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PREFACE 

Homogenization of climate data series and spatial interpolation of climate data play a growing 

role in the meteorology and climatology. The data series are usually affected by 

inhomogeneities due to changes in the measurement conditions (relocations, instrumentation) 

therefore a direct analysis of the raw data series can lead to wrong conclusions about climate 

change. Reconstruction of meteorological fields and gridded databases require spatial 

interpolation methods. 

 

The first seven Seminars for Homogenization and Quality Control in Climatological 

Databases as well as the first two Conferences on Spatial Interpolation Techniques in 

Climatology and Meteorology were held in Budapest and hosted by the Hungarian 

Meteorological Service. 

 

The 7th Seminar in 2011 was organized together with the final meeting of the COST Action 

ES0601: Advances, in Homogenization Methods of Climate Series: an integrated approach 

(HOME), while the 1st Conference on Spatial Interpolation was organized in 2004 in the 

frame of the COST Action 719: The Use of Geographic Information Systems in Climatology 

and Meteorology. Both the seminar and the conference series were supported by WMO.  

 

The 8th Homogenization Seminar and the 3rd Conference on Spatial Interpolation were 

organized together considering certain theoretical and practical respects.  Theoretically there 

is a strong connection between these topics since the homogenization and quality control 

procedures need spatial statistics and interpolation techniques for spatial comparison of data. 

On the other hand the spatial interpolation procedures (e.g. gridding) need homogeneous data 

series with high quality. Practically the CARPATCLIM project that was launched in 2010 and 

ended in 2013 is a good example for this problem. The main purpose of the project was to 

produce a gridded database for the Carpathian region based on homogenized data series. The 

experiences of this project may be useful for the implementation of gridded databases. 

 

 

 

 The Organizers 
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Abstract 
 

There are several methods and software for the homogenization of climate data series but there is not 

any exact mathematical theory of the homogenization. At the examinations mainly the physical 

experiences are considered while the mathematical formulation of the problems is neglected in 

general. Moreover occasionally there are some mathematical statements at the description of the 

methods in the papers – e. g. capability to correct the higher order moments – but without any proof 

and this way is contrary to the mathematical conventions of course. As we see the basic problem of the 

homogenization is the unreasonable dominance of the practical procedures over the theory and it is the 

main obstacle of the progress. Therefore we try to formulate some questions of homogenization in 

accordance with the mathematical conventions. The planned topics to be discussed are as follows. 

– The mathematical definition of the inhomogeneity and the aim of homogenization. It is 

necessary to clarify that the homogenization of climate data series is a distribution problem 

instead of a regression one. 

– Relation of monthly and daily data series homogenization.  

– Mathematical overview on the methodology of spatial comparison of series, inhomogeneity 

detection,   correction of monthly series.  

– Relation of theoretical evaluation and benchmark for methods, validation statistics. 

 

 

1. INTRODUCTION 

 

First let us consider the abstract schema of the meteorological examinations. The initial stage 

is the meteorology that means the qualitative formulation of the given problem. The next 

stage is the mathematics in order to formulate the problem quantitatively. The third stage is to 

develop software on the basis of the mathematics. Finally the last stage is again the 

meteorology that is the application of the developed software and evaluation of the obtained 

results. In the practice however the mathematics is sometimes neglected.  

Concerning our topic we have the following question. What is the mathematics of 

homogenization in meteorology? There are several methods and software for the 

homogenization of climate data series but unfortunately there does not exist any exact well 

elaborated mathematical theory of this problem. At the climatological examinations mainly 

the physical experiences are dominated while the mathematical formulation of the problems is 

neglected in general. We do not argue the importance of the physical aspects but the applied 

not too advanced mathematics is in contrast with the fact that the methods are declared to be 

based on the mathematical statistics. Moreover often there are some mathematical statements 

at the description of the methods in the papers – e. g. capability to correct the higher order 

moments – but without any proof and this way is contrary to the mathematical conventions of 
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course. As we see the basic problem of the homogenization is the unreasonable dominance of 

the practical procedures over the theory and it is the main obstacle of the progress. As a 

consequence of this practice the exact evaluation of the methods is also very problematic or 

properly speaking it is unrealistic and the progress of the homogenization research activity is 

doubtful. Therefore we try to provide a general approach for the mathematical formulation of 

homogenization in accordance with the mathematical conventions. We believe the correct 

mathematical principles can promote understanding and clarifying the questions of 

homogenization in climatology. 

 

 

                                                                                                                                                              

                                                                                 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LONG DATA SERIES 

data completion, quality control, 

homogenization (MASH) 

representativity examination of  

a station network with data series 

(inside the network; statistical way) 

CLIMATE EXAMINATIONS  

e.g.,  climate change detection 

SPATIAL MODELING OF 

CLIMATE PARAMETERS (MISH) 

local statistical parameters 

stochastic connections 

SHORT DATA SERIES  

data completion 

quality ontrol 

e.g., automatic stations

SPATIAL INTERPOLATION      

for arbitrary location (MISH) 

background information: e.g., 

satellite, radar, forecast data 

REPRESENTATIVITY 

EXAMINATION OF  

ARBITRARY STATION NETWORK 

inside the network 

for arbitrary location  

(network planning) 

e.g.,  automatic stations  

 

FORECAST 

e.g.,  data assimilation, 

variational analysis 

         : data and method or/and result 

         : only method or/and result 

         : only data  

 

Fig. 1. Block diagram for the possible connection between various basic meteorological topics and systems 
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In our conception the meteorological questions and topics cannot be treated separately. 

Therefore we present a block diagram (Fig. 1) to illustrate the possible connection between 

various important meteorological topics. The software MASH (Multiple Analysis of Series 

for Homogenization; Szentimrey, 1999, 2014) and MISH (Meteorological Interpolation based 

on Surface Homogenized Data Basis; Szentimrey and Bihari, 2014) were developed by us. 

These software were applied also in CARPATCLIM project (http://www.carpatclim-eu.org). 

 

 

2. MATHEMATICAL FORMULATION OF CLIMATE DATA HOMOGENIZATION 

 

Unfortunately the exact theoretical, mathematical formulation of the problem of 

homogenization is neglected at the meteorological studies in general. Therefore we try to 

formulate this problem in accordance with the mathematical conventions. First of all it is 

emphasized that the homogenization is a distribution problem and not a regression one. 

 

2.1 General mathematical formulation and some theorems 

Notation 

Let us assume we have daily or monthly climate data series: 

)(1 tY  nt ,..,2,1 :  candidate time series of the new observing system. 

)(2 tY  nt ,..,2,1 :  candidate time series of the old observing system. 

nT 1 :  change-point,  series )(2 tY  Tt ,..,2,1  can be used before  

                  and series )(1 tY  nTt ,..,1  can be used after the change-point. 

 

The appropriate theoretical cumulative distribution (CDF) functions are: 

 ytYyF t  )(P)( 1,1   ,    ytYyF t  )(P)( 2,2      ,y  , nt ,..,2,1  

It is very important to remark that as a consequence of some natural changes - e.g. annual 

cycle, climate change - the series of distribution functions )(,1 yF t , )(,2 yF t   nt ,..,2,1  may 

change in time! In the statistical climatology the climate change is equivalent with the 

changing probability of the meteorological events. The inhomogeneity of data series can be 

defined on the basis of the distribution functions. 

 

Definition 1 

The merged series )(2 tY  Tt ,..,2,1 , )(1 tY  nTt ,..,1  is inhomogeneous, if the identity of 

the distribution functions )()( ,1,2 yFyF tt   Tt ,..,2,1  is not true. 

 

http://www.carpatclim-eu.org/
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Definition 2 

The aim of the homogenization is the adjustment or correction of values )(2 tY  Tt ,..,2,1  in 

order to have the corrected values )(2,1 tY h  Tt ,..,2,1  with the same distribution as the 

elements of series )(1 tY  Tt ,..,2,1  have, i.e.:      

 

    )()()( ,112,1 PP yFytYytY th          ,y , Tt ,..,2,1   (1) 

 

The formula (1) means the equality in distribution: )()( 12,1 tYtY
d

h    Tt ,..,2,1  

 

Remark 1 

Within the same climate area, if the variables )(),( 21 tYtY  Tt ,..,2,1  have identical 

distribution, i.e. )()( 12 tYtY
d

   Tt ,..,2,1 , then the merged series )(2 tY  Tt ,..,2,1 , 

)(1 tY  nTt ,..,1  is homogeneous. 

 

Some mathematical existence and unicity theorems can be proved in connection with the 

homogenization. 

 

Theorem 1 (existence) 

Let us assume about the random variables 1Y , 2Y  and their distribution functions  yF1 ,  yF2 , 

that    1,P  jjj baY  and  yF j  is a strictly increasing continuous function on the interval 

 
jj ba ,   2,1j . Then applying the transfer function   22

1

12,1 YFFY h

  we obtain that the 

variable hY 2,1  has the same distribution like 1Y  i.e.     )(PP 112,1 yFyYyY h  . 

Proof. 

The distribution function of  hY 2,1  is as follows. 

0)(P)(P 12,1  yYyY h   if  1ay    and 1)(P)(P 12,1  yYyY h   if  1by  . 

Furthermore if  11 bya   then,  

       ))((P)(P)(P 12222

1

12,1 yFYFyYFFyY h  

        yFyFFFyFFY 11

1

221

1

22(P    

 

Theorem 2 (unicity) 

Let us assume again about the random variables 1Y , 2Y  and their distribution functions 

 yF1 ,  yF2 , that    1,P  jjj baY  and  yF j  is a strictly increasing continuous function 

on the interval  
jj ba ,   2,1j . Let )(sh  be also a strictly increasing continuous function on 

the interval  22 ,ba .   
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Then the distribution function   )()(P 12 yFyYh   if and only if    22

1

12 )( YFFYh  . 

Proof. 

According to the Theorem 1,      )(P 122

1

1 yFyYFF  . 

In the other direction - supposing   )()(P 12 yFyYh  - we use the notations of the next 

Lemma 1 that is, 

  )()( 1

2

1

1 yhFFyg     and   )( 2YhY  . 

Then )(yg  is a strictly increasing continuous function on the interval  11,ba  and the 

distribution functions of variables  Y , )(Yg  are identical,     )(P)(P 1 yFyYyYg  . 

Consequently according to the Lemma 1,  

YYg )(    i.e.        22

1

12

1

2

1

12 )()( YFFYhhFFYh   . 

 

Lemma 1 

Let us assume about the random variable Y and its distribution function  yF , that 

   1,P  baY  and  yF  is a strictly increasing continuous function on the interval  ba, . 

Let )(yg  be also a strictly increasing continuous function on the interval  ba, .   

Then the distribution function   )()(P yFyYg   if and only if YYg )( . 

 

Proof. 

Let us suppose that   )()(P yFyYg   and bya  . Then, 

  ))(())((P)(P)( 11 ygFygYyYgyF    

Consequently if bya   then, 

))(()( 1 ygFyF   that is )(1 ygy   then yyg )( . 

 

2.2 Arising mathematical questions to be solved 

Let us suppose the merged series is given that is,  

)(2 tY  Tt ,..,2,1 , )(1 tY  nTt ,..,1  

In addition we suppose that the assumptions of the former theorems are fulfilled, 

consequently the theoretical correction or transfer formulas for the series elements are, 

 

  )()( 2,2

1

,12,1 tYFFtY tth

   Tt ,..,2,1  (2) 

 

However these transfer formulas are theoretical ones and if we want to apply them in the 

practice then a number of mathematical statistical estimation problems are arising. The most 

important problems are as follows. 
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– Estimation, detection of the change point(s) T. 

– Estimation of the theoretical distribution functions )(,1 yF t , )(,2 yF t   Tt ,..,2,1 : 

 i,  )(,1 yF t , )(,2 yF t  may change in time because of the climate change and the 

annual cycle, consequently the methodology of the use of the empirical distribution 

functions is very doubtful.  

ii,  There is no sample for )(,1 yF t  Tt ,..,2,1  and  nTtyF t ,..,1)(,2   usually. 

These mathematical problems are insolvable generally! Therefore only relative methods can 

be used with some model assumptions. In addition some simplifications are also necessary.  

 

2. 3 Mathematical formulation for normal distribution 

The homogenization problem is very complicated in general case however in case of normal 

distribution a much simpler mathematical formula can be obtained. We emphasize that the 

normal distribution is a special case but it is basic one in the mathematical statistics as well as 

in the meteorology. For example the normal distribution model can be accepted for the 

temperature variables in general. 

 

Theorem 3 

Let us assume the data series have normal distribution that is, 

 )(),()( 111 tDtENtY   ,    )(),()( 222 tDtENtY       nt ,..,2,1 , 

where   )()(E 11 tEtY  ,   )()(E 22 tEtY   are the means or expected values and  

  )()(D 11 tDtY  ,   )()(D 22 tDtY   are the standard deviations.   

