These 
members contain the first 5 global perturbations added to and subtracted from 
the control. 

The database contains 11 member ensembles of 42-hour forecasts for 
2-meter temperature (given in K) and 10-meter wind speed (given in m/s) for 
10 major cities in Hungary (Miskolc, Szombathely, Győr, Budapest, Debrecen, 
Nyíregyháza, Nagykanizsa, Pécs, Kecskemét, Szeged) produced by the 
ALADIN-HUNEPS system of the HMS, together with the corresponding 
validating observations for the one-year period between April 1, 2012 and 
March 31, 2013. The forecasts are initialized at 18 UTC. The data set is fairly 
complete, since there are only six days when no forecasts are available. These 
dates were excluded from the analysis. 

Fig. 1 shows the verification rank histograms of the ensemble forecasts of 
temperature and wind speed. These are the histograms of ranks of validating 
observations with respect to the corresponding ensemble forecasts computed 
from the ranks at all locations and over the whole   verification period (see, e.g., 
Wilks, 2011, Section 8.7.2). Both histograms are far from the desired uniform 
distribution, as in many cases the ensemble members either underestimate or 
overestimate the validating observations. The ensemble ranges contain the 
observed temperature and wind speed only in 60.61% and 68.52% of the cases, 
respectively (while their nominal values equal 10/12, i.e., 83.33%). Hence, both 
ensembles are under-dispersive and, in this way, they are uncalibrated. This 
supports the need of statistical post-processing in order to improve the 
forecasted probability density functions.  

 

 

Fig. 1. Verification rank histograms of the 11-member ALADIN-HUNEPS ensemble 
forecasts of 2 m temperature and 10 m wind speed. Period: April 1, 2012 – March 31, 2013. 
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Note that BMA calibration of wind speed (Baran et al., 2013; Baran, 2014) 
and temperature (Baran et al., 2014) forecasts of the ALADIN-HUNEPS system 
have already been investigated by the authors using smaller data sets covering 
the period from October 1, 2010 to March 25, 2011. These investigations 
showed that significant improvements can be gained with the use of BMA post-
processing. Nevertheless, it is interesting to see what enhancement can be 
obtained by BMA with respect to an improved raw EPS system and particularly 
in comparison to the EMOS calibration technique. 

3. Methods and verification scores 

As it has been mentioned in the Introduction, our study is concentrating on 
BMA and EMOS approaches. By ଵ݂, ଶ݂, … , ெ݂  we denote the ensemble 
forecast of a certain weather quantity ܺ for a given location and time. The 
ensemble members are either distinguishable (we can clearly identify each 
member or at least some of them) or indistinguishable (when the origin of the 
given member cannot be identified). Usually, the distinguishable EPS systems 
are the multi-model, multi-analyses ensemble systems, where each ensemble 
member can be identified and tracked. This property holds, e.g., for the 
University of Washington mesoscale ensemble (Eckel and Mass, 2005) or for 
the COSMO-DE ensemble of the German Meteorological Service (Gebhardt 
et al., 2011).  

However, most of the currently used ensemble prediction systems 
incorporate ensembles where at least some members are statistically 
indistinguishable. Such ensemble systems are usually producing initial 
conditions based on algorithms, which are able to find the fastest growing 
perturbations indicating the directions of the largest uncertainties (for 
instance, singular vector computations (Buizza et al., 1993) or search for 
breeding vectors (Toth and Kalnay, 1997)). In most cases, these initial 
perturbations are further enriched by perturbations simulating model 
uncertainties as well. It is typically the case for the 51-member European 
Centre for Medium-Range Weather Forecasts ensemble (Leutbecher and 
Palmer, 2008) or for the PEARP and ALADIN-HUNEPS ensemble (Hágel, 
2010; Horányi et al., 2011) described in Section 2. In such cases, one usually 
has a control member (the one without any perturbation) and the remaining 
ensemble members are forming one or two exchangeable groups. 

In what follows, if we have ܯ ensemble members divided into ݉ 
exchangeable groups, where the ݇th group contains ܯ௞ ൐ 1 ensemble members 
(∑ ௞ܯ

ெ
௞ୀଵ ൌ  .notation ௞݂,ℓ is used for the ℓth member of the ݇th group ,(ܯ



222 

3.1. Bayesian model averaging 

In the BMA model proposed by Raftery et al. (2005), to each ensemble member 
௞݂  corresponds a component PDF ݃௞ሺݔ| ௞݂,  ௞ is a parameter to beߠ ௞ሻ, whereߠ

estimated. The BMA predictive PDF of ܺ is 
 
|ݔሺ݌  ଵ݂, … , ெ݂ሻ ؔ  ∑ ߱௞݃௞ሺݔ| ௞݂; ௞ሻ,ெߠ

௞ୀଵ   
 
where the weight ߱௞ is connected to the relative performance of the ensemble 
member ௞݂ during the training period.  Obviously, these weights form a 
probability distribution, that is ߱௞ ൒ 0, ݇ ൌ 1,2, . . , ∑ and ,ܯ ߱௞ ൌ 1ெ

௞ୀଵ . 
For the situation when M ensemble members are divided into m 

exchangeable groups, Fraley et al. (2010) suggested to use the following model 
 
หݔ൫݌  ଵ݂,ଵ, … , ଵ݂,ெభ, … , ௠݂,ଵ, … , ௠݂,ெ೘൯ ؔ  ∑ ∑ ߱௞

ெೖ
ℓୀଵ

௠
௞ୀଵ ݃௞ሺݔ| ௞݂,ℓ;  ௞ ሻ,  (1)ߠ

 
where ensemble members within a given group have the same weights and 
parameters. Since this is the case for the ALADIN-HUNEPS ensemble (i.e., it 
consists of groups of exchangeable members), in what follows, we present only 
the weather variable specific versions of Eq. (1). 
 
