Homogenization of Spanish mean wind speed monthly series

José A. Guijarro (jguijarrop@aemet.es)

State Meteorological Agency (AEMET), Balearic Islands office, Spain

8th Seminar for Homogenization and Quality Control in Climatological Databases (Budapest, 12-14 May 2014)

Motivation

- Wind is important for many economic areas:
- Agriculture (moduling evapotranspiration)
- Water resources (controlling evaporation from dams and natural surfaces)
- Leisure (outdor activities, sailing, ...)
- Renewable energy production
$\Rightarrow \Rightarrow$ Interest to study its variability and trends

Motivation

- Wind is important for many economic areas:
- Agriculture (moduling evapotranspiration)
- Water resources (controlling evaporation from dams and natural surfaces)
- Leisure (outdor activities, sailing, ...)
- Renewable energy production
- \Rightarrow Interest to study its variability and trends

Motivation

- Wind is important for many economic areas:
- Agriculture (moduling evapotranspiration)
- Water resources (controlling evaporation from dams and natural surfaces)
- Leisure (outdor activities, sailing, ...)
- Renewable energy production
- \Rightarrow Interest to study its variability and trends

Motivation

- Wind is important for many economic areas:
- Agriculture (moduling evapotranspiration)
- Water resources (controlling evaporation from dams and natural surfaces)
- Leisure (outdor activities, sailing, ...)
- Renewable energy production
- \Rightarrow Interest to study its variability and trends

Motivation

- Wind is important for many economic areas:
- Agriculture (moduling evapotranspiration)
- Water resources (controlling evaporation from dams and natural surfaces)
- Leisure (outdor activities, sailing, ...)
- Renewable energy production
- \Rightarrow Interest to study its variability and trends

Motivation

- Wind is important for many economic areas:
- Agriculture (moduling evapotranspiration)
- Water resources (controlling evaporation from dams and natural surfaces)
- Leisure (outdor activities, sailing, ...)
- Renewable energy production
- \Rightarrow Interest to study its variability and trends

Climatol R package

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

Climatol R package

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html

Climatol R package

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html

Climatol R package

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html

Climatol R package

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html

Climatol R package

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

Climatol R package

- Automatic quality control (outlier correction), homogenization (shift correction), and missing data attribution
- References based on distance: Able to use nearest reference data even without any common period of observation
- Break detection by SNHT, applied in stepped windows and on the whole series to cope with multiple breaks
- Automatic computation of reference series from neighboring data
- Iterative application: from big to small corrections in successive passes
- Good results when compared with other methods: http://www.climatol.eu/DARE/testhomog.html
- Downloadable from http://www.climatol.eu/

Wind monthly series

- Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series

- Climatol homogenizations:

Wind monthly series

- Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:

```
* First trials: Wind runs (km), converted to mean speeds
    (m/s). a) With ratio normalization; b) standardization of
    cubic root transformed data
* Second trials: 07-13-18 wind speed means (8% > wind
    runs). (Also with both normalizations)
- Third trials: NCEP reanalysis (alone and with 07-13-18
    wind speeds)
```


Wind monthly series

- Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:
- First trials: Wind runs (km), converted to mean speeds $(\mathrm{m} / \mathrm{s})$. a) With ratio normalization; b) standardization of cubic root transformed data

```
- Second trials: 07-13-18 wind speed means (8% > wind
runs). (Also with both normalizations)
- Third trials: NCEP reanalysis (alone and with 07-13-18
wind speeds)
```


Wind monthly series

- Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:
- First trials: Wind runs (km), converted to mean speeds $(\mathrm{m} / \mathrm{s})$. a) With ratio normalization; b) standardization of cubic root transformed data
- Second trials: 07-13-18 wind speed means ($8 \%>$ wind runs). (Also with both normalizations)
- Third trials: NCEP reanalysis (alone and with 07-13-18 wind speeds)

Wind monthly series

- Selection of all Spanish monthly mean wind speed series for the period 1951-2013 (≥ 10 years of data): 233 series
- Climatol homogenizations:
- First trials: Wind runs (km), converted to mean speeds $(\mathrm{m} / \mathrm{s})$. a) With ratio normalization; b) standardization of cubic root transformed data
- Second trials: 07-13-18 wind speed means ($8 \%>$ wind runs). (Also with both normalizations)
- Third trials: NCEP reanalysis (alone and with 07-13-18 wind speeds)

Nr. of WRun data in all stations

Histogram of all data

Correlogram of first difference 100 sampled series

WRun station locations (9 clusters)

Monthly average wind speed (m/s)

Nr. of WSm3 data in all stations

Histogram of all data

Correlogram of first difference 100 sampled series

WSm3 station locations (8 clusters)