Then the transfer formula of homogenization: 

  )()( 2,2

1

,12,1 tYFFtY tth

  )()(
)(

)(
)( 22

2

1
1 tEtY

tD

tD
tE      Tt ,..,2,1       

 

Proof. 

If the data series have normal distribution then the distribution functions can be written in the 

following form, 








 


)(

)(
)(

1

1
,1

tD

tEy
ΦyF t     ,     







 


)(

)(
)(

2

2
,2

tD

tEy
ΦyF t  

where  sΦ  is the standard normal distribution function.  
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Consequently, 

   





















 
 

)(

)()(
)()(

2

221

,12,2

1

,12,1
tD

tEtY
ΦFtYFFtY ttth

    

)(
)(

)()(
)( 1

2

221

1 tE
tD

tEtY
ΦΦtD 






















 
   )()(

)(

)(
)( 22

2

1
1 tEtY

tD

tD
tE          Tt ,..,2,1       

since the inverse of function 






 

d

my
Φ

)
 is   myΦd  1 .  

 

2.4 Mathematical questions in case of normal distribution to be solved 

In case of normal distribution according to the Theorem 3 we have a much simpler transfer 

formula for correction than the general form (2), that is,   

 

)(2,1 tY h
 )()(

)(

)(
)( 22

2

1
1 tEtY

tD

tD
tE   

 

 Tt ,..,2,1  

 

(3) 

 

This formula is a simple linear one that means if the data series have normal distribution it is 

sufficient to homogenize the means and standard deviations only that is equivalent with the 

homogenization of the first two moments. We emphasize that the normal distribution is a 

basic model in the mathematical statistics as well as in the meteorology and there is no “tail 

distribution” problem at this important distribution according to the Theorem 3! At the normal 

distribution if the means and standard deviations are homogenous then the higher order 

moments are also homogeneous and there is not any inhomogeneity in the tails of the 

distributions. It is in contrast with the popular assumption based on parallel measurements as 

it is very likely the inhomogeneity in the tails of the distributions at the daily data series. As 

regards the parallel measurements a mathematical examination for them will be presented at 

Section 2.5.  

Returning to the formula (3) although it is much simpler than (2), there are still a number of 

mathematical statistical estimation problems to be solved as follows. 

– Estimation, detection of the change point(s) T. 

– Estimation of the statistical parameters )(1 tE , )(1 tD , )(2 tE , )(2 tD   Tt ,..,2,1 : 

 i, )(1 tE , )(1 tD , )(2 tE , )(2 tD  may change in time because of the climate change and 

the annual cycle.  

ii, There is no sample for )(1 tE , )(1 tD  Tt ,.,1 and )(2 tE , )(2 tD  nTt ,..,1  

usually. 

However these mathematical problems are still very complicated! Therefore only relative 

methods can be used with some model assumptions. In addition some simplifications are also 

necessary.  

The most often applied transfer formula in the practice can be obtained from the formula (3) 

with the following simplifications, 



12 
 

)()( 12 tDtD   ,   EtEtE  )()( 12     Tt ,..,2,1                                                         

Then the transfer formula is,  

)(2,1 tY h EtY  )(2           Tt ,..,2,1   

This is the homogenization in mean applied in the practice mostly (Section 3). 

 

2.5 Mathematical examinations of parallel measurements 

On the one hand the daily data series are very important for studying extremes.  On the other 

hand there is a popular assumption based on parallel measurements and some physical 

considerations as it is very likely the inhomogeneity in the tails of the distributions at the daily 

data series. What is the reason of this assumption?  

Essentially the reason is an observed phenomenon at the extremes, namely the differences of 

parallel measurements are larger in case of extremes. In our opinion, this observed 

phenomenon has a simple and logical reason, and it is superfluous to look for some 

complicated physical explanation for the inhomogeneity. The simple reason is that the 

extremes may be expected at different moments in case of parallel measurements, or in other 

words, there may be systematic biases in rank order! It is a natural phenomenon, and for 

illustration a trivial example is presented according to the probability theory.  

 

Example 2.5 Let  )1,0)(1 NtY  ,  1,0)(2 NtY    nt ,..,2,1  be series of independent and 

standard normally distributed variables with expected values     0)(E)(E 21  tYtY , with 

standard deviations     1)(D)(D 21  tYtY , and with correlation between the series 

  )(),(corr 21 tYtY   nt ,..,2,1 . 

Then the mean difference   0)()(E 21  tYtY  of course, however, the difference )()( 21 tYtY   

is not independent from the elements )(1 tY , )(2 tY  if 1 , and, e.g., the conditional 

expectation of difference )()( 21 tYtY   given )(1 tY , or equivalently the regression of difference 

)()( 21 tYtY   on )(1 tY  is     )(1)()()(E 1121 tYtYtYtY   . 

Consequently, the difference )()( 21 tYtY   is an expectedly monotonous increasing function of  

)(1 tY  if 1 . This is the theory, but it can be demonstrated in practice too. We generated 

such standard normal series by the Monte Carlo method with parameters 9.0 , 1000n . In 

this case,   )(1.0)()()(E 1121 tYtYtYtY   and the difference series )()( 21 tYtY   as a function 

of series )(1 tY  is plotted in Fig. 2. 
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Fig. 2. Difference series )()( 21 tYtY   as a function of series )(1 tY  

 

It is evident that the conditional expectation of difference )()( 21 tYtY   is monotonous 

increasing function of )(1 tY , consequently the difference may be larger mainly in the case of 

extreme values. There is no inhomogeneity it is a general phenomenon that can be observed 

also at the meteorological measurements.  

 

2.6 Problem of inhomogeneity of the standard deviation 

There is also a popular assumption applied in the practice that the correction in mean is 

sufficient for monthly and annual series, and that the correction of higher order moments is 

necessary only in the case of daily data series. In general, it is tacitly assumed that the 

averaging is capable to filter out the inhomogeneities in the higher order moments. However, 

this assumption is false, for example, if there is a common inhomogeneity in the standard 

deviation of daily data, we may have the same inhomogeneity in monthly data. 

 

Lemma 2 

Let us assume )(tY  30,..,1t  are daily data and the monthly average is 



30

1

)(
30

1

t

tYY . 

Let us introduce some inhomogeneity of the mean and the standard deviation for the daily 

data by a linear function: 

       )(E)(E)()( tYtYtYtYih          30,..,1t  

Then the expected values and the standard deviations are: 

     )(E)(E tYtYih  ,     )(D)(D tYtYih    30,..,1t  
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Let us see the new monthly average:   



30

1

)(
30

1

t

ihih tYY . 

Then the expected value and the standard deviation also changed with the same measure like 

the daily values: 

 

       
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   YtYtYtYY
ttt

ihih D)(
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1
D)(
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D)(
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DD
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


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


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


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


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






 



  . 

 

2.7 Mathematical formulation of conditional homogenization 

In our earlier papers we made some criticism about the so called variable correction methods 

especially about their underlying principles. Their common assumption is that in case of daily 

data series the corrections for inhomogeneity have to vary according to the meteorological 

situation of each day in order to represent the extremes. This assumption is based also on the 

parallel measurements and some physical considerations as it was analyzed at Section 2.6.    

We do not agree with this argumentation and we think that the transfer function (2) is 

appropriate for correction of inhomogeneity however we began to develop a general 

mathematical form of the conditional homogenization that can be applied if we have some 

supplementary information as condition. The following parts are in draft form since on the 

one hand this mathematical development is still at early stage and on the other hand the 

detailed description should need advanced mathematical tools. 

 

2.7.1 Conditional homogenization based on given events 

Let  MjBB j ,..,2,1:   be a complete system of events: 

ji BB  ,    1
1




M

j

jBP      (e.g. macrosynoptic weather situations) 

Conditional homogenization of )(2 tY  on given events B , 

  )(),( 2,,2

1

,,12,1 tYFFBtY
jj BtBth

       jB   occurs at t     ),..,2,1( Tt   

where )(,,1 yF
jBt , )(,,2 yF

jBt  are the conditional distribution functions  

of )(1 tY , )(2 tY , given jB , that is  

 jBt BytYyF
j

 )(P)( 1,,1  ,  jBt BytYyF
j

 )(P)( 2,,2       ,y ,   Tt ,..,2,1  

Then as a consequence of Bayes and total probability theorems: 

  )(),(P ,12,1 yFyBtY th            ,y  , Tt ,..,2,1   
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2.7.2 Conditional homogenization in more general form 

Let )(tZ  nt ,..,2,1  be a homogeneous climate (vector) time series 

Conditional homogenization of )(2 tY  on given )(tZ , 

  )())(,( 2,,2

1

,,12,1 tYFFttY tth zzZ
       zZ )(t       ),..,2,1( Tt   

where )(,,1 yF t z , )(,,2 yF t z  are the conditional distribution functions  

of )(1 tY , )(2 tY , given zZ )(t , that is  

 zZz  )()(P)( 1,,1 tytYyF t  ,  zZz  )()(P)( 2,,2 tytYyF t    

  ,y ,   Tt ,..,2,1  

 

Then as a consequence of Bayes and total probability theorems: 

  )())(,(P ,12,1 yFyttY th Z           ,y  , Tt ,..,2,1  

 

 

3. RELATION OF DAILY AND MONTHLY HOMOGENIZATION 

 

The theme of homogenization can be divided into two subgroups, such as monthly and daily 

data series homogenization. These subjects are in strong connection with each other of course, 

for example the monthly results can be used for the homogenization of daily data. 

 

3.1 The general structure of daily data homogenization 

If we have daily data series the general way of homogenization is, 

– calculation of monthly series, 

– homogenization of monthly series taking advantage of the larger signal to noise ratio, 

– homogenization of daily series using the detected monthly inhomogeneities. 

So we have the question how can we use the valuable information of detected monthly 

inhomogeneities for the daily data homogenization? 

 

3.2 A popular procedure e.g. the variable correction methods 

The typical steps of the procedure are as follows. 

1. Homogenization of monthly series:    

Break points detection, correction in the first moment (mean).   

Assumption: homogeneity in higher order moments (e.g. standard deviation). 
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2. Homogenization of daily series:    

There is a trial to homogenize also in higher order moments.   

The used monthly information are only the detected break points. 

However the following questions are arising at this procedure: 

– Is it adequate model that we have inhomogeneity in higher moments only at daily series but 

not at monthly ones? Can this model be accepted according to the probability theory? 

According to Section 2.6 the correct answer is that this model cannot be accepted.   

– Why are not used the monthly correction factors for daily homogenization? It seems to 

lose some valuable information obtained during the monthly homogenization. 

 

3.3 An alternative procedure  

We suggest an alternative procedure to homogenize both the daily and the monthly series. 

The steps of the procedure in case of quasi normal distribution (additive model, e.g. temperature) are 

as follows. 

1. Homogenization of monthly series: 

Break points detection, correction of the first two moments that is equivalent with the 

homogenization of mean and standard deviation. The correction is based on the 

transfer formula (3).   

Assumption: homogeneity in higher order moments. This assumption is always right 

in case of normal distribution according to Theorem 3. 

 

2. Homogenization of daily series:    

Homogenization of mean and standard deviation on the basis of the monthly results. 

The used monthly information are the break points and the monthly corrections of the 

mean and standard deviation. The correction is based on the transfer formula (3) 

considering Lemma 2. If the daily data are normally distributed then there is no 

inhomogeneity in the higher order moments according to Theorem 3. 
 

In case of quasi lognormal distribution (multiplicative model, e.g. precipitation) also the above 

procedure can be applied for the data obtained by certain transformation based on logarithmization. 

 

 

4. OVERVIEW ON HOMOGENIZATION IN MEAN OF MONTHLY SERIES  

 

This section considers some various theoretical aspects of monthly series homogenization.  

In the practice the monthly series are homogenized in the mean mostly. The aim of these 

homogenization procedures is to detect the inhomogeneities of mean and to correct the series. 

In connection with the such type of homogenization methods we have to give solutions for the 

following mathematical problems: relative models, statistical spatiotemporal modelling of the 

series, methodology for comparison of series, break point (changepoint) and outlier detection, 

methodology for correction of series, quality control procedures, missing data completion, 
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usage of metadata, relation of daily and monthly homogenization, manual versus automatic 

methods, evaluation of methods (theoretical, benchmark).  

In practice there are absolute and relative methods applied for homogenization. However the 

main problem of the application of absolute methods is that the separation of climate change 

signal and the inhomogeneity is essentially impossible. Relative methods can be applied if 

there are more station series given, which can be compared mutually. In this case the 

statistical spatiotemporal modelling of the series is a fundamental question. The adequate 

comparison, break point detection and correction procedures are depending on the chosen 

statistical model.  