Temperature 
 
For modeling temperature (and pressure) Raftery et al. (2005) and Fraley et al. 
(2010) use normal component PDFs, and Eq. (1) takes the form 
 
หݔ൫݌  ଵ݂,ଵ, … , ଵ݂,ெభ, … , ௠݂,ଵ, … , ௠݂,ெ೘൯ ؔ  
     ∑ ∑ ߱௞

ெೖ
ℓୀଵ

௠
௞ୀଵ ݃ሺݔ| ௞݂,ℓ; ,଴,௞ߚ ,ଵ,௞ߚ  ଶሻ,  (2)ߪ

 
where ݃ሺݔ|݂; ,଴ߚ ,ଵߚ ଴ߚ ଶሻ is a normal PDF with meanߪ ൅  ଵ݂ (linear biasߚ
correction) and variance ߪଶ. Mean parameters ߚ଴,௞ and ߚଵ,௞ are usually estimated 
with linear regression of the validating observation on the corresponding 
ensemble members, while weights ߱௞ and variance ߪଶ, by maximum likelihood 
(ML) method using training data consisting of ensemble members and verifying 
observations from the preceding n days (training period). For example, taking 
݊ ൌ 30 , the predictive PDF, e.g., for 12 UTC March 31, 2013 at a given place 
can be obtained from the ensemble forecast for this particular day, time, and 
location (initialized at 18 UTC, March 29, 2013) with model parameters estimated 
from forecasts and verifying observations for all 10 locations from the period 
February 28 – March 29, 2013 (30 days, 300 forecast cases). 

Another method for estimating model parameters is to minimize an 
appropriate verification score (see Section 3.3) using the same rolling training 
data as before.  
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As special cases of the model given by Eq. (2), one can also consider the 
situations when only additive bias correction present, that is ܾଵ,௞ ൌ 1, and when 
bias correction is not applied at all, i.e., ܾ଴,௞ ൌ 0 and ܾଵ,௞ ൌ 1, ݇ ൌ 1,2, … , ݉.  

 
Wind speed 
 
Since wind speed can take only non-negative values, for modeling this weather 
quantity a skewed distribution is required.  A popular candidate is the Weibull 
distribution (see, e.g., Justus et al., 1978), however, Tuller and Brett (1984) 
pointed out that the necessary conditions for fitting this distribution are not 
always met. Sloughter et al. (2010) proposes the BMA model 
 
หݔ൫݌  ଵ݂,ଵ, … , ଵ݂,ெభ, … , ௠݂,ଵ, … , ௠݂,ெ೘൯ ؔ 

       ∑ ∑ ߱௞݄ሺݔ| ௞݂,ℓ; ܾ଴,௞, ܾଵ,௞, ܿ଴, ܿଵሻெೖ
ℓୀଵ

௠
௞ୀଵ , (3) 

 
for power transformations of the observed wind speed, where by 
݄ሺݔ|f; ܾ଴, ܾଵ, ܿ଴, ܿଵሻ  we denote the PDF of gamma distribution with mean 
ܾ଴ ൅ ܾଵ݂ and standard deviation ܿ଴ ൅ ܿଵ݂.  Parameters can be estimated in the 
same way as before, that is either mean parameters by regression and weights 
and standard deviation parameters by ML method or by minimizing a 
verification score. It is worth mentioning that in the ensembleBMA package of 
R, a more parsimonious model is implemented, where the mean parameters are 
constant across all ensemble members. In what follows, we will use this 
simplification, too. Further, preliminary studies (Baran, 2014) showed that for 
the ALADIN-HUNEPS ensemble, untransformed gamma BMA model gives the 
best fit, so no power transformations are needed.  

As an alternative to the gamma BMA approach, Baran (2014) suggests to 
model wind speed with a mixture of truncated normal distributions with a cut-
off at zero ࣨ଴ሺߤ,  of a component PDF is an affine ߤ ଶሻ, where the locationߪ
function of the corresponding ensemble member. The proposed BMA model is 
 
หݔ൫݌  ଵ݂,ଵ, … , ଵ݂,ெభ, … , ௠݂,ଵ, … , ௠݂,ெ೘൯ ؔ 
           ∑ ∑ ߱௞ݍሺݔ| ௞݂,ℓ; ,଴,௞ߚ ,ଵ,௞ߚ ଶሻெೖߪ

ℓୀଵ
௠
௞ୀଵ ,  (4) 

 
where ݍሺݔ|f; ,଴ߚ ,ଵߚ ଴ߚ ଶሻ is a truncated normal PDF  with locationߪ ൅  ଵ݂  andߚ
scale ߪଶ, that is  
 

;f|ݔሺݍ  ,଴ߚ ,ଵߚ ଶሻߪ ؔ  
భ
഑ఝሺሺ௫ିఉబିఉభ௙ሻ/ఙሻ

஍ሺሺఉబାఉభ௙ሻ/ఙሻ
,  for ݔ ൒ 0, 

 
and 0, otherwise. Here ߮ and Φ denote the PDF and the cumulative distribution 
function (CDF) of the standard normal distribution, respectively.  
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For estimating parameters of the model specified by Eq. (4) Baran (2014) 
uses a full ML method, which means that all parameter estimates are obtained 
by maximizing the likelihood function corresponding to the training data. 