WSm3 at 2916A(82), VITIGUDINO

Homogenization results

	Outliers	Breaks	mRMSE	mSNHT	
Wind runs (WRun):					
Ratios	71	268	0.3795	8.297	
$z\left(x^{1 / 3}\right)$	75	240	0.4062	9.242	
$07-13-18$ means (WSm3):					
Ratios	38	360	0.4638	10.640	

Selected reanalysis grid points

Correlogram of first difference series

WSRe station locations (4 clusters)

WSRe at GR13(13), GR13

Homogenization results

	Outliers	Breaks	mRMSE	mSNHT		
Wind runs (WRun):						
Ratios	71	268	0.3795	8.297		
$z\left(x^{1 / 3}\right)$	75	240	0.4062	9.242		
$07-13-18$						means (WSm3):
Ratios	38	360	0.4638	10.640		
NCEP reanalysis (WSRe, only 3 refs.)						
Ratios	0	31	0.4184	10.170		
$z\left(x^{1 / 3}\right)$	0	36	0.3986	8.276		

Observed + reanalysis joint series

Show 07-13-18 + Reanalysis (WSjn) results

Homogenization results

	Outliers	Breaks	mRMSE	mSNHT		
Wind runs (WRun):						
Ratios	71	268	0.3795	8.297		
$z\left(x^{1 / 3}\right)$	75	240	0.4062	9.242		
$07-13-18$						means (WSm3):
Ratios	38	360	0.4638	10.640		
NCEP reanalysis (WSRe, only 3 refs.):						
Ratios 0 31 0.4184 10.170 $z\left(x^{1 / 3}\right)$ 0 36 0.3986 8.276 $07-13-18$ NCEP Ratios $38 / 0$ $356 / 26$ 0.5272 10.510 $z\left(x^{1 / 3}\right)$ $110 / 3$ $362 / 31$ 0.5608 10.390						

Annual trends (m/s/century)

WSjn-s2 monthly trends (m/s/century)

Wind speed homogenization JoC paper

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- $76(68+8)$ series for 1961-2011
- 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- 14 series (18\%) found inhomogeneous (all from AEMET)
- -.54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

Wind speed homogenization JoC paper

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- $76(68+8)$ series for 1961-2011
- 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- 14 series (18\%) found inhomogeneous (all from AEMET) - -.54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

Wind speed homogenization JoC paper

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- $76(68+8)$ series for 1961-2011
- 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- 14 series (18\%) found inhomogeneous (all from AEMET)
- $-.54(-.54) \mathrm{m} / \mathrm{s} /$ Cent in Winter and .09 (.25) in Summer

Wind speed homogenization JoC paper

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- $76(68+8)$ series for 1961-2011
- 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- 14 series (18\%) found inhomogeneous (all from AEMET)
- $.54(-.54) \mathrm{m} / \mathrm{s} /$ Cent in Winter and .09 (.25) in Summer

Wind speed homogenization JoC paper

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- $76(68+8)$ series for 1961-2011
- 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- 14 series (18\%) found inhomogeneous (all from AEMET)
- $-.54(-.54) \mathrm{m} / \mathrm{s} /$ Cent in Winter and .09 (.25) in Summer

Wind speed homogenization JoC paper

- Azorin-Molina C et al. (2014): Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011.
- $76(68+8)$ series for 1961-2011
- 68 were 00,07,13,18 means, and 8 wind runs
- SNHT by means of AnClim, with MM5 reference series (paralel months)
- 14 series (18\%) found inhomogeneous (all from AEMET)
- -. 54 (-.54) m/s/Cent in Winter and .09 (.25) in Summer

Conclusions and future work

- Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:

Conclusions and future work

- Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:

Conclusions and future work

- Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:

Conclusions and future work

- Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:

Conclusions and future work

- Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
- Study of 07-13-18 means / Wind runs relations in AWS 10' data
- Find the best reference series (NCEP? ERA? Other?)
- Study the spatial distribution of trends and compare with sea surface trends

Conclusions and future work

- Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
- Study of 07-13-18 means / Wind runs relations in AWS 10' data
- Find the best reference series (NCEP? ERA? Other?)
- Study the spatial distribution of trends and compare with sea surface trends

Conclusions and future work

- Climatol application has allowed an easy homogenization of 233 wind speed Spanish series (~ 10 times!)
- Wind appears to be a tricky element to homogenize
- Most trends are negative, especially in winter. (But less in NCEP series)
- Future work includes:
- Study of 07-13-18 means / Wind runs relations in AWS 10' data
- Find the best reference series (NCEP? ERA? Other?)
- Study the spatial distribution of trends and compare with sea surface trends