 

4.1 General structure of additive spatiotemporal models 

If the data series are normally distributed (e.g. temperature) then the additive model can be 

used. In case of relative methods a general form of additive model for more monthly series 

belonging to the same month in a small climate region can be written as follows, 

 

)()()()( ttIHEttX jjjj     .,n,, t,N ,,j  21;21  ,                                     (4) 

 

where )(t  is the common and unknown climate change signal, jE  are the spatial expected 

values, )(tIH j  are the inhomogeneity signals and )(tj  are normal white noise series. The 

type of inhomogeneity  tIH  is in general a ’step-like function’ with unknown break points T  

and shifts     01  TIHTIH , and   0nIH  is assumed in general.  

The normal distributed vector variables         C0ε ,,..,
T

1 Nttt N    nt ,...,1  are totally 

independent in time. The spatial covariance matrix C describes the spatial structure of the 

series. 

If the data series are quasi lognormal distributed (e.g. precipitation) then the multiplicative model can 

be used that can be transformed into the additive one by certain logarithmic procedure.  

 

4.2 Methodology for comparison of series  

The problem of comparison of series is related to the following questions: reference series 

creation, difference series constitution, multiple comparisons of series etc. This topic is very 

important for detection as well as for correction, because the efficient series comparison can 

increase both the significance and the power. The development of efficient comparison 

methods can be based on the examination of the spatial covariance structure of data series. 

The examined series )(tX j
 Nj ,...,1  have to be taken as candidate and reference series 

alike, furthermore the reference series are not assumed to be homogeneous at the correct 

examinations!  

The main problem arises from the fact that the shape of climate change signal is unknown. 

Therefore so-called difference series are examined in order to filter out the climate change 

signal )(t . The simple difference series between pairs are      tXtXtZ ij  . However the 

difference series constitution can be formulated in more general way as well. Assuming that 
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 tX j  is the candidate series and the other ones are the reference series, then the difference 

series belonging to the candidate series can be constituted as, 

 

     tXtXtZ i

ji

jijj 


       ttIHtIH
jZi

ji

jij   


 (5) 

 

 

with condition of  1
 ji

ji  for the weighting factors. As a result of the last condition, the 

unknown climate change signal )(t  has been filtered out. Consequently the inhomogeneities 

can be detected by the examination of the above difference series.  In addition if we want to 

increase the signal to noise ratio in order to increase the power of detection then we have to 

minimize the variance of noise term  t
jZ . 

The covariance matrix C  uniquely determines the optimum weighting factors that minimize 

the variance, and the optimal difference series created in this manner can be applied 

efficiently for the detection and correction procedures (MASH, Szentimrey, 1999, 2014). We 

mention that in case of using the generalized-least-squares estimation for the unknown 

climate change signal  t , also the optimal difference series is obtained with minimal 

variance. We have to examine more difference series in order to separate the appropriate 

detected inhomogeneities for the candidate series. More difference series created without 

common reference series and with minimal variances can be defined as optimal difference 

series system (MASH). 

 

4.3 Methodology for break point (changepoint) detection 

One of the basic tasks of the homogenization is the examination of more difference series in 

order to detect the break points and to attribute them for the candidate series. The key 

question of the homogenization software is to develop automatic procedures for this 

attribution problem!!! 

The scheme of the break point detection is as follows. Let )(tZ  be a difference series 

according to the formula (5), that is  

 

   ttIHtZ ZZ )(   .,n, t .1 ,   (6) 

  

where  tIHZ  is a mixed inhomogeneity of difference series )(tZ  with K  break points 

KTTT  .....21 .  In general the number K  and the position of the multiple break points 

KTTT  .....21  are unknown, furthermore the noise variables  tZ  2ZZ ,EN   

 nt ,...,1  are totally independent in time. The basic types of the detection procedures are 

the stepwise and the multiple break points detection. Let us have the following notation of the 

estimates: 
K

TTTK ˆ21
ˆ.....ˆˆ;ˆ  . 
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The more sophisticated multiple break points detection procedures were developed for joint 

estimation of the break points. There may be different principles of these methods that are 

classical ways in mathematical statistics. 

 

4.3.1 Break point detection based on Bayesian Approach  

The methods based on Bayesian model selection are the penalized likelihood methods. These 

methods are different in the penalty terms or criterions e.g. Akaike criterion, Schwarz 

criterion, Caussinus-Lyazrhi criterion.   

The PRODIGE procedure (Caussinus and Mestre, 2004) based on the Caussinus-Lyazrhi 

criterion is an example for the penalized likelihood methods. 

 

4.3.2 Break point detection based on Test of Hypothesis 

Another possibility is to use hypothesis test methods for the detection of break points. At the 

MASH method (Szentimrey, 1999, 2014) a hypothesis test procedure has been developed, as 

we want to avoid the type one error that is the damage of data series. The essence of this 

multiple break points detection procedure based on test of hypothesis on a given significance 

level is as follows. 

If the detected break points of )(tZ  are 
K

TTTK ˆ21
ˆ.....ˆˆ;ˆ  , then on the given significance 

level   p   (e.g.:  p=0.1): 

 i, )(tZ  is not homogeneous above the intervals ]ˆˆ( 11 kk- T,T  because,  

      ptZT,T kk-   shomogeneou)(: thatabove]ˆˆ(P 11  

    Consequently the detected break points kT̂  are not superfluous. 

    This means there is no serious type one error. 

ii, )(tZ  can be accepted to be homogeneous above the intervals ]ˆˆ( 1 kk- T,T .  

    This means there is no serious type two error. 

 

Remark  

Confidence intervals are also given for the break points beside the point estimation at the 

method MASH (Szentimrey, 1999, 2014). 

 

 

4.4 Methodology for correction of series 

 

Beside the detection another basic task of the homogenization is the correction of series. 

Calculating of correction factors can be based on the examination of difference series for 

estimation of shifts     1ˆˆ  kk TIHTIH    Kk ˆ,...,1   at the detected break points. 
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Almost all the methods use point estimation for the correction factors at the detected break 

points. For example the PRODIGE method (Caussinus and Mestre, 2004) uses the standard 

least squares technique to estimate the correction factors. Probably the generalized least 

squares estimation technique based on spatial covariance structure would be more efficient. 

The MASH procedure (Szentimrey, 1999, 2014) is an exception because the correction factors 

are estimated on the basis of confidence intervals. The confidence intervals given for the 

break points and shifts make possible also the automatic usage of metadata at MASH! 

 

4.5 Automation of methods and software 

One of the fundamental problems of homogenization procedures is the relation of the manual 

versus interactive or automatic methods. In the practice the simple manual methods (e.g. 

Craddock method) are very popular however these ones are unusable for the real climate 

observation networks. We have to understand the fact that a lot of stations must be examined 

together in general! The reality for the number of stations per network is more than 100 

instead of 10-15 used at COST HOME benchmark dataset. 

Therefore the key questions of the homogenization methods and software are, 

– firstly, the quality of homogenized data, 

– secondly, the quantity of stations. 

If we want to fulfill both respects it is necessary to develop automatic procedures. 

Further necessary conditions required for automation of methods and software are,  

– ability for automatic attribution of break points for the candidate series, 

– automatic usage of metadata. 

To solve the above problems without advanced mathematics is impossible!!! 

 

4.6 Possibilities for evaluation of the methods 

4.6.1 Theoretical evaluation 

If want to obtain a real image of the methods, then the theoretical evaluation of their 

mathematical basis is indispensable.  

 

4.6.2 Benchmark 

The COST Action ES0601 (HOME) has executed a blind intercomparison and validation 

study for monthly homogenization methods. The methods were tested on a realistic 

benchmark dataset. The benchmark contained simulated data with inserted inhomogeneities 

(Venema et al., 2012). Testing the methods on a generated benchmark dataset seems to be an 

objective validation procedure however we have to know also the limits of such type of 

examinations.  

The interpretation of benchmark results is not a trivial problem, since these are depending on 

different factors, such as: 

– tested methods (quality, manual or automatic), 
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– testing benchmark dataset (quality, adequacy),  

– testers (skilled or unskilled), 

– methodology of evaluation (validation statistics). 

The creation of adequate benchmark dataset and the development of appropriate validation 

statistics are critical points and they need also strong theoretical mathematical background. 

We remark that the question of the comparison of manual methods to automatic ones seems 

similar to the comparison of handmade and factory products. Or how can we compare the 

results of a manual time consuming method with a skilled tester versus the results of an 

interactive method with an unskilled tester. The method or the user is tested if we evaluate the 

test results? 

 

 

5. SOFTWARE MASH 

 

The most important properties of MASHv3.03  

(Multiple Analysis of Series for Homogenization; Szentimrey 1999, 2008, 2014) 

Homogenization of monthly series:  

– Relative homogeneity test procedure. 

– Step by step iteration procedure: the role of series (candidate, reference)  

– changes step by step in the course of the procedure. 

– Additive (e.g. temperature) or multiplicative (e.g. precipitation) model 

– can be used depending on the climate elements. 

– Including quality control and missing data completion. 

– Providing the homogeneity of the seasonal and annual series as well. 

– Metadata (probable dates of break points) can be used automatically. 

– The homogenization results and the metadata can be verified. 

Homogenization of daily series: 

– Based on the detected monthly inhomogeneities.  

– Including quality control and missing data completion for daily data. 

Some MASH specialty 

– use of spatial covariance for comparison of series 

– automatic attribution of break points for the candidate series 

– automatic use of metadata 

 

Our MISH-MASH software can be downloaded from: 

http://www.met.hu/en/omsz/rendezvenyek/homogenizationand_interpolation/software/ 

http://www.met.hu/en/omsz/rendezvenyek/homogenizationand_interpolation/software/
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Abstract 

 

Our instrumental knowledge of climate change prior to the mid-19th century is heavily reliant on a 

few long meteorological series, mostly from Europe, and even here good instrumental series longer 

than 150 years are rare.  However, climate change studies based only on raw long-term data are 

potentially flawed due to the many breaks introduced from non-climatic sources.  Consequently 

quality controlled and homogenised climate data is desirable for basing climate related decision 

making on.  HOMER was applied to eighty eight monthly precipitation station identified from the Met 

Éireann database as stations with longer contiguous records ranging from ~40 to 70 years between 

1941 and 2010.  Results on the reference networks and their associated geographical distances 

identified by the HOMER algorithm are compared with those derived via first difference correlations 

in a parallel statistical computing approach.  Although only shown in the context of case study 

examples in the results here, results across the analysis for all 88 station records and their potential 

neighbour series indicate that both first difference correlations and HOMER geographical distance 

selections yield often corresponding neighbour series which are largely statistically and spatially 

coherent. 

 

Keywords: Monthly precipitation, Ireland, homogenisation, HOMER 

 

 

1. INTRODUCTION 

 

1.1. A policy context for homogenised data 

Quality control and homogenisation of climate data are becoming increasingly important as 

European Union (EU) Member States examine methods and put in place mechanisms for 

delivering integrated climate services.  However, in reality climate services rarely go beyond 

the scope of meteorological variables and the gap between the supply of climate services and 

the needs of users has been identified by the World Meteorological Organization (WMO. 

2011). Therefore the provision of fully quality controlled and homogenised series will 

become one part of an envisaged ‘end-to-end’ delivery chain for endpoint data provision to 

the impacts and policy communities. 

In line with this, there is already a recognised need for Ireland to engage with the current EU 

Joint Programming Initiative (JPI) Climate and Horizon 2020 (H2020) initiatives in order that 

an entity or consortium to provide climate services can be provided.   Importantly however, if 

useful climate information is to be delivered, this must be tailored to meet the needs of users.  

This is rarely the case however, since the level of interaction between providers and users of 
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climate services is inadequate, therefore users need access to expert advice and support to 

help them select and properly apply climate information.  It is therefore incumbent upon the 

scientific community to address how best to meet the needs of users of climate information by 

attempting to bridge the gap between the climate modelling community and the end users of 

climate information.   To facilitate this the Irish Environmental Protection Agency (EPA) 

have already formulated a plan to develop climate services which, among other goals, seeks to 

improve the translation of scientific information in clear terms to decision makers (EPA, 

2014). 

 

1.2. Scientific motivation for homogenised series 

The increasing interest in climate modelling has spurred the development and testing of a 

variety of homogenisation techniques aimed at identifying and sometimes correcting 

inhomogeneities in data series which do not reflect real variations in climate. A homogeneous 

climate time series is defined as one where variability is only caused by changes in weather or 

to the climate (Freitas et al. 2013). Most of the homogenisation techniques are addressed in 

classical or Bayesian statistical frameworks, supported by parametric or nonparametric 

models. Long instrumental records are rarely if ever homogeneous and most decade- to 

century-scale time series of atmospheric data have been adversely impacted by 

inhomogeneities caused by, for example; changes in instrumentation, station moves, changes 

in the local environment such as urbanisation, or the introduction of different observing 

practices like a new formula for calculating mean daily temperature or different observation 

times. Our instrumental knowledge of climate change prior to the mid-19th century is heavily 

reliant on a few long meteorological series, mostly from Europe, and even here good 

instrumental series longer than 150 years are rare. However, climate change studies based 

only on raw long-term data are potentially flawed due to the many breaks introduced from 

non-climatic sources, consequently accurate climate data is an essential prerequisite for 

basing climate related decision making on. 