3.2. Ensemble model output statistics 

As noted, the EMOS predictive PDF is a single parametric density where the 
parameters are functions of the ensemble members. 
 
Temperature 
 
Similarly to the BMA approach, for modeling temperature (and pressure) 
normal distribution seems to be a reasonable choice. The EMOS predictive 
distribution suggested by Gneiting et al. (2005) is 
 

 ࣨሺܽ଴ ൅ ܽଵ ଵ݂ ൅ ڮ ൅ ܽெ ெ݂, ܾ଴ ൅ ܾଵܵଶሻ   (5) 
 

with   ܵଶ ؔ  ଵ
ெିଵ

 ∑ ሺ ௞݂ െ ݂ҧሻଶெ
௞ୀଵ ,   

 
where ݂ҧ denotes the ensemble mean. Location parameters ܽ଴ א Թ, 
ܽଵ, … , ܽெ ൒ 0  and scale parameters ܾ଴, ܾଵ ൒ 0  can be estimated from the 
training data by minimizing an appropriate verification score (see Section 3.3).  

In the case when the ensemble can be divided into groups of exchangeable 
members, ensemble members within a given group get the same coefficient of 
the location parameter resulting in a predictive distribution of the form  
 
 ࣨሺܽ଴ ൅ ܽଵ ∑ ଵ݂,ℓభ ൅ ڮ ൅ ܽ௠ ∑ ௠݂,ℓ೘ , ܾ଴ ൅ ܾଵܵଶெ೘

ℓ೘ୀଵ  ெభ
ℓభୀଵ ሻ,  (6) 

 
where again, ܵଶ denotes the ensemble variance. 
 
Wind speed 
 
To take into account the non-negativity of the predictable quantity, in the EMOS 
model for wind speed proposed by Thorarinsdottir and Gneiting (2010), the 
normal predictive distribution of Eqs. (5) and (6) is replaced by a truncated 
normal distribution with cut-off at zero. This model is nearly as simple as the 
normal EMOS model for temperature, for exchangeable ensemble members the 
predictive distribution is 
 
 ࣨ଴ሺܽ଴ ൅ ܽଵ ∑ ଵ݂,ℓభ ൅ ڮ ൅ ܽ௠ ∑ ௠݂,ℓ೘ , ܾ଴ ൅ ܾଵܵଶெ೘

ℓ೘ୀଵ  ெభ
ℓభୀଵ ሻ. (7) 

 
A summary of the above described models is given in Table 1, where the 

BMA component and EMOS predictive PDFs and their mean/location and 
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standard deviation/scale parameters are given as functions of the ensemble 
members ℓ݂ and ensemble variance ܵଶ. 

 
 
Table 1. Summary of post-processing methods for temperature and wind speed forecasts. 
BMA component and EMOS predictive PDFs and their mean/location and standard 
deviation/scale parameters as functions of the ensemble members ℓ݂ and ensemble 
variance ܵଶ 

  Predictive PDF Mean/location Std. dev./scale 

Temperature BMA Normal mixture ߚ଴,௞ ൅ ଵ,௞ߚ ௞݂ ߪ 

 EMOS Normal ܽ଴ ൅ ෍ ܽℓ ℓ݂

ெ

ℓୀଵ
 ඥܾ଴ ൅ ܾଵܵଶ 

 BMA Gamma mixture ܾ଴ ൅ ܾଵ ௞݂ ܿ଴ ൅ ܿଵ ௞݂ 

Wind speed BMA Truncated normal mixture ߚ଴,௞ ൅ ଵ,௞ߚ ௞݂ ߪ 

 EMOS Truncated normal ܽ଴ ൅ ෍ ܽℓ ℓ݂

ெ

ℓୀଵ
 ඥܾ଴ ൅ ܾଵܵଶ 

 

3.3. Verification scores 

In order to check the overall performance of the calibrated forecasts in terms of 
probability distribution function, the mean continuous ranked probability scores 
(CRPS; Wilks, 2011; Gneiting and Raftery, 2007) and the coverage and average 
width of 83.33% central prediction intervals are computed and compared for the 
calibrated and raw ensemble. Additionally, the ensemble mean and median are 
used to consider point forecasts, which are evaluated with the use of mean 
absolute errors (MAE) and root mean square errors (RMSE). We remark that for 
MAE and RMSE, the optimal point forecasts are the median and the mean, 
respectively (Gneiting, 2011; Pinson and Hagedorn, 2012). Further, given a 
CDF ܨሺݕሻ and a real number ݔ, the CRPS is defined as 
 

,ܨሺݏ݌ݎܿ ሻݔ ؔ ׬  ൫ܨሺݕሻ െ ߯ሼ௬ஹ௫ሽ൯ଶ݀ݕஶ
ିஶ , 

 
where ߯ு denotes the indicator of a set ܪ. The mean CRPS of a probability 
forecast is the average of the CRPS values of the predictive CDFs and 
corresponding validating observations taken over all locations and time points 
considered resulting in a value in the units of the forecast variable. For the raw 
ensemble, the empirical CDF of the ensemble replaces the predictive CDF. Note 
that CRPS, MAE, and RMSE are negatively oriented scores, that is the smaller 
the better. Finally, the coverage of a ሺ1 െ ߙ ,ሻ100%ߙ א ሺ0,1ሻ, central prediction 
interval is the proportion of validating observations located between the lower 
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and upper 2/ߙ quantiles of the predictive distribution. For a calibrated 
predictive PDF, this value should be around ሺ1 െ  .ሻ100%ߙ

