

8th Seminar for Homogenization and Quality Control in Climatological Databases 3rd Conference on Spatial Interpolation Techniques in Climatology and Meteorology BUDAPEST, HUNGARY 12 – 16 May 2014

Homogenization of Monthly Temperature Series in ISRAEL 1950-2012

an integrated approach for optimal break-points detection

Yosef Yizhak

Climate Department Israel Meteorological Service

<u>Outline</u>

Introduction

- Climate of Israel and Israeli climatological stations (ICS)
- Key factors causing inhomogeneity in the ICS temperature data
- Major problems in carrying out homogenization of the ICS in temperature data.

Methodology

- The procedure of break-point detection and data adjustment at the IMS
- Results
 - Maximum and Minimum temperatures adjusted series 1950-2012
- Conclusions and summary

Climate of Israel and Israeli climatological stations (ICS)

Mean annual precipitation 1981-2010

3

Focusing on 5 stations

- Long climate records.
- ✓ Data use after a systematic Quality Control procedure.
- Availability of reliable metadata.
- ✓ Good representation of various climate regions in Israel.
- ✓ The average of the mean temperature of these 5 stations represents quite well the average temperature of all Israel.

<u>Key factors causing inhomogeneity in the</u> <u>ICS temperature data</u>

Relocations

Instrumentation (calibration, upgrading to electronic sensors, types of sensors).
Changing screen design.

Major problems in carrying out homogenization of the ICS in temperature data

- Lack of stations during the 1950's and backward.
- Lack of stations from the same climatological region.
- Missing values and discontinuity records at a given station.

Discontinuous records and short periods

Data availability for the base and reference stations

Common Homogenization Procedure

AnClimv5 (Štěpánek, P. 2008)

HOMER_2.6 (*Mestre, O. et al, 2012*)

ACMANTv2 (Domonkos, P. 2012)

🕿 C:Wocuments and Settings\ltzhak_YWesktop\ACMANTv2.1\ACMANTv2.1\ACMAN2TmTxmth 💶 🗙
name of the network:
number of stations:
starting year:
number of years:
The input: network: NEGBA number of stations: 9 first year of time series: 1950 number of year in time series: 63
Is the input OK ? (Y/N)
Is the input OK ? (Y/N)
r Would you like outlier filtering (recommended) ? (Y/N)
Would you prefer default output-package ? (Y/N)
Output items: list of breaks: Y spatial correlations? Y/N
homogen. monthly series (hms) without gap filling ? Y/N

RHtestsV3 (Wang, X. L & Feng, Y. 2010)

Homogenization at IMS

Summarizing all the results and Establishing the Break-Points

Station: NEGBA 1950-2012

TEMPERATURE: MAX / MIN / DTR Common Period: _____

No. ref. Stations: 3-8

DATA: Year / Month / Day

Reference Tests

SNHT	
SNHT II	
SNHT two stand.dev	
SNHT Double Shift	
SNHT Trend	
Bivariate test	
Easterling & Peterson	
Vincent <mark>(</mark> 4 steps)	
RHtestsV3	
ACMANT	
HOMER	

Adjustment

ACMANT

Absolute Homogenization Tests

The ECA&D suggests to do absolute tests when there is no reliable metadata.

The 4 basic absolute tests:

- 1. The standard normal homogeneity test (Alexandersson, 1986)
- 2. The Buishand range test (Buishand, 1982)
- 3. The Pettitt test (Pettitt, 1979)
- 4. The Von Neumann ratio test (Von Neumann, 1941)

European Climate Assessment & Dataset Report 2008

European Climate Assessment & Dataset (ECA&D)

ECA&D

Absolute Homogeneity Test

For the maximum and minimum temperature the year 1998 repeats at all the stations (except at Eilat).

The tests identify the real climate signals as break-points.

Significant annual break points (AnClim & RHtestsV3)

Using Cluster Analysis for choose reference stations

(Fast CLIMATOL checks_HOMER)

15

Candidate vs. Reference before and after cluster analysis

16

Break-point detection using RHtestV3

Negba: Base minus Reference (minimum temperature)

RHtestsV3

Using Pairwise detection for analyzing possible influence on the reference series

HOMER

Establishing the Break-Points

Metadata were used only after the detection phase, to validate the results

Negba - Minimum Temperature

Break points	AnClim	RHtestsV3	ACMANT	Metadata	
1955	V	V			Falsa
1957		V			Faise
1964	E.P	V	V	Relocation	
1971	E.P	V	V	Thermometer replacement	
1977	V	V	V	Relocation & Change in screen design	

(E.P – Easterling, D. R and Peterson, T. C (1995))

Zefat - Minimum Temperature

Break points	AnClim	RHtestsV3		/3	ACMANT	Metadata
1990	V	V			V	No metadata
1992			V		V	Thermometer replacement
1995			V			Thermometer replacement
2000	V		V		V	Calibration
2004	V		V			Data from AWS
2008			V			Switching sensor

Adjusted Methods

- 1. Manual Mean adjustment (monthly)
- 2. RHtestsV3 Mean adjustment (annually)
- 3. RHtestsV3 Quantile-Matching
- 4. ACMANT ANOVA (monthly)

Adjusted series and correction factors

TX series results: adjusted vs. base

TX series results: adjusted vs. base

24

TX series results: adjusted vs. base

TN series results: adjusted vs. base

TN series results: adjusted vs. base

TN series results: adjusted vs. base

Conclusions and Summary

- The absolute tests are insufficient for Israel because they detect the real climate signals as break-points.
- Using cluster analysis as a preliminary step for building the reference series improves the final results in two ways:
 - (a) prevent some false break-points detections.
 - (b) help finding a more appropriated adjustment factor.
- When building one reference series it is important to know the strengths and weaknesses of the series.
- An integrated approach allows you to get an optimal break-point location and data adjustment factor.

Thank You for your attention!

Email: Yosefy@ims.gov.il