 

If inhomogeneities are not accounted for properly, the results of climate analyses using these 

data can be erroneous (Peterson et al. 1998). Also, there is a difference between an 

inhomogeneous series and a series that is non-stationary, as a series can be non-stationary and 

homogeneous at the same time, i,e. the change points are only caused by real climatic 

variations (Beaulieu et al. 2009). Since, the user of climatic data series is often unaware of the 

presence or absence of inhomogeneities in the series, the inhomogeneities can interfere with 

the real climate change signal and lead to poor climatic or impact model calibration or biased 

studies of climate trends and variability (Beaulieu et al. 2009). Consequently, the detection 

and correction of these inhomogeneities is important before undertaking any kind of climate 

analysis. Therefore in recent times, and building on earlier work (e.g. Alexandersson 1986; 

Jones et al. 1986) several techniques have been developed for the detection and adjustment of 

non-climatic inhomogeneities (Cao and Wan 2012; Toreti et al. 2012; Freitas et al. 2013; 

Mestre et al. 2013). Arising from this new work, more recent techniques have been developed 

to detect and correct multiple change points using reference series (Peterson et al. 1998; 

Menne and Williams, 2005; Toreti et al. 2012). More recently a comprehensive analysis to 

assess different homogenisation techniques of climate series was included in scientific 

programme of the COST Action HOME ES 0601: Advances in Homogenisation Methods of 

Climate series: an integrated approach (HOME). The HOME objective was to develop a 

general homogenisation method for homogenising climate and environmental datasets. This 

task commenced in 2007 and was finalised in 2011 with the release of two new software 
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packages, HOMER for the homogenisation of monthly data and HOM/SPLIDHOM  for daily 

data homogenisation (HOME, 2013).  

 

The primary aim of this short paper is to summarise results using the HOMER software to 

homogenise monthly mean precipitation (Precip) totals for Ireland for the 1941 – 2010 period 

for an initial set of 88 stations from the Met Éireann monthly station data repository. A 

secondary aim is to compare the reference station networks identified within HOMER with a 

complementary approach using correlation and other statistical measures for the series in 

combination with spatial scrutiny in GIS.  

 

 

2. MATERIALS AND METHODS 

 

2.1. Study area 

The study area is the whole island of Ireland, that covers ~84 421 km2 on the Atlantic margin 

of northwest Europe, between ~51° and 56° N. Elevations reach up to 1038 m above sea level 

(a.s.l.) (Corrán Tuathail, Co. Kerry). Much of the island is lowland, partly surrounded by 

mountains, with a characteristic temperate oceanic climate. Mean annual temperature 

(averaged over 1961 to 1990) is highest on the south-west coast (10.4°C) and lowest inland 

(8.8°C). On average, annual precipitation ranges from 750 to 1000 mm in the drier eastern 

half of the country and >3000 mm yr−1 in parts of the western mountains (Rohan 1986).  

 

2.2. Stations and data 

Rainfall has been measured in Ireland since the early nineteenth century with a peak of over 

800 rainfall stations in the late 1950s, and currently rainfall is recorded at synoptic and 

climatalogical weather stations; in addition, there is a wide network of voluntary rainfall 

observers (Walsh, 2012). The selected stations for this initial phase of work are distributed 

across the country, but more spatial clustering of the available series is apparent in the east 

(Figure 1).  Based on an earlier audit and initial set of quality control procedures, the 

contiguous intact monthly records for this initial group of 88 stations ranged from ~40 to 

71years.  Stations elevations were within the range of 5 – 404 m above sea level (a.s.l.) with a 

mean elevation of ~84 m.   
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Fig. 1. Annotated map of the island of Ireland showing the selected Met Éireann monthly station locations.  

The locations of the Precipitation stations for the series which have been homogenised using the HOMER 

algorithm are denoted by blue circles.  Upland areas are represented by graded brown, blue and yellow 

shading. 
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Following initial quality control procedures for the datasets, further routines involved an 

exploratory statistical analysis of the series to characterise the potential and limitations of the 

datasets, as well as to identify and correct missing values and outliers.  Figure 2 provides an 

outline summary of the extent of the number of intact months and missing records for the 

station series.  Issues with missing data in climate time series can be tackled with temporal 

interpolation using data from the same series before and after the gap, or with spatial 

interpolation using data from nearby stations (WMO, 2011).  Recent work on establishing 

new 1981-2010 Long Term Averages (LTAs) for Ireland involved the implementation of 

comprehensive quality control procedures on all Met Éireann’s digital temperature and 

rainfall data (Walsh, 2012a, 2013); and the extension of this work involved backfilling the 

available precipitation records to 1941 (S. Walsh, pers. comm.).  Complex estimation 

methods such as weighted averages, spline functions, linear regression and kriging which take 

into account the correlations with other elements can also be used to complete time series 

(Frei et al. 2013); and elements of each were used to deal with missing values for individual 

stations in the construction of the new LTAs (Walsh, 2012).   

 

 

 

Fig. 2. Summary of series record extent and missing months for the 88 stations in the analysis for monthly 

records spanning the period 1941 – 2010.  The blue columns show the overall number of intact monthly 

records for the station series (n = 88); the red columns show the corresponding distribution of missing 

records across the station series. 

 

2.3. Derivation of reference time series 

Two groups of homogeneity testing techniques can be distinguished and are usually referred 

to as ‘absolute’ and ‘relative’ methods; in the first set of procedures, the statistical tests are 

applied to each station data separately, whereas in the second set, the testing procedures use 

records from neighbouring reference stations which are assumed to be homogeneous (Costa 

and Soares, 2009).  Reference series or reference sections are used in detection procedures in 
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many homogenisation methods (WMO, 2011), as well as being used to assess the quality of 

the homogenisation (Kuglitsch et al. 2009).  These reference series do not need to be 

homogeneous (Szentimrey, 1999; Zhang et al. 2001; Causinus and Mestre, 2004), but must 

encompass the same climatic signal as the candidate series (Della-Marta and Wanner, 2006). 

Therefore a reference time series has ideally experienced all of the broad climatic influences 

of the candidate, but none of its artificial biases (WMO, 2011).  In practise however, the two 

fundamental problems of homogenisation are that the nearby stations are also inhomogeneous 

and that typically more than one break is present (Lindau and Venema, 2013).   In addition, 

the time series data collected at all sites within the same climatic region should be highly 

correlated, have similar variability, and differ only by scaling factors and random sampling 

variability (Costa and Soares, 2009). 

 

Selection procedures for the surrounding stations to produce the reference series can be based 

on the distance between stations or on the correlation coefficients between candidate and 

potential time series, although there are advantages and disadvantages associated with both 

methods.  Distance based methods will preserve geographic proximity, but time series from 

nearby stations with different climatic signals (for example due to a difference in elevation) 

can be selected.  Whereas, when using more highly correlated neighbour time series, both the 

candidate and reference series will present similar variability, but station series with similar or 

coincident inhomogeneities with the candidate can be selected (Stepanek and Mikulova, 

2008).  Problems arise when the inhomogeneities in the climate data series are caused by 

simultaneous changes in the observational network, such as simultaneous changes in the 

measuring technique, as relative tests become insensitive since all series are affected at the 

same time (Tuomenvirta 2001; Wijngaard et al. 2003). Furthermore, ambiguous conclusions 

are possible when several neighbouring stations have inhomogeneities themselves (Reeves et 

al. 2007; Tayanç et al. 1998). 

 

The most common approach for selecting reference stations is applying Pearson correlation 

matrices to establish the relationship between the candidate site and potential neighbour 

station data, and to take as reference the most closely correlated series (Boissonnade et al. 

2002; Tayanç et al.1998).  A Pearson cross-correlation was done as a standard exercise for the 

88 station series here, although the results are not reported.  However, and as a more refined 

exercise prior to the application of HOMER, reference series were also produced using the 

first difference correlation coefficients for the series, this followed suggestions in, e.g.; 

Alexandersson and Moberg, 1997; Peterson et al. 1998; Stepanek and Mikulova, 2008 and 

Domonkos et al. 2012. A first difference series is made by subtracting year 1’s observation 

from year 2, year 2 from year 3, etc. The correlation then is a measure of the similarity in 

year-to-year changes, and an inhomogeneity only impacts one observation rather than making 

all observations after the inhomogeneity artificially warmer or colder (WMO, 2011).  By 

contrast, for the analysis using HOMER, the geographical distance option was selected to 

allow for comparison of the results obtained via the two approaches.  A results comparison 

between both approaches for four regional case study base and neighbour series are provided 

in Section 3.3. 
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2.4. Application of HOMER 

Features of the HOMER software were then implemented to detect and correct the 

inhomogeneities in the monthly Precip datasets for the 88 stations for the period 1941-2010. 

The software is one of the most recently developed for homogenisation, and was made 

available following a comparative analysis of the best available homogenisation algorithms 

performed within the COST Action ES0601 (HOME) (Venema et al. 2012).  HOMER 

incorporates additional functions to perform fast quality control of the data, including 

functions of the CLIMATOL R package which allows the user to estimate the station density, 

correlogram, histograms, box plots, and cluster analysis (Guijarro, 2011).  For the detection of 

heterogeneities in the datasets HOMER combines three detection algorithms: pairwise-

univariate detection, joint detection and ACMANT-bivariate detection, and corrects the 

datasets using ANOVA (Mestre et al. 2013).  However, the ACMANT detection functions are 

not applied for the homogenisation of Precipitation series within HOMER.   If the precise 

month of change is not known, the default is to validate the break at the end of the year, since 

detection is mainly performed on annual indices (Mestre et al. 2013). 

 

The models used in HOMER for imputation of missing data and for outlier correction are 

presented in Mestre et al. 2013. In these models missing datasets are corrected using ANOVA 

and outliers are detected by pairwise comparison of different time series between candidate 

and best neighbour time series. HOMER is an interactive semi-automatic method and in 

applying HOMER, users may choose between the fully automatic cghseg detection results, or 

a partly subjective pairwise comparison technique that is adapted from PRODIGE (Mestre et 

al. 2013).  Therefore there is freedom for users to add subjective decisions based on metadata 

or research experience.  Basic quality control and network analysis are adapted from 

CLIMATOL (Guijarro, 2011), and overall HOMER incorporates the best features of some 

other state-of-the-art methods (Mestre et al. 2013). 

 

For the homogenisation of the 88 records reported here the pairwise comparison option was 

implemented alongside scrutiny of the station metadata, and thus represents the comparison 

technique adapted from PRODIGE.  This choice also reflects, that in general, a combination 

of statistical methods and methods relying on metadata information is considered to be the 

most effective in detecting inhomogeneities (Wijngaard et al. 2003).  As a final result 

HOMER provides corrected series with respect to inhomogeneities and missing values using 

multiple comparison and ANOVA respectively (Freitas et al. 2013). 

 

 

3. RESULTS 

 

3.1. First difference correlation derived neighbour series 

The identification of appropriate neighbour series allow searching for a change which occurs 

only in the base series.  However, when the neighbour series are spatially distant from the 

base series or have a high elevation difference, the inhomogeneities in the base series may be 

hidden in the noise between the series due to the large spatial variability between the series. 

This is especially true for a noisy space-time variable such as precipitation.  The first 
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difference correlations were computed using the infilled station time series (Walsh 2012) for 

1941 – 2010, the common period of analysis for all the series.   

 

The disparities between correlations computed from first difference series can be interpreted 

as a likely indicator of the presence of potential inhomogeneities in the base or in the 

reference series (Vincent, 1998).  High correlation coefficients derived from the first 

difference series are likely to indicate a strong relationship between the reference series and 

base series without inhomogeneities.  Whereas lower first difference correlation coefficients 

are more likely to indicate that the base or the neighbour series may contain inhomogeneities.  

Consequently, the variation in correlation between stations is likely to be a good indicator for 

the performance of the homogenisation methods, which are expected to perform better when 

the base and neighbour series are highly correlated. Therefore for deriving neighbour 

networks based on correlation, the five most closely correlated series were selected as 

calculated from the first difference series.  If other statistical properties of the series, and in 

particular the variances and the data range are similar, these provide a further indicator on the 

likely performance for homogenisation.  Hence box plots (as a useful summary of statistical 

properties) are the favoured means for summarising and communicating series characteristics 

in much of this report. 

 

Fig. 3. Waisted box plots summarising the first difference correlation coefficient range for the base series 

and their five most closely correlated neighbours.  The plots describe a summary analysis for 88 station 

and 440 potentially available neighbour series. Boxes: interquartile range; whiskers 5th and 95th 

percentiles. 