4. Results 

Using the ideas of Baran et al. (2013, 2014), we consider two different groupings 
of the members of the ALADIN-HUNEPS ensemble. In the first case we have 
two exchangeable groups ሺ݉ ൌ 2ሻ. One contains the control member denoted 
by ௖݂  ሺܯଵ ൌ 1ሻ, while in the other are 10 ensemble members ሺܯଶ ൌ 10ሻ 
corresponding to the differently perturbed initial conditions denoted 
by ௣݂,ଵ, … , ௣݂,ଵ଴. Under these conditions, for temperature data we investigate the 
BMA model specified by Eq. (2) with three different bias correction methods 
(linear, additive, no bias correction) and the EMOS model given by Eq. (6), 
while for wind speed data the BMA models defined by Eqs. (3) and (4) and the 
EMOS model specified by Eq. (7) are studied. In this two-group situation we 
have only one independent BMA weight ߱ א ሾ0,1ሿ corresponding, e.g., to the 
control, that is ߱ଵ ൌ ߱ and ߱ଶ ൌ ሺ1 െ ߱ሻ/10. 

In the second case, the odd and even numbered exchangeable ensemble 
members form two separate groups ൛ ௣݂,ଵ, ௣݂,ଷ, ௣݂,ହ, ௣݂,଻, ௣݂,ଽൟ and 
 ൛ ௣݂,ଶ, ௣݂,ସ, ௣݂,଺, ௣݂,଼, ௣݂,ଵ଴ൟ, respectively ሺ݉ ൌ 3, ଵܯ ൌ 1, ଶܯ  ൌ ଷܯ ൌ 5ሻ, which 
idea is justified by the method their initial conditions are generated. For more 
details see Section 2, particularly the fact that only five perturbations are 
calculated and then they are added to (odd numbered members) and subtracted 
from (even numbered members) the unperturbed initial conditions. For 
calibrating ensemble forecasts of temperature and wind speed, we use the three-
group versions of BMA and EMOS models considered earlier in the two-group 
case. 

As typical example for illustrating the two different post-processing 
methods and groupings, we consider temperature data and forecasts for 
Debrecen valid on July 2, 2012. Figs. 2a and 2b show the BMA predictive 
PDFs in the two- and three-group cases, the component PDFs corresponding 
to different groups, the median forecasts, the verifying observations, the first 
and last deciles, and the ensemble members. Besides the EMOS predictive 
PDFs the same quantities can be seen in Figs. 2c and 2d, too. On the 
considered date the spread of the ensemble is reasonable (the ensemble range 
equals 2.368 K), but all ensemble members overestimate the validating 
observation (306.45 K). Obviously, the same holds for the ensemble median 
(308.927 K), while BMA median forecasts corresponding to the two- and 
three-group models (both equal to 306.524 K) are quite close to the true 
temperature. The point forecasts produced by the EMOS model are slightly 
worse (306.921 K for both groupings) but still outperform the ensemble 
median. 
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We start our data analysis by determining the optimal lengths of the 
training periods to be used for estimating the parameters of BMA and EMOS 
predictive distributions for 2m temperature and 10m wind speed. After finding 
them we compare the performances of BMA and EMOS post-processed 
forecasts using these optimal training period lengths. For EMOS models, the 
parameter estimates are obtained by minimizing the CRPS values of the 
predictive PDFs. 

 
 

 
Fig. 2. (a) and (b): BMA; (c) and (d): EMOS density forecasts for 2m temperature (given 
in K) for Debrecen valid on July 2, 2012. BMA PDFs with linear bias correction in two- 
and three-group cases (overall: thick  black line; control: red line; sum of exchangeable 
members on (a): light blue line; on (b): green (odd members) and blue (even members) 
lines), EMOS predictive PDFs in two- and three-group cases (thick black line), ensemble 
members (circles with the same colours as the corresponding BMA PDFs), BMA/EMOS 
median forecasts (vertical black line), verifying observations (vertical orange line) and 
the first and last deciles (vertical dashed lines). 

 

a) b) 

c) d) 
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4.1. Training period 

Similarly to our previous studies (Baran et al., 2013, 2014), we proceed in 
the same way as Raftery et al. (2005) and determine the length of training 
period to be used for BMA and EMOS calibrations by comparing MAE 
values of median forecasts, RMSE values of mean forecasts, CRPS values of 
predictive distributions, and coverages and average widths of 83.33%  central 
prediction intervals calculated from the predictive PDFs using training 
periods of length of 10,11, … , 60 calendar days. In order to ensure the 
comparability of the verification scores corresponding to different training 
period lengths, we issue calibrated forecasts of temperature and wind speed 
for the period from June 1, 2012 to March 31, 2013 (6 days with missing data 
are excluded). This means 298 calendar days following the first training 
period of maximal length of 60 days. 
 
Temperature 
 
For temperature data we consider BMA predictive PDF given by Eq. (2) with 
linear bias correction and EMOS model Eq. (6) with parameters minimizing the 
CRPS of probabilistic forecasts corresponding to the training data. In order to 
ensure a more direct comparison of the two models, we also investigated the 
performance of the BMA predictive PDF specified by Eq. (2) with parameter 
estimates minimizing the same verification score. It yielded sharper central 
prediction intervals and lower coverage for all training period lengths 
considered, but there were no significant differences in CRPS, MAE, and RMSE 
values corresponding to different parameter estimation methods. 