 

For the correlation exercise no limit for geographical distance or elevation difference between 

the stations was applied, although these relationships were checked in a subsequent GIS-

based scrutiny of the candidate reference networks.  The first difference correlation 

coefficient range for all 88 base station series and their five most closely correlated 

neighbours are summarised for all the station series used in the analysis in Figure 3.  With a 

correlation coefficient range from 0.83 (least correlated neighbour series) to 1.0 (most 
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correlated neighbour series) and a mean correlation coefficient of 0.92 for all 88 stations and 

440 potentially available correlated series from corresponding neighbour series, the indication 

is that major inhomogeneities among the series are unlikely.  For a small and predominantly 

maritime-influenced country such as Ireland this is largely to be expected, at least for data at a 

monthly temporal scale where much of the daily and hourly synoptic and local terrain-

induced variations will be smoothed out. 

 

3.2. HOMER geographical distance derived neighbour series 

In contrast to the infilled series records used for the first difference correlation exercise, for 

the derivation of neighbour series in HOMER all the missing monthly values (1941-2010) 

were left in for the 88 station series with the widely used default entry value of -999.9.  This 

reflects the inbuilt functionality of the software to deal with missing values depending on their 

distribution within the base and neighbour series.  The distribution of years where most intact 

records were included in the HOMER analysis may be deduced from Figure 4 and clearly 

show the peak in available records between the late 1960s and early 1980s. 

 

 

Fig. 4. HOMER diagnostic summary illustrating the overall number of intact and absent months for the 

88 station series records included in the 1941-2010 analysis.  The blue line plot indicates the greater 

number of available records for nearly all station series in the 1960s-1980s compared to the earlier and 

later periods.  

 

The HOMER-computed geographical distance range for all 88 station base series and their 

five closest neighbours with similar series characteristics are summarised for all the station 
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series used in the analysis in Figure 5.  As the algorithm iterates through, it is clear that the 

distance (kilometres) between base and neighbour series steadily increase as the algorithm 

searches for series with similar characteristics.  The increasing distances associated with 

neighbour series 3 to 5 are apparent and some of the outlying geographical distance values are 

noteworthy; it may be the case that these increasing distances may have implications for 

homogeneity among some of the base and neighbour series identified within HOMER.  As 

such this is an issue that will warrant further investigation as the work proceeds, particularly 

as new and different station series combinations are added for ongoing and future analysis.   

 

 

Fig. 5. Waisted box plots summarising the HOMER-derived geographical distance range for the base 

series and their five most closely correlated neighbours.  The plots describe a summary analysis for 88 

station and 440 potentially available neighbour series. Boxes: interquartile range; whiskers 5th and 95th 

percentiles. 

 

For example if some additional station records are added to the overall analysis (even if the 

available contiguous records are shorter) it will be the case that the geographical distances 

between base and new potential candidate neighbour series will change if a denser station 

series network can be constructed and used effectively.  It is already recognised that if too 

many distant (or less correlated) neighbouring stations are used, the resulting reference may 

not reflect the true climatic signal of the candidate station properly (Boissonnade et al. 2002). 

These difficulties may increase dramatically with the increase in spatial variability of the data 

caused by the inherent variability of the element (e.g. precipitation) or the time series 

resolution (e.g. monthly data) (Costa and Soares, 2009), both conditions clearly pertain to the 

data analysed here. 
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3.3. Comparison of methods: First difference correlations and HOMER geographical 

distances for selected case study locations 

Selective results are presented based on the comparative analysis between the two methods to 

arrive at neighbour series which are both spatially and statistically coherent.  Figure 6 outlines 

the four case study regions for the selected locations, broadly these describe regional study 

locations for the west, west Midlands, south-east and south-west of the country.  For the 

western case study example both approaches identified four reference series in common; 

Keenagh Beg, Bellacorrick, Costelloe Fishery and Newport (Figure 7).  For both sets of 

results, the statistical properties of the base and neighbour series are largely coherent, 

although Delphi Lodge is a wetter station than the neighbours.  First difference correlation 

coefficients ranged from r = 0.88 – 0.92, whereas geographical distances were 27.57 km – 

48.35 km. 

 

 

Fig. 6. Annotated map of the island of Ireland showing the case study locations for selective results 

comparison.  Upland areas are represented by graded brown, blue and yellow shading.  The red squares 

denote the case study areas describing the derivation of neighbour for base series using; a) first difference 

correlation coefficients and b) geographical distances within the HOMER software.  Box 1 outlines the 

western, Box 2 the west Midlands, Box 3 the south-east and Box 4 the south-west study regions 

respectively. 
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a

b

 

Fig. 7. Box plot comparison of the base Delphi Lodge and neighbour series derived via; a) geographical 

distance in HOMER, and b) first difference correlation for the nearest five neighbours.  Boxes: 

interquartile range; whiskers 5th and 95th percentiles. 

 

In the west Midlands case study example both approaches identified three reference series in 

common; Carrick-on-Shannon, Ballinamore, and Lecarrow (Figure 8).  For both sets of 

results, the statistical properties of the base and neighbour series are largely coherent, 

although Swanlinbar as identified via HOMER is a wetter station than the neighbours.  First 

difference correlation coefficients ranged from r = 0.88 – 0.95, whereas geographical 

distances were 6.36 km – 33.62 km. Similarly, for the south-east case study example both 

approaches identified three reference series in common; JFK Park, Johnstown Castle and 

Enniscorthy (Figure 9).  For both sets of results, the statistical properties of the base and 

neighbour series are very similar.  First difference correlation coefficients ranged from r = 

0.93 – 0.97, whereas geographical distances were 9.50 km – 24.29 km. 

 

 



35 
 

a

b

 

Fig. 8. Box plot comparison of the base Drumsna (Albert Lock) and neighbour series derived via; a) 

geographical distance in HOMER, and b) first difference correlation for the nearest five neighbours.  

Boxes: interquartile range; whiskers 5th and 95th percentiles. 
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Fig. 9. Box plot comparison of the base Foulkesmills and neighbour series derived via; a) geographical 

distance in HOMER, and b) first difference correlation for the nearest five neighbours.  Boxes: 

interquartile range; whiskers 5th and 95th percentiles. 

 

Whereas for the south-west case study example both approaches identified two reference 

series in common; Mallow and Fermoy (Figure 10).  For both sets of results, the statistical 

properties of the base and neighbour series are largely coherent, although Silvermines 

Mountains as identified by the first difference correlations is a slightly wetter station than the 

neighbours.  First difference correlation coefficients ranged from r = 0.86 – 0.94, whereas 

geographical distances were 19.07 km – 33.04 km.  Although not shown here, a GIS-based 

check confirms results obtained via both approaches which are both spatially and 

climatologically coherent for each of the study regions. 
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Fig. 10. Box plot comparison of the base Kilmallock and neighbour series derived via; a) geographical 

distance in HOMER, and b) first difference correlation for the nearest five neighbours.  Boxes: 

interquartile range; whiskers 5th and 95th percentiles. 

 

3.4. Break detection and homogenisation of the base series in HOMER 

Although only shown in the context of some regional case study examples in the previous 

section, for all 88 of the candidate base series, results obtained between both methods 

identified largely similar reference stations and series.  In addition, both the statistical 

properties of the reference series and the geographical location of stations were coherent 

climatologically. 

 

On this basis the full pairwise detection option using geographical distance as the specified 

metric for the reference series was implemented in HOMER, and the breaks detected were 

interpreted alongside the available metadata for the stations.  Breaks were detected in 11 from 

the 88 base series analysed, with multiple breaks detected in three of the series, results are 

summarised in Table 1. 

b

a
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Table 1. HOMER break detection summary for the 11 stations with consistent breaks in the base and 

neighbour series. Break years are provided with the months in paranthesis. 

 

Station Name and ID Break Years (Month)  Metadata 

verified 

Delphi Lodge (626) 1976 (12), 1980 (12)  No 

Creeslough  (944) 2000 (12), 2007 (12)  No 

Roches Point (1004) 1955 (11)  Yes 

Kiltyclogher (1240) 1994 (5)  Yes 

Drumsna, Albert Lock (1529) 1954 (7), 1965 (8), 1969 (1)  Yes 

Knockaderry Reservoir (1) (1712) 1974 (12)  No 

Watergrasshill (2404) 1974 (11)  Yes 

Howth, Danesforth (3023) 1966 (12)  No 

Slieve Bloom Mountains (3513) 1971 (3)  Yes 

Macroom, Renanirree (3804) 1978 (11)  Yes 

Silvermines Mountains (4819) 2005 (12) 

 

 No 

 

Station metadata checks revealed the cause of breaks for 6 from the 11 series as summarised 

in Table 1. These were: 

 Roches Point, November 1955 – station moved to a new elevation; 

 Kiltyclogher, May 1994 – gauge replacement; 

 Drumsna, July 1954 – new gauge after 7 year gap; August 1965 – new mm measure 

introduced; January 1969 – defective gauge replaced; 

 Watergrasshill, November 1974 – change of observer; 

 Slieve Bloom Mountains, March 1971 – station site move; 

 Macroom, November 1978 – defective gauge replaced. 
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In the interests of brevity, sample output results are presented for only two of the base and 

neighbour series pairwise detection plots for the HOMER homogenised data.  These illustrate 

the metadata verified single and multiple breaks in the Kiltyclogher and Drumsna series 

respectively (Figures 11 and 12). 

 

 

Fig. 11. HOMER screen capture of the metadata verified break in the homogenised Kiltyclogher annual 

base series and the corresponding neighbour series.  The sky blue lines denote the consistent single break 

detection across the base and neighbour series for May 1994. 
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Fig. 12. HOMER screen capture of the metadata verified break in the homogenised Drumsna annual base 

series and the corresponding neighbour series.  The sky blue lines denote the consistent multiple break 

detection across the base and neighbour series in 1954, 1965 and 1969. 
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3.5. Sample results: HOMER homogenised series 

Based on the neighbour series selected on the basis of geographical distance, and after the 

metadata checks and user interaction with the software, HOMER provided a new and 

homogenised output for the focal base series based on the PRODIGE comparison technique.  

Examples are provided here for two of the case study series where the original series have 

been extended using HOMER-derived values based on the neighbour series, Delphi Lodge 

(Figure 13) and Kilmallock (Figure 14). 

 

 

 

Fig. 13. Time series box plots of a) the available Delphi Lodge annual series (1941-1985), and b) of the 

HOMER homogenised data for the same series extended with reference to the neighbour data (1941-

2010).  Boxes: interquartile range; whiskers 5th and 95th percentiles. 
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Fig. 14. Time series box plots of the a) available Kilmallock annual series (1944-1996), and b) of the 

HOMER homogenised data for the same series extended with reference to the neighbour data (1941-

2010).  Boxes: interquartile range; whiskers 5th and 95th percentiles. 

 

Delphi Lodge and Kilmallock are presented as sample output in favour of Foulkesmills and 

Drumsna as both these latter series comprised more or less fully intact data (1941-2010 and 

1941-2008 respectively) prior to the homogenisation exercise.  There was therefore less scope 

to illustrate the imputation of missing values by HOMER compared to the greater number of 

missing years in the Delphi Lodge and Kilmallock series.  The data are presented as annual 

time series box plots to highlight that the HOMER-derived missing values are statistically 

coherent with the data range and other characteristics of the original series.  In the examples 

here, for the 1986-2010 segment for Delphi Lodge and the 1997-2010 segment for 

Kilmallock, the additions are  HOMER-derived extensions based on neighbour station data 

The different Y-axis scales between the Figures are to account for different total precipitation 

receipts at both station locations. 

 

However, for Delphi Lodge, it is noted that there are more outlying values associated with the 

neighbour-derived infill segment compared to the original series.  During the homogenisation 

work, the Delphi Lodge series was noted as a case where further work is required and a series 

which may benefit from future work which identifies more statistically similar neighbour 

series as it is a wetter station than the neighbour series used here.   
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4. DISCUSSION AND CONCLUSIONS 

 

As much of the preceding content reports on and discusses results to date, as befits an analysis 

using case study examples to report on interim results on a first application of HOMER to 

Irish precipitation data, discussion here is kept brief.  First difference correlations were used 

to critically evaluate HOMER results output in a parallel statistical computing framework.  In 

turn this builds on other approaches to exploratory analysis of the station series and their 

inter-relationships both statistically and spatially not reported on here.  HOMER has 

accurately detected breaks in 11 from the 88 monthly precipitation series so far analysed in 

this approach, of which 6 are confirmed from the metadata.  The results indicate that both 

approaches yield valid and statistically similar corresponding neighbour series, and although 

only shown in the context of case study examples in the results presented here, results across 

the analysis for all 88 station records and their potential neighbour series indicate that both 

first difference correlations and HOMER geographical distance selections yield overlapping 

neighbour series which are largely statistically and spatially coherent. 

 

Ongoing analysis which is extending some of the functionality the HOMER algorithm offers 

indicate very good prospects for the work going forward.  To date there are relatively few 

openly available comparative results as HOMER is still new and not in wide use, and any 

published work to date relates to applying the algorithm for the homogenisation of 

temperature (i.e. Freitas et al. 2013; Mestre et al. 2013; Luhunga et al. 2014).  Therefore, and 

insofar as we are aware, this remains one of the most substantial applications and tests of the 

algorithm in relation to precipitation data, and hence the ongoing work remains novel and is 

certainly the first such application for Irish monthly precipitation series.   
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1. INTRODUCTION 

 

Author has developed the statistical software package ACMANT2, which includes computer 

programs for the automatic homogenization of mean temperature (Tmean), daily maximum 

temperature (Tmax), daily minimum temperature (Tmin) and precipitation amounts (PP). The 

software treats either daily or monthly input, but the detection of inhomogeneities (IH) and 

the calculation of adjustment terms are always done on the annual or monthly scale, then daily 

data are adjusted with downscaling the monthly adjustment terms. This study will present the 

structure and the most important segments of ACMANT2 and will discuss why ACMANT 

was one of the best performing homogenization method in the international tests of the 

European project COST ES0601 (its popular name, HOME, will be referred hereafter). In the 

study, the latest version of ACMANT is referred to as ACMANT2, its previous version as 

ACMANT1, while its constant properties are often assigned to “ACMANT” without index. 

 

Temperature and precipitation time series can be homogenized with ACMANT2 and the 

homogenization of these variables is done with very similar algorithms. In this study the 

description of temperature homogenization is provided only in detail, but the important 

differences between the algorithms for temperature homogenization and precipitation 

homogenization will be mentioned. 

 

The organization of the study is as follows: In the next section, the motivation and the brief 

history of the development of ACMANT is presented. In the third section, the most important 

theoretical properties of ACMANT2 are shown. In section 4 some efficiency results are 

shown, while in section 5 the computer programs of the ACMANT2 package and their use are 

briefly described. The study is supplied with appendixes (AP) with the detailed descriptions 

of  I) the differences between ACMANT1 and ACMANT2 in the homogenization of Tmean 

and Tmax of mid- or high latitudes; II) the specific rules of Tmin homogenization and 

homogenization of any temperature variable in tropical regions. 

 

 

2. MOTIVATION AND BRIEF HISTORY OF THE DEVELOPMENT OF ACMANT  

 

During HOME (2007-2011), the new method ACMANT for homogenizing monthly 

temperature series appeared and was found to be one of the most effective methods just in its 

first version, leaving relatively small residual errors in the homogenized series. 

mailto:peter.domonkos@urv.cat
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I have been dealing with testing the efficiency of homogenization methods since 2003 

(Domonkos, 2008, 2011a, 2013a, etc.) and I often found large differences between the 

efficiencies of different methods. Moreover, homogenization sometimes might worsen the 

quality of observational series (Domonkos, 2013a), therefore a new approach is needed in our 

general view around the task of time series homogenization. While the review study of 

Peterson et al. (1998) suggested that time series homogenization is generally recommendable 

anything is the method applied, the enhanced need for more reliable and more accurate 

observational data for climate change and climate variability studies forces us to select and 

use the best performing methods. The international tests with the HOME benchmark dataset 

(HBM) confirmed that the differences between method efficiencies are large (Venema et al., 

2012) and based on these tests only five methods can be recommended for homogenizing 

monthly temperature and precipitation series, namely MASH (Szentimrey, 1999), PRODIGE 

(Caussinus and Mestre, 2004), ACMANT (Domonkos, 2011b, referred here D2011), USHCN 

(Menne and Williams, 2009) and the Craddock-test (Craddock, 1979). In the last stage of 

HOME, the HOMER method was created (Mestre et al., 2013) from the best performing 

segments of PRODIGE and ACMANT and incorporating the network wide joint 

segmentation method (Picard et al., 2011). After HOME, the climatologist community still 

has important tasks in continuing test experiments (Domonkos, 2013b), since the efficiencies 

measured by HOME are based on the use of a not very large benchmark dataset, i.e. 15 

networks for testing each of temperature and precipitation homogenization methods (Venema 

et al., 2012). On the other hand, HOME recognized several weak points of the tested 

homogenization methods, fostering a new stage of the methodological developments. 

 

In my opinion, the creation of an effective homogenization method must be based on three 

principles, namely: i) Consideration of the statistical properties of observational data 

(including its IHs), for which the homogenization method will be used; ii) Relying on the best 

results of earlier achievements; iii) Creating additional value with innovation and automation. 

 

i) Consideration of the statistical properties of observed temperature and precipitation series 

- The mean frequency of detected IHs in European and North American climate records is 

around 5-6 per 100yr and per station (Auer et al., 2005; Menne et al. 2009; Venema et al., 

2012), although it depends on network density and the examined climatic variable (Menne et 

al., 2009) and on the homogenization method applied (Domonkos, 2011a). Note that IHs are 

modelled as a sudden shift in the mean and referred to as “break” throughout this study when 

no other specification is given. The true frequency of breaks is likely higher than their 

detected frequency, because small-size shifts and short-term biases often cannot be detected 

(Brohan et al., 2006; Menne et al., 2009; Domonkos, 2011a, 2013a). Therefore, the true 

frequency of breaks in observational time series is expected to be at least equal but likely 

higher than 5 breaks per station and per 100yr, whilst other kinds of IHs (e.g. trend-like 

biases) may additionally occur in the series. The optimal way of homogenizing datasets with 

such IHs is the use of multiple break methods, i.e. methods in which the joint structure of IHs 

are searched and corrected directly, taking into account the mutual effects of individual IHs. 

The development of multiple break methods began in the last decade of the 20th century (apart 

from some basically subjective methods not considered in here) and now we have four 

methods of this kind: MASH, PRODIGE, HOMER and ACMANT. Considering that at 

present, climatologists apply approximately 40 methods for homogenizing temperature and 

precipitation series (Domonkos and Efthymiadis, 2013), multiple break methods compose a 
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small cluster of the existing methods. It is striking that the cluster of the best performing 

methods in HOME tests is almost identical with the cluster of multiple break methods, 

showing that HOME tests justified the advantage of using multiple break methods. 

Consequently, the incorporation of multiple break techniques in ACMANT was a good 

decision. 

Another positive feature of ACMANT related to this point is that the semi-sinusoid annual 

cycle of Tmean and Tmax biases is taken into account in the homogenization procedure. In 

mid- and high latitudes the annual cycle of insolation results in the annual cycle of biases 

caused by various IHs (Drogue et al., 2005; Domonkos and Štěpánek, 2009; Brunet et al., 

2011), since bias-sizes are often related directly or indirectly to the duration and intensity of 

insolation. In ACMANT, the homogenization of Tmean and Tmax observed in mid- or high 

latitudes is performed with a bivariate detection where the two variables are the annual mean 

and the amplitude of summer – winter difference. The calculation of adjustment terms and 

some other routines of the computer program also consider the semi-sinusoid cycle of biases 

and I believe that these properties significantly contribute to the high efficiency of ACMANT. 

 

ii. Relying on the best results of earlier achievements - ACMANT is based on the detection 

and correction method of PRODIGE (the name “ACMANT” came from “Adapted Caussinus 

- Mestre Algorithm for homogenising Networks of Temperature series). In testing detection 

parts of homogenization methods, PRODIGE showed the highest efficiency (Domonkos, 

2011a, 2013a), while ANOVA is a correction method, with which even the results of other 

homogenization methods could be improved (Domonkos et al., 2011). The adaptation of 

routines, which once were effective in other homogenization methods, sets a good basis for 

the creation of new methods that could outperform the earlier methods. 

 

iii. Creating additional value with innovation and automation - Three kinds of added value 

will be discussed here: a) Separating time scales in the detection of IHs; b) Exploitation of the 

partial regularity in the seasonal changes of biases caused by IHs; c) Automation of the 

homogenization procedure. 

a) Although the main goal of time series homogenization is not the break detection (but the 

minimization of the residual non-climatic biases), break detection is included in every 

homogenization method, since the identification of break positions helps to eliminate the 

biases. On annual or multi-annual timescale, the spatial correlations and hence the signal to 

noise ratio is higher than on monthly scale. In addition, monthly data is often affected by 

annual cycle of bias, which is obviously absent in annual data. On the other hand, statistical 

samples are larger when time series are examined on monthly resolution, thus the advantages 

and drawbacks could seemingly be compensated by each-other. However, one main difficulty 

of the homogenization task is that both the number of breaks and their positions must be 

estimated from the sample, and the uncertainty can be reduced if breaks are searched at the 

time scale in which they manifest themselves best. 

b) Tmean and Tmax data are often affected by seasonally varying biases and such variations 

can be modelled by sinusoid cycles. ACMANT and HOMER are the only methods, which 

exploit this feature of temperature data in their break detection algorithms. 

c) ACMANT and HOMER have been developed from PRODIGE, but while PRODIGE and 

HOMER are semi-objective methods, ACMANT is a fully objective and fully automatic 

homogenization method. Note that we use the term “objective method” in the sense that the 

results do not depend on homogenizers. The objectivity and automation has four advantages: 
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i) The use of automatic methods is advisable for large datasets and practically the only option 

for homogenizing datasets including 50 or more time series. ii) Testing of automatic methods 

is straightforward and tests are easily manageable even with huge test datasets. Owing to 

these tests the performance of automatic methods is more transparent than that of other 

methods. iii) A homogenization product of a fully objective method can be reconstructed at 

any time. iv) Automatic methods are easy-to-use for climatologists. 

Note, however, that automatic methods are not competitors of subjective or semi-objective 

methods, since for the homogenization of small networks with the help of metadata, the use of 

subjective or semi-objective methods is preferred. 

 

The ACMANT1 software was only for homogenizing monthly means of Tmean and Tmax 

observed in mid- or high latitudes. The full description of ACMANT1 is published in D2011. 

However, I have made new computer programs for homogenizing other variables and even 

the structure and content of the algorithm for homogenizing Tmean and Tmax have changed 

significantly since then. The two most important novelties in the general structure of 

ACMANT2 relative to its earlier version are as follows: i) In ACMANT2 the adjustment 

terms are always calculated by ANOVA, also in the phase of Pre-homogenization; ii) A new 

subroutine has been included, “Filtering of outlier period”, that is always applied just after the 

common outlier filtering. The purpose of filtering of outlier periods is to remove large, short-

term biases before homogenization, similarly as individual outlier values are removed. The 

decrease of the residual root mean square error in homogenized series can be expected from 

these changes. 

 

The parameterization of ACMANT2 is based on tests with various large test datasets similar 

in climatic characteristics to the HBM, but varied in the properties of IHs included in them.     

 

 

3. ACMANT2: STRUCTURE AND KEY THEORETICAL PROPERTIES 

 

ACMANT2 is composed of four main segments, namely Introductory Operations, Pre-

homogenization, Main Homogenization and Final Adjustments, and each main segment 

includes various routines (e.g. for break detection, outlier filtering, bias correction). Some 

routines are common for more than one main segment (Fig. 1), since the accuracy of certain 

operations increases with the improving homogeneity of the data during the procedure, and 

thus the repeated application of such routines improves the accuracy of the final results. 

 

Fig. 1 shows the most important segments only, i.e. operations, like calculation of spatial 

correlations, building reference series, exclusion of detected breaks of insignificant size, etc. 

are not shown. On the other hand, routines marked with asterisk indicate that they are not 

included in precipitation homogenization. For homogenizing PP, most routines are applied in 

the same way as for temperature homogenization, after the row PP values are converted by a 

quasi-logarithmic transformation. However, the work on monthly scale is strongly reduced in 

PP homogenization due to the often large spatial and temporal irregularity in monthly PP 

totals (particularly in semiarid regions). 
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3.1. Relative homogenization based on reference series 

ACMANT2 is a relative homogenization method, which means that the detection of IHs is 

performed by examining the differences between a candidate series and a reference series, and 

then any detected IH is assigned to the candidate series. The method of creating reference 

series from composite series mostly follows the rules of Peterson and Easterling (1994) with 

some differences in the details. Composite series are weighted according to the squared 

spatial correlations of monthly temperature anomalies and the first difference series  

 

 

 

Fig. 1. Scheme of ACMANT2. The shown segments are common for all computer programs included in 

ACMANT2, except that the ones marked with (*) are included in temperature homogenization only. 

 

(increment series) are used for calculating the correlations, in order to reduce the impact of 

IHs on the empirical correlations. Possible effects of IHs in the reference composites are not 

considered during the calculations of the spatial differences. Note, however, that in the phase 

of Main Homogenization the reference composites have been pre-homogenized (while the 
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candidate series remains the raw, outlier filtered series), and in this way the IHs of the 

reference composites have markedly reduced impact on the final results. The parameterization 

for the calculation of reference series is shown in AP I-2.1.   