Consider first the two-group situation. In Fig. 3 the CRPS values of 
BMA and EMOS predictive distributions, MAE values of median, and RMSE 
values of mean forecasts are plotted against the length of the training period. 
Note that for normal EMOS model, mean and median forecasts are obviously 
coincide. First of all it is noticeable that the results are very consistent for all 
diagnostics, i.e., the curves are similar for all measures. EMOS produces 
better verification scores, and after 32 days there is no big difference among 
scores obtained with different training period lengths. In case of the BMA 
model, CRPS, MAE, and RMSE reach their minima at day 35, and this 
training period length gives the minima of CRPS and RMSE of the EMOS 
model, too (see Table 2). Although the minimum of MAE of the EMOS 
model is reached at day 42, the value at day 35 is very near to this minimum 
as well. 
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Fig. 3. Mean CRPS of predictive distributions, MAE of  BMA/EMOS median, and RMSE of 
BMA/EMOS mean forecasts for temperature (given in K) corresponding to two-group 
models for various training period  lengths (BMA: solid and ○; EMOS: dashed and □). 
 
 
 
 
Table 2. Optimal training period lengths for temperature with respect to mean CRPS, 
MAE, and RMSE (given in K), the corresponding optimal scores, and scores at the 
chosen 35 days length. 

 
 Mean CRPS MAE RMSE 

opt. 
day 

opt. 
value 

day 35 
value 

opt. 
day 

opt. 
value 

day 35 
value 

opt. 
day 

opt. 
value 

day 35 
value 

Two 
groups BMA 35   1.0901 1.0901 35 1.5230 1.5230 35 1.9914 1.9914 

 EMOS 35    1.0671 1.0671 42 1.4843 1.4868 35 1.9494 1.9494 

Three 
groups BMA 35     1.0896 1.0896 35 1.5227 1.5227 36 1.9897 1.9899 

 EMOS 26    1.0703 1.0718 26 1.4843 1.4895 28 1.9529 1.9570 
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Fig. 4 shows the average width and the coverage of the 83.33% central 
prediction interval for both models considered. Similarly to the previous 
diagnostics, after 32 days all curves are rather flat showing only a slightly 
increasing trend. EMOS model yields significantly sharper central prediction 
intervals for all training period lengths considered, but its coverage stays below 
the nominal value of 83.33% (dashed line). Unfortunately, the coverage of the 
BMA model also fails to reach the nominal value, but it is very close to 83.33% 
from day 35 onwards. The maximal coverage is attained at day 37. Comparing 
the average width and coverage, one can observe that they have opposite 
behavior, i.e., the average width values favor shorter training periods, while the 
coverage figures prefer longer ones. On the other hand, the trend of the average 
width values is rather flat after day 30 (or so). In any case, a reasonable 
compromise ought to be found, which is at the range of 30 – 40 days. 

 
 

 

 
 

Fig. 4. Average width (given in K) and coverage of 83.33% BMA/EMOS central 
prediction intervals for temperature corresponding to two-group models for various 
training period lengths (BMA: solid and ○; EMOS: dashed and □). 
 
 
As a summary, it can be said that a 35-day training period seems to be an 

acceptable choice both for the BMA and EMOS models (particularly see 
conclusions based on Fig. 3, which are not compromised by the other two 
diagnostics at Fig. 4).  

Very similar conclusions can be drawn for the three-group models. The 
overall behaviors of the two post-processing methods for the various diagnostics 
(not shown) are very similar to those of their two-group counterparts. EMOS 
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model provides lower CRPS, MAE, and RMSE values and, moreover, the lower 
coverage combined with sharper central prediction interval all over the time 
periods. In terms of specific values, the minima of CRPS and MAE for the BMA 
model are reached again at day 35, while the RMSE takes its minimum at day 36 
(the value at day 35 is very near to this minimum, see Table 2). For the EMOS 
model, CRPS, MAE, and RMSE reach their minima in the range of 26 – 28 days, 
and values at day 35 are again very close to these minima. 

Regarding the average width, shorter training periods yield sharper central 
prediction intervals. The coverage for the EMOS model is always below the 
nominal value, while the maximal coverage of the BMA model is reached at day 
59. However, as in general shorter training periods are preferred, a reasonable 
compromise is to consider the 35 – 38-day interval where the BMA coverage is 
also very high.  Hence, the training period proposed for the two-group model 
can be kept for the three-group model as well, therefore, for temperature we 
suggest the use of a training period of length 35 days for all the investigated 
post-processing methods.  
 
Wind speed 
 
To calibrate ensemble forecasts of wind speed, we apply gamma and truncated 
normal BMA models given by Eqs. (3) and (4), respectively, and EMOS model 
specified by Eq. (7). In the latter case, similarly to EMOS calibration of 
temperature forecasts, estimation of parameters is done by minimizing the CRPS 
of probabilistic forecasts corresponding to the training data. 

First, consider again the case when we have two groups of exchangeable 
ensemble members. Generally, the various scores have rather flat evolution with 
respect to the training lengths (see Fig. 5 and Fig. 6). It is particularly true after 
day 25, which would suggest that basically any training length longer than 
25 days might be an acceptable choice. Observe that the order of different 
methods with respect to a given score remains the same for all training period 
lengths. Truncated normal BMA produces the lowest CRPS values, while the 
best MAE and RMSE values correspond to EMOS post-processing. In any case 
if we wanted to pick up a single training period length as an optimal one, 43 
days would be a reasonable choice. This is the value where the minima of CRPS 
of all three methods and the minimum of RMSE of gamma BMA are reached 
(see Table 3). The MAE values of the truncated normal BMA and EMOS 
models attain  their minima at day 59, however, values corresponding to day 43 
are practically the same. Finally, the minima of the MAE of the gamma BMA 
model and the RMSE of the truncated normal BMA and EMOS models are 
reached at days 47, 41, and 29, respectively, while in all three cases the values at 
day 43 are the second smallest ones. 
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Fig. 5. Mean CRPS of predictive distributions, MAE of BMA/EMOS median and RMSE 
of BMA/EMOS mean forecasts for wind speed  (given in m/s)  corresponding to two-
group models for various training period lengths (Gamma BMA: solid and ○; truncated 
normal BMA: dotted and ◊; EMOS: dashed and □). 