 

A speciality of ACMANT2 is that the detection of IHs on low time resolution (i.e. detection 

of biases for at least 3 year long sections of the candidate series) has two main phases. The 

goal of the first phase within the Pre-homogenization segment is to remove or reduce the 

large-size biases of the time series, those that will be reference composites in the second 

phase, within the Main Homogenization stage. The first and second phases are performed in 

almost the same way, with a small change only in the parameterization. In the Pre-

homogenization phase, the future candidate series is excluded from the calculation of 

adjustment terms, and thus the multiple use of the same spatial relationship (including error 

term) is excluded. 

 

The use of reference composites flexibly changes if the number of available reference 

composites is different for diverse sections of the candidate series (AP I-2.2), and all the 

reference composites of at least 0.4 spatial correlation with the candidate series are utilized, 

disregarding possible differences in the starting and ending dates of the series.  Note that in 

ACMANT2, reference series are never used for calculating adjustment-terms. It is an 

important detail in which multiple break methods differ from more traditional 

homogenization methods (e.g. Standard Normal Homogeneity Test [SNHT] by 

Alexandersson and Moberg, 1997;  RHTest by Wang, 2008, etc.). 

 

3.2. Inhomogeneity detection on low time resolution 

ACMANT2 includes two markedly different types of break detection. One is for identifying 

long-standing biases whose characteristic time is longer than 2 years (referred as detection on 

low time resolution), while the other is for identifying temporarily existing, short-lived but 

large size biases lasting from 3 months to 24 months. 

 

3.2.1. Fitting optimal step function (univariate detection) 

Fitting optimal step function is a known technic for the detection of multiple breaks in time 

series (Hawkins, 1972; Caussinus and Mestre, 2004). Presuming that a time series contains K 

IHs and all of them are sudden shifts of the mean values (i.e. breaks), the time series is 

modelled by a step function of K +1 steps. The optimal step function can be found with the 

variance minimization of the data relative to the step function model. As true IHs are often 

sudden shifts (e.g. due to station relocation, instrumental change), this model is realistic. 

When gradually increasing bias (trend-like) IHs occur, the step function approach still 

provides fair (although slightly less accurate) results, transforming the trend into two or more 

steps. 

 

Let the annual mean (E) and the section mean (upper stroke) for step k of variable x be 

defined by (1) and (2), 
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then the optimal step function for time series Q of length L, including K breaks is given by (3) 

and (4). 
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Note that when step function fitting is applied in ACMANT2, the minimum length of a step is 

at least 3 time units, i.e. 3 years or 3 months depending on the time step between two adjacent 

values (5). 

31  kk jj        Kkk  0  (5) 

 

 

3.2.2. Bivariate detection of breaks with fitting optimal step function 

As it has been mentioned, biases in Tmean and Tmax series often have sinusoid annual cycle 

linked to the annual cycle of insolation. Therefore when a break occurs for station relocation 

or change in the instrumentation, etc., both the annual means and the amplitude of seasonal 

cycle can be affected. In the bivariate detection of Tmean and Tmax homogenization, breaks 

with common timings are searched for the annual mean (E) and for the amplitude of summer-

winter difference (Z). Z is defined as: 
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where m denotes calendar month and the monthly coefficients (cm) are negative in winter and 

positive in summer: 

c1= c11= c12= – 1, 

c2= – 0.5, 

c3= c4= c9= c10= 0, 

c5= c6= c7= 1, 

c8= 0.5 

 

Then the best fitting step function to series Q including K breaks is given by (7). 
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c0 = 5–0.5 (empirical constant). Note that 
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by definition, the longer form in (3) and (7) is included only for showing the identity of the 

treatment for E and Z. Note also that for presenting the average of whole time series the index 

(k) will be omitted. 

 

3.2.3. Assessment of the number of breaks 

The critical point of step-function fitting methods is the determination of K. In ACMANT2 a 

parameterized version of the Caussinus - Lyazrhi criterion (Caussinus and Lyazrhi, 1997) is 

applied. This criterion takes into account the reduction of variance due to the inclusion of 

breaks, but with balancing that with a penalty term due to the increasing number of steps, 

because the residual variance tends to decrease with the rising number of steps either the 

breaks between steps are significant or not. As a consequence, the rise of the number of steps 

will give better score only if the reduction of standard deviation overbalances the increase of 

the penalty term (9), (10). 
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The shown formula differs from the original one in one detail, i.e. the penalty term (S) here 

includes an empirical coefficient (p). The value of p is different for univariate and bivariate 

detection, as well as different in the Pre-homogenization than in the Main Homogenization. In 

the Main Homogenization p = 1.4 in univariate detection and p = 1.0 in bivariate detection. 

See more details in AP I-3.1 and AP II-1.  

 

3.3. Detection of short-term biases 

Short-term IHs can be modelled by a platform-shape bias from the true climatic values where 

the platform is the composition of a pair of breaks of the same shift-size but to the opposite 

directions (Fig. 2). Short-term IHs can be caused by temporal changes in the conditions of the 

observation. The frequency of the short-term biases can be much higher than their detected 

frequency, because the signal-to-noise ratio is relatively low for short sections of time series 

due to the limited sample size (Domonkos, 2013a). Experimental results indicate that the true 

frequency is really significantly higher than the detected frequency (Domonkos, 2011a; 

Rienzner and Gandolfi, 2011). 

 

Monthly mean anomalies of daily minimum temperatures, 
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Fig. 2. Large, short-term, platform-shaped bias between 02-1940 and 05-1941 in the Tmin of Ceuta 

(Spain). 
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In ACMANT2, large-size, platform-shaped biases are detected in moving windows of 

monthly temperature anomalies. This new routine of ACMANT (such step is not included in 

ACMANT1) is named Filtering of outlier periods (AP I-4.1). This procedure has 

characteristics similar to filtering out outlier values, as well as to the minimization of standard 

deviation relative to platform-shape step functions. It is always performed just after the 

common Outlier filtering.   

 

The detection of long-term biases might be affected by the existence of large-size short-term 

biases and vice versa. Therefore the detection and elimination of short-term biases is 

performed three times in ACMANT2, approaching step-by-step to the final solution. These 

operations are applied first in the Introductory Operations, then within the Pre-

homogenization phase after the adjustment of long-term biases, and finally in the Main 

Homogenisation phase, after the adjustment of long-term biases. The way of the detection and 

correction of short term biases in the Main Homogenization differ from the Filtering of outlier 

periods, i.e. the routine Secondary Detection of ACMANT1 (D2011) has been kept with some 

little changes in the parameterization only (AP I-4.2 and AP II-4).      

 

Note that in PP homogenization neither outlier filtering nor any kind of operation for filtering 

out short-term biases is performed. 

 

3.4. Data adjustment  

In ACMANT2, adjustment-terms are generally calculated with variance analysis (ANOVA, 

3.4.1 – 3.4.2.). However, ANOVA determines temporal differences only, therefore one fix 

value (time series average, or a reference value of the time series which is considered to be 

unbiased) must be defined (3.4.3). For periods of very short-term biases, interpolation 

technique is applied instead of ANOVA (3.4.4). 

 

3.4.1. The ANOVA model for the assessment of adjustment terms 

The ANOVA procedure determines the minimum variance of anomalies relative to the 

climate signal of an examined region, relying on the timings of detected breaks in all the 

examined time series of the region. It is proven that ANOVA provides the optimum 

estimation of adjustment-terms when the spatial gradients of climate are temporally constant 

and the list of detected breaks is correct (Mestre, 2004; Caussinus and Mestre, 2004). 

Moreover, experiments showed that ANOVA performs better than conservative correction 

methods even when the list of detected breaks is partially correct only (Domonkos et al., 

2011). 

 

For applying ANOVA in time series homogenization, a model is set up. In this model, the 

observed values are considered to be the sum of the climate signal (u), station effect (v) and 

noise (ε) for each time series and each time point (11). 

 

εVUX   (11) 
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The spatial gradients of climate are temporally constant, which is approximately true for 

observational datasets when data for a specific climatic zone is examined. No other constraint 

is included for climate. Station effect means the sum of site effect (i.e. temporally constant 

difference relative to the climate signal) and the biases caused by IHs. In the model, all IHs 

are breaks, and their timings are known. This variance minimization can be solved with the 

construction of an equation system following the relationships in the model. 

 

ANOVA searches the solution of (11) with the minimum variance of ε for the entire dataset. 

The minimum variance can be obtained by (12, 13).  
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In (12) and (13) N denotes the number of station series, s the serial number of station series, 

jmin and jmax stand for the first and last years of the period, respectively, for which 

homogenisation is performed, while apostrophe denotes estimated variable. 

 

When the period between adjacent breaks is very short or when simultaneous breaks occur in 

various station series, the efficiency of ANOVA is reduced. Moreover, if all time series have 

a detected break at the same time, then the equation system is undetermined. For these 

reasons, breaks of relatively small estimated size are sometimes deleted from the break list 

(AP I-5). 

 

3.4.2. The use of ANOVA in ACMANT2 

ANOVA is always applied using data without bias corrections, because the recursive 

application of ANOVA could multiply the errors of the estimated spatial relationships. 

 

ANOVA can be applied separately for the variables under examinations, thus in the 

homogenization of Tmean and Tmax, ANOVA is applied separately for annual means (E(x)) 

and summer-winter differences (Z(x)), then the monthly adjustment-terms are derived from 

them. In the Pre-homogenisation, ANOVA is applied on data of annual resolution, while in 

the Main Homogenization the input data is monthly. In monthly resolution, X is examined 

directly, instead of E(x). However, Z(x) is a variable whose interpretation on monthly scale is 

not straightforward. Monthly values of Z(x) are defined for each month (h) of the series by 

using the data of the 12-month symmetric window around h (14). 

 



57 
 

6)6(

5

5'

6)6(')'(, )(5.0)( 





  hhm

h

hh

hhmhhmhj xcxcxcxZ  

 

(14) 

 

(Note: close to the endpoints of the series the extent of window is limited by the data 

availability.) Coefficients cm are the same as in (6). 

 

If break k has the timing H(k) in monthly scale and αk and βk denote the estimated station 

effects for the homogeneous section of [H(k-1)+1,H(k)] for X and Z(x), respectively, then the 

estimated station effect (v’) is given by (15) for each month of the section. 

 

kmkmi cv  *' ,   (15) 

 

Coefficients c*m differ from cm in a way that they provide the same summer – winter 

difference as cm, but with a harmonic annual cycle of the coefficients. 

 

When only one variable is examined as in the homogenization of Tmin, the determination of 

adjustment term is simplified to (16). 

 

kmiv ,'  (16) 

 

(16) shows that in the Tmin homogenization of ACMANT2 the monthly adjustment terms are 

independent from the season of the year.   

 

3.4.3. Selection of reference period 

In ACMANT2, the values of the last homogeneous section of the series are considered to be 

unbiased, and it is considered to be reference period in the adjustment of the other sections of 

the series. This assumption is rather general in time series homogenization, but it might have 

unfavourable consequences when the last homogeneous section is too short for acquiring the 

accurate estimates of its statistical properties or when it has characteristics atypical for the site 

due to instrument error or for any other reasons. If the statistical properties of the last 

homogeneous section do not reflect well the true climate, its use as reference period may 

cause biases in the mean climatic characteristics of the site, as well as in the spatial climatic 

gradients. Notwithstanding, this problem has no effect on the reliability of the temporal 

variability. Note that the possible application of adjustment terms varying according to the 

probability distribution function value (percentile) of the raw data (as for instance in Della-

Marta and Wanner, 2006) would make the homogenization results more sensible to the choice 

of the reference period, since any bias of the empirical probability distribution from the true 

climate in the reference period would be exported to all the other sections of the time series. 

Therefore as long as ACMANT remains fully automatic, percentile dependent adjustments 

will not be included in it. 
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3.4.4. Adjustment of short-term biases 

In the Introductory Operations and Pre-homogenization, the values within the period of 

detected short-term biases are always substituted with interpolated values. By contrast, in the 

Main Homogenization, biases shorter than 6 months are adjusted by interpolation only, while 

the longer ones are corrected by ANOVA. 

 

 

4. EFFICIENCY OF ACMANT2 IN HOMOGENIZING THE HOME BENCHMARK 

 

If we would like to compare the efficiencies of different homogenization methods, it is still 

the HBM is the best for this purpose, since the characteristics of the HBM are rather close to 

the characteristics of observational time series and the efficiencies with this dataset are known 

for several homogenization methods (Venema et al., 2012). As the biases of the HBM series 

have quasi sinusoid annual cycle, the program for homogenizing Tmean and Tmax can be 

tested with this dataset. 