 
 

 
Fig. 6. Average width (given in m/s) and coverage of  83.33% BMA/EMOS central 
prediction  intervals for wind speed corresponding to two-group models for various 
training period lengths (Gamma BMA: solid and ○; truncated normal BMA: dotted and ◊; 
EMOS: dashed and □). 
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EMOS post-processing yields the sharpest central prediction intervals and 
coverage values which are very close to the nominal level for all considered 
training period lengths (Fig. 6). The 83.33% central prediction intervals for the 
truncated normal BMA model are significantly wider than those of the EMOS 
together with a coverage varying between 83.89% and 86.14%. Gamma BMA 
results in narrower central prediction intervals, but its coverage never reaches 
the nominal level. The maximal coverage is attained at days 38 and 49. In this 
way, a 43-day training period length is also acceptable from the point of view of 
central prediction intervals.  

The analysis of verification scores corresponding to the alternative 
grouping of ensemble members (not shown) leads again to very similar results. 
The most important difference between the two-group and three-group models is 
that forming three groups (especially for training periods longer than 20 days) 
improves MAE and RMSE values of the truncated normal BMA model, and 
they become very close to the corresponding values of EMOS. For the three-
group EMOS model, CRPS and RMSE reach their minima at day 43, and this is 
the training period length where the minimal CRPS and the second smallest 
values of MAE and RMSE of the gamma BMA model are attained (see 
Table 3). For the latter model, the global minima of MAE and RMSE are at day 
42. In case of truncated normal BMA, post-processing, CRPS, MAE, and RMSE 
have their minima at day 39, but since these curves are rather flat, values 
corresponding to a training period of length 43 days are very near. In this way, a 
43-day training period seems to be acceptable for both groupings of ensemble 
members. 

 
 
Table 3. Optimal training period lengths for wind speed with respect to mean CRPS, 
MAE and RMSE (given in m/s), the corresponding optimal scores, and scores at the 
chosen 43-day length. 

 
 Mean CRPS MAE RMSE 

opt. 
day 

opt. 
value 

day 43 
value 

opt. 
day 

opt. 
value 

day 43 
value 

opt. 
day 

opt. 
value 

day 43 
value 

Two BMA, g. 43 0.7551 0.7551 47 1.0692 1.0694 43 1.4145 1.4145 

groups BMA, tr. 43 0.6933 0.6933 59 1.0385 1.0389 41 1.3536 1.3540 

 EMOS 43 0.7346 0.7346 59 1.0320 1.0322 29 1.3488 1.3491 

Three BMA, g. 43 0.7559 0.7559 42 1.0690 1.0691 42 1.3940 1.3941 

groups BMA, tr. 39 0.6930 0.6930 39 1.0377 1.0382 39 1.3535 1.3543 

 EMOS 43 0.7355 0.7355 28 1.0326 1.0328 43 1.3504 1.3504 
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4.2. Ensemble calibration using BMA and EMOS post-processing 

According to the results of the previous section, to compare the performance of 
BMA and EMOS post-processing on the 11-member ALADIN-HUNEPS 
ensemble, we use rolling training periods of lengths 35 days for temperature and 
43 days for wind speed.  
 
Temperature 
 
For post-processing ensemble forecasts of temperature, we consider the BMA 
model defined by Eq. (2) with all three bias correction methods introduced in 
Section 3.1 (linear, additive, none) and EMOS model minimizing the CRPS of 
probabilistic forecasts corresponding to the training data. The application of 
three different BMA bias correction methods is justified by a previous study 
dealing with statistical calibration of the ALADIN-HUNEPS temperature 
forecasts (Baran et al., 2014), where the simplest BMA model without bias 
correction showed the best overall performance (although that study was using 
different ALADIN-HUNEPS dataset period, which preceded the one 
investigated in this article).  

The use of a 35-day rolling training period implies that ensemble members, 
validating observations, and predictive PDFs are available for the period from 
May 7, 2012 to March 31, 2013 (having 323 calendar days just after the first 35-day 
training period). This time interval starts nearly 4 weeks earlier than the one 
used for determination of the optimal training period length. 

The first step in checking the calibration of our post-processed forecasts is 
to have a look at their probability integral transform (PIT) histograms. The PIT 
is the value of the predictive CDF evaluated at the verifying observations 
(Raftery et al., 2005), which provides a good and easily interpretable measure 
about the possible improvements of the under-dispersive character of the raw 
ensemble. The closer the histogram to the uniform distribution, the better the 
calibration. In Fig. 7, PIT histograms corresponding to all three versions of the 
BMA model and to the EMOS model are displayed both in the two- and three-
group cases. A comparison to the verification rank histogram of the raw 
ensemble (see Fig. 1) shows that at every case, post-processing significantly 
improves the statistical calibration of the forecasts. However, the BMA model 
without bias correction now becomes over-dispersive and the PIT values of the 
EMOS are slightly better, while at the same time, for the BMA models with 
linear and additive bias correction, one can accept uniformity. This visual 
perception is confirmed by the ݌-values of Kolmogorov-Smirnov tests for 
uniformity of the PIT values (see Table 4). Therefore, the BMA model with 
additive bias correction produces the best PIT histograms (the linear bias 
correction case is just slightly worse), the performance of the EMOS model is 
also quite good, while the fit of the BMA model without bias correction is rather 
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poor. One can additionally observe that the three-group models systematically 
outperform the two-group ones. 

 
 
 

 

Fig. 7. PIT histograms for BMA and EMOS post-processed forecasts of temperature 
using two- and three-group models. 

 
 
 
 

Table 4. ݌-values of Kolmogorov-Smirnov tests for uniformity of PIT values 
corresponding to predictive distributions of temperature 

 
BMA model with bias correction 

EMOS model 
linear additive none 

Two groups 0.1393 0.2405 2.2 ൈ 10ିଵ଴ 0.0062 
Three groups 0.2281 0.4617 4.1 ൈ 10ିଽ 0.0093 

 
 
 
 
In Table 5, verification measures of probabilistic and point forecasts 

calculated using BMA and EMOS models are given together with the 
corresponding scores of the raw ensemble. By examining these results, one can 
clearly observe again the obvious advantage of post-processing with respect to 
the raw ensemble. This is quantified in decrease of CRPS, MAE, and RMSE 
values and in a significant increase in the coverage of the 83.33% central 
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prediction intervals. On the other hand, the post-processed forecasts are less 
sharp (e.g., 83.33% central prediction intervals are around 30% െ 40% wider 
than the raw ensemble range). This fact is coming from the small dispersion of 
the raw ensemble, as also seen in the verification rank histogram of Fig. 1. 
Furthermore, BMA and EMOS models distinguishing three exchangeable 
groups of ensemble members slightly outperform their two-group counterparts 
(in agreement with the interpretations based on the PIT histograms). Comparing 
the different post-processing methods, it is noticeable that on the one hand, 
EMOS produces the lowest CRPS, MAE, and RMSE values and sharpest central 
prediction intervals both in the two- and three-group cases, although with 
coverages far below the targeted 83.33%. On the other hand, in terms of CRPS, 
MAE, and RMSE, the behavior of the BMA model with linear bias correction is 
just slightly worse, and at the same time this method produces the best 
approximation of the nominal coverage. Taking also into account the fit of the 
PIT values to the uniform distribution (see Fig. 7 and Table 4 again), one can 
conclude that overall from the four competing post-processing methods, the 
BMA model with linear bias correction shows the best performance. These 
results are not in contradiction with the ones for a previous period (see Baran et 
al. (2014), where the no bias correction case proved to be the optimal), since the 
characteristics of the raw ALADIN-HUNEPS system had been slightly changed 
in between. The coverage of the system had been significantly improved (from 
46% to 60%), although the latest system became slightly biased (as compared to 
the previously examined one). Therefore, due to the existence of the bias, it is 
not surprising that one of the versions with bias correction has the best behavior. 
 

 

 

Table 5. Mean CRPS of probabilistic, MAE, and RMSE of median/mean forecasts, average 
width, and coverage of 83.33% central prediction intervals for temperature (given in K) 

 Mean 
CRPS 

MAE RMSE Average 
widths 

Coverage 
(%) median mean median mean 

 BMA, lin. 1.0815 1.5101 1.5097 1.9789 1.9765 5.1375 83.00 
Two BMA, add. 1.1029 1.5395 1.5329 2.0028 1.9871 5.5146 84.21 
groups BMA none 1.1131 1.5536 1.5444 2.0167 2.0014 5.7191 84.80 
 EMOS 1.0586 1.4731 1.4731 1.9348 1.9348 4.7203 80.43 
 BMA, lin. 1.0801 1.5082 1.5059 1.9767 1.9726 5.1369 83.28 
Three BMA, add. 1.0998 1.5346 1.5254 1.9962 1.9783 5.5096 84.12 
groups BMA none 1.1123 1.5509 1.5407 2.0156 1.9988 5.7095 85.11 
 EMOS 1.0591 1.4689 1.4689 1.9308 1.9308 4.7523 80.53 
Raw ensemble 1.2284 1.5674 1.5512 2.0434 2.0131 3.9822 60.53 
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Wind speed 
 
According to results of Section 4.1, to compare the predictive performances of 
gamma BMA (Eq. (3)), truncated normal BMA (Eq. (4)) and EMOS (Eq. (7)) 
post-processing on the 11-member ALADIN-HUNEPS ensemble forecast of 
wind speed, we use a training period of length 43 calendar days. In this way, 
ensemble members, validating observations, and predictive distributions are 
available for the period from May 15, 2012 to March 31, 2013 (313 calendar 
days). 

First, consider again the PIT histograms of various calibration methods, which 
are displayed in Fig. 8. Compared to the verification rank histogram of the wind 
speed ensemble (see Fig. 1), the statistical post-processing induced improvements 
are obvious, however, e.g., in case of truncated normal BMA, both corresponding 
PIT histograms are slightly over-dispersive. The p-values of Kolmogorov-Smirnov 
tests given in Table 6 also show that truncated normal BMA models produce the 
poorest fit, while for gamma BMA and EMOS models one can accept uniformity. 
In case of BMA calibration, the three-group models again outperform the two-
group ones, while for EMOS the situation is the reverse. A similar behavior can be 
observed in Table 7, where the verification scores of probabilistic and point 
forecasts calculated using BMA and EMOS post-processing and the corresponding 
measures of the raw ensemble are given. Considering first the probabilistic 
forecasts (in terms of CRPS, average width of central prediction interval, and 
coverage), one can observe that the calibrated forecasts are smaller in CRPS, wider 
in central prediction intervals, and higher in coverage compared to the raw 
ensemble. Equally, to the two- and in three-group cases the smallest CRPS values 
belong to the truncated normal BMA model, while EMOS post-processing 
produces the sharpest central   prediction intervals and the best approximation of 
the nominal coverage of 83.33%. Regarding the point forecasts (median and 
mean) calculated from the truncated normal BMA and EMOS predictive PDFs, 
generally there are smaller MAE and RMSE values than those of the raw ensemble. 
However, there is an exception for the gamma BMA model, since these scores are 
higher indicating degradations. A possible explanation might be related to the fact 
that in the investigated period (May 15, 2012 – March 31, 2013) both the raw 
ensemble median and the ensemble mean slightly overestimate the validating 
observations (their average biases (standard errors) are 
0.0907 ሺ0.0249ሻ and 0.0972 ሺ0.0244ሻ, respectively). Therefore, the small bias 
should be removed by relevant bias corrections. On the other hand, we believe that 
the simplest bias correction procedure of the gamma BMA model cannot eliminate 
these inaccuracies, moreover, it might introduce some additional errors. It is a 
matter of fact that in the two-group case, the average biases of the median and 
mean of the gamma BMA predictive PDF are െ0.1935 and െ0.1318 with 
standard errors of 0.0250 and 0.0253, respectively, while for the EMOS model 
showing the lowest MAE and RMSE values, these biases are only െ0.0735 and 
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െ0.0293, both having a standard error of 0.0242. Therefore, the EMOS model is 
able to compensate for the existing biases, which is also the case for the truncated 
normal BMA case, but not for the gamma BMA calibration. The difference in 
behavior between the two BMA calibration methods is attributed to the more 
sophisticated bias correction algorithm, which is applied for the truncated normal 
BMA case. 
 
 
 

 
 

Fig. 8. PIT histograms for BMA and EMOS post-processed forecasts of wind speed using 
two- and three-group models. 

 
 
 
 
 
 
 

Table 6. ݌-values of Kolmogorov-Smirnov tests for uniformity of PIT values 
corresponding to predictive distributions of wind speed. 

 
BMA model with bias correction 

EMOS model 
gamma tr. normal 

Two groups 0.1812 0.0023 0.1272 
Three groups 0.2085 0.0043 0.0967 
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Table 7. Mean CRPS of probabilistic, MAE, and RMSE of median/mean forecasts, average 
width, and coverage of 83.33% central prediction intervals for wind speed (given in m/s). 

 

 Mean 
CRPS 

MAE RMSE Average 
widths 

Coverage 
(%) median mean median mean 

Two BMA, gamma 0.7601 1.0747 1.0895 1.4176 1.4267 3.7151 81.87 
groups BMA, tr. n. 0.6982 1.0446 1.0471 1.3693 1.3632 3.7621 85.46 
 EMOS 0.7381 1.0369 1.0375 1.3593 1.3572 3.5340 83.59 
Three BMA, gamma 0.7612 1.0754 1.0828 1.4192 1.4052 3.7064 82.03 
groups BMA tr. n. 0.6980 1.0437 1.0460 1.3696 1.3639 3.7498 85.08 
 EMOS 0.7349 1.0381 1.0388 1.3620 1.3597 3.5219 83.11 
Raw ensemble 0.8029 1.0688 1.0549 1.3980 1.3728 2.8842 68.22 

 
 
 
To summarize, gamma BMA model outperforms the other two methods in 

terms of fit of PIT values, but it has the highest CRPS and very poor verification 
scores for the point forecasts. MAE and RMSE values corresponding to EMOS 
and truncated normal BMA are lower than those of the raw ensemble and rather 
similar to each other. From these two methods, truncated normal BMA produces 
much lower CRPS, while EMOS post-processing results in sharper central 
prediction intervals, better coverage, and better fit of PIT values to the uniform 
distribution, so we conclude that the overall performance of this method is the 
best for the calibration of the wind speed raw ensemble forecasts. 

5. Discussion and conclusions 

In this paper we have compared different versions of the BMA and EMOS 
statistical post-processing methods in order to improve the calibration of 2 m 
temperature and 10 m wind speed forecasts of the ALADIN-HUNEPS system. 
First, we have demonstrated the weaknesses of the ALADIN-HUNEPS raw 
ensemble system being under-dispersive and therefore uncalibrated. We have 
indicated that the under-dispersive character of the ALADIN-HUNEPS system 
had been improved compared to studies based on a former dataset, however, 
more enhancements are still needed. On the other hand, the latest dataset shows 
some features of bias of ALADIN-HUNEPS, which were not observed in the 
earlier studies. This fact has an influence on the optimal choice of statistical 
calibration, since the use of bias correction is getting more essential. Some 
standard measures were applied, which are related to the characteristics of the 
ensemble probability density functions and also the point forecasts as described 
by the mean/median of the ensemble. The various systems improve different 
aspects of the ensemble, however, overall both the BMA and the EMOS method 
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are capable to deliver significant improvements on the raw ALADIN-HUNEPS 
ensemble forecasts (for temperature and wind speed as well). In case of 
temperature, the best BMA method slightly outperforms the EMOS technique 
(although it should not be forgotten that, for instance, in terms of point forecasts, 
EMOS is better than BMA), while for calibrating ensemble forecasts of wind 
speed, the EMOS model shows the best performance.   
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