   

 

  

Fig. 3. Efficiency (%) in reducing RMSE of HBM with various homogenization methods. E(m) – RMSE of 

monthly values, E(Y) – RMSE of annual values, NT-100 – RMSE of network mean trends for the whole 

period (100 years) examined, NT-50 – RMSE of network mean trends over the last 50 years, AC_1 – 

ACMANT1, AC_2 – ACMANT2, PROD – PRODIGE, PMT – penalized maximum t-test of RHTest, 

AnCl – AnClim (Štěpánek et al., 2009). 
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Fig. 3 shows the efficiency of ACMANT2 in comparison with the efficiencies of several other 

methods. It can be seen that the efficiency of ACMANT2 is slightly lower than that of 

ACMANT1. The slight decrease may have 3 reasons: 

i) The parameterization of ACMANT1 can be overfitted to HBM, since in the development of 

ACMANT1 I used the HBM. 

ii) In the HBM the number of short-term biases is unrealistically low, and thus the positive 

effect of the inclusion of filtering of outlier periods in ACMANT2 does not appear in the tests 

with this dataset. Note here that short-term biases are not inserted to HBM, thus short-term 

biases in HBM are present only in the rare cases of their accidental formation from randomly 

placed breaks. 

iii) Random fluctuation of the results due to the small sample size. Note here that the sample 

size of HBM (15 networks) is obviously very small for the assessment of the efficiency in 

reducing network mean trend errors. 

 

Fig. 3. shows that even with the few percentages drop relative to its earlier version, 

ACMANT is one of the most effective homogenization methods, and considering the fully 

automatic methods tested by HOME, still ACMANT shows the highest efficiency. Note 

however, that several other homogenization methods have also been developed since the 

HOME tests, thus new comparative tests with a large new benchmark of realistic time series 

properties are needed to see more clearly the rank order of the efficiencies.    

 

 

5. USE OF ACMANT2 SOFTWARE 

 

5.1. Some notes on the use of the software 

The software package has a manual available in web (www. c3.urv.cat/data.html) together 

with the software. Therefore only some important points of the use are described here. 

 

The software package includes 6 different computer programs which can be chosen according 

to the characteristics of the input raw data. Three programs are for homogenizing daily data, 

while the other three programs treat monthly data only. The three programs differ according 

to the variable treated: One program is for the homogenization of Tmean or Tmax, another 

one is for Tmin and the third one is for PP. The software package contains also some auxiliary 

files, their function and use is described in the Manual. 

 

Anything is the input variable, some rules are common for the homogenization with 

ACMANT2. At least 4 time series with adequate spatial correlations (AP-I-2.1) are needed. 

The length of the input series may vary between 10 years and 200 years. The rules of input 

data preparation shown in the Manual must be followed accurately, otherwise the selected 

program will not run or will stop with some error message. 
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5.2. Selection of the appropriate program 

The selection of the appropriate program seems to be straightforward, since the kind of the 

input variable (i.e. Tmin, Tmax, Tmean or PP) and its time resolution (daily or monthly) 

determine which program matches best. Yet there is a gap in this simple matching between 

variables and programs: The program including the bivariate detection for annual mean and 

summer – winter difference is proposed to use for Tmean and Tmax from the mid- or high 

latitudes only. As quasi sinusoid annual cycle of biases is not expected in temperature data of 

the tropical belt and in monsoon regions, the program with bivariate detection is not 

recommended to use there. The recommended matching between variables and programs is 

shown in Table 1. 

 

Table 1. Recommended matching between input data type and programs of ACMANT2 software 

 

 Program 

Input variable and region Tmean&Tmax Tmin PP 

Tmean or Tmax  in mid or high latitudes X   

Tmean or Tmax  in tropical or monsoonal regions  X  

Tmin  anywhere  X  

PP anywhere   X 

 

 

5.3. Options offered for users 

Although ACMANT2 is fully automatic, there some options beyond the choice of the 

appropriate program are offered for the users at the initiation of the homogenization 

procedure. Four kinds of options are asked from the users: i) in temperature homogenization: 

the programs can be run with or without outlier filtering; ii) in precipitation homogenization: 

the program can be run with dividing the year into snowy and rainy seasons or without such 

division; iii) in homogenization of daily data: inputting both daily and monthly data or 

monthly raw data is constructed from daily data by the program; iv) output data format. 

 

i) The programs of temperature homogenization can be run with or without outlier filtering. 

The proposed mode is the inclusion of outlier filtering, but there is one exception: Users may 

check manually the detected outliers by ACMANT, and this check might find that some 

detected outliers should be considered true extreme values instead of outliers. In such a case 

the proposed continuation of the homogenization procedure is as follows: a) Justified outliers 

must be shown with missing data code in the raw data; b) Accepted extreme values must be 

left unchanged in the raw data; c) Repeating the run of ACMANT2 with the use of the 

modified input data and without outlier filtering.  

 

ii) If in a part of the year the dominant form of the precipitation is snow, the starting and 

ending months of the snowy season must be introduced at the initialization of the PP 

homogenization. It is because the IHs of snow data often markedly differ from the IHs of rain, 
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due to the technical problems of catching snow precipitation and converting it into water 

amount comparable with rain precipitation. To manage this problem, PP homogenization in 

ACMANT2 includes two different modes, one mode is similar to the univariate 

homogenization of Tmin (when there is no snowy season in the region), while the other mode 

is bivariate homogenization in which the two variables are the total amount of the PP for the 

rainy season and that is for the snowy season. The program selects the appropriate mode 

automatically, after the requested parameters are introduced by the user. 

 

iii) The detection of IHs and the calculation of adjustment terms are always based on monthly 

data. If the input is daily data, ACMANT2 develops the monthly dataset, does the 

homogenization and finally adjusts both the monthly and daily data. As input data may 

include missing values or outliers, the characteristics of the developed monthly dataset might 

depend on the treatment of these quality problems of the initial dataset. The development of 

monthly dataset in ACMANT2 is automatic, but there is an option for the users to introduce 

their own developed monthly dataset (together with daily data). This option is recommended 

to use in the case when the user has a monthly dataset which has been developed with the 

meticulous check of the possible quality problems in the daily data. 

 

iv) The program offers that the output will consist of a default output package, but the user 

may select his choices if he wants. The goal of leaving free options in the form of the output 

package is to provide the opportunities of a) having homogenized dataset that is immediately 

applicable as input in extreme index calculation softwares, b) having the dataset with or 

without infilling the missing values, c) providing supplementary information about the spatial 

correlations and other characteristics related to the homogenization procedure. 

 

 

6. CONCLUSIONS 

 

ACMANT2 homogenization software has recently been developed. This software has been 

prepared for the automatic homogenization of observational temperature and precipitation 

datasets. This paper together with D2011, provides the whole description of the temperature 

homogenization with ACMANT2. The high efficiency of temperature homogenization with 

ACMANT2 is illustrated with the homogenization of the HOME benchmark dataset. Due to 

its high efficiency, author recommends the use of the software in each case when the size of 

the dataset and the spatial correlations allow the use of automatic homogenization method. 

The use of ACMANT2 is particularly recommended for very large datasets when it is hard to 

use non-automatic methods. 
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APPENDIX I. CHANGES FROM ACMANT1 IN HOMOGENIZING MONTHLY 

MEANS OF DAILY TMEAN OR TMAX. 

 

I-1. Replacing missing data and outliers with interpolated values 

In ACMANT2 this routine is applied three times, while in ACMANT1 it was run only twice. 

There is no change of the parameterization for the first two running of the routine. In the third 

running, the parameterization is the same as for the second routine. 

 

I-2. Construction of relative time series 

Let the candidate series and reference series be denoted by A and F, respectively, then relative 

time series (Q) are defined as their difference series: Q = A – F. 

 

I-2.1. Parameterization 

Minimum length of A: 10 years 

Minimum length of F: 10 years (Note: it implies that each F must have at least 10 year 

common section with A). 

Minimum number of reference composites: 4 

Maximum number of reference composites: not limited 

Minimum number of months for which observed values are available both in A and in a 

reference composite: 50 

Minimum threshold of spatial correlation (r0): it depends on the number of reference 

composites (J): 

 if J = 4 then  r0  = 0.6 

 if J = 5 then  r0  = 0.48 

 if J > 5 then  r0  = 0.4 

  

Further restrictions: If the sum of the accumulated weight (w) of reference composite j 

reaches 4.0 without reference composites with length (n) of shorter than 20 years (nj < 20), 

then the composites of  nj < 20 are excluded. Similarly, if w ≥ 7.0, then composites of nj < 30 

are excluded. 

 

I-2.2. Constructing different relative time series for different sections of the candidate 

series 

(a) First the longest section of A that can be homogenized is paired with at least one F series 

in a way that the result Q series are the possible longest. 
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(b) In the second step, for each section of A, the Q series with the maximal accumulated 

weight of reference composites is created. 

 

(c) If after (a) and (b) the number of Q series for a specific A would exceed 80, then phase (b) 

is repeated in a modified way, namely sections with the highest overlap are not distinguished, 

thus the number of Q series is reduced. It is managed in a way that the time lapse between 

similar sections is monitored and a parameter indicating the threshold degree of time lapse 

between sections is increasing gradually from 0 as long as the number of created Q series 

remains under 80. 

 

(d) If the accumulated weight of the reference composites for two Q series differs with at least 

5%, then both series are retained, irrespectively to the degree of time lapse between sections. 

This rule overwrite rule (c), but the total number of retained Q series cannot be higher than 

80. 

 

I-2.3. Unified relative time series 

In ACMANT2 it is not used. 

 

I-2.4. Selection of relative time series 

There are often more than one relative time series are available for the examination of a 

specific section of the candidate series. As a principal rule, the Q with the highest 

accumulated weight (w) of the reference composites is used only, but w is modified (w*) 

according to the length of Q (17), since the use of relatively long Q series is preferred. 

 

 Qnww 6log*   
(17) 

 

Only in the Secondary Detection, all the Q series are used in the check of the maximal 

accumulated anomalies. The rules of the harmonization of section-examinations in the 

detection on low time resolution are unchanged (D2011). 

 

I-3. Detection on low time resolution 

I-3.1. Pre-homogenization 

(i) Ranking of time series according to the inhomogeneous character is not applied in 

ACMANT2. 

 

(ii) Pre-detection is done according to the rules of the detection on low time resolution (sect. 

3.2). In the penalty-term of the Caussinus – Lyazrhi criterion an empirical coefficient (p) is 

applied (eq. 10). In the Pre-detection, this coefficient depends on the accumulated weight of 

the reference components (18). 
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(18) 

 

;0.21 p  ;05.12 p       0.173 p  

 

 

 

(iii) Parameter c0 (vs. Eq. 7): 

In ACMANT2  
5.0

0 5c  both in the Pre-homogenization and in the Main Detection. 

 

I-3.2. Monthly precision of breaks 

The width of the window, in which break is searched in the monthly precision (step III/4 in 

the algorithm of D2011) is 29 months (it was 25 months in ACMANT1). 

 

I-4. Inhomogeneity detection on short time-scale 

I-4.1. Filtering of outlier periods 

Outlier periods could also be referred to as short-term inhomogeneities, since their model is a 

short-term, platform-like bias from the correct values. In this model the bias is constant for 

the outlier period. Both the detection and the adjustment of outlier periods are more similar to 

outlier filtering than to the detection and adjustment of long-term biases. 

Filtering of outlier periods is applied for 2 - 27 month long periods, always after the routine of 

common outlier filtering. In switched off outlier filtering mode, the minimum duration of 

outlier periods is 5 months. 

In searching outlier-periods, relative time series (Q) are used on monthly scale and the values 

are transformed to standard anomalies (B). Further denotations: l – length of outlier period, h1 

and h2 – starting and ending months (respectively) of the outlier-period in the first estimation, 

lA and lB are lengths of outer sections of (h1, h2) before that and after that, respectively, int and 

sgn – integer part and sign of arithmetic expression, respectively, mod – function of modulo, λ 

statistic of significance. 

The detection of outlier periods is a step-by-step procedure, since only one outlier-period is 

identified in a particular step, i.e. the one with the highest λ (19). The mean value of a 

potential outlier-period is compared with the mean value of the adjacent outer sections in both 

sides of the potential outlier-period (20). Once an outlier-period has been selected, its values 

are adjusted to make it possible searching the next most significant outlier-period. Here, 

temporal adjustments are applied, which are valid during the operations of this routine only. 

The temporal adjustments eliminate the difference between the means of the outlier-period 

and its outer sections, and thus the next most significant outlier period can be selected in the 

next round. The procedure stops when λ < 30. 

 



67 
 

The identification of an outlier-period comprises two phases. In the first phase (i), the most 

significant outlier-period of the time series is selected and a first estimate is made for its 

position. In the second phase (ii) the starting and ending months of the outlier-period are 

determined. 

Phase (i): the outlier-period with the maximal λ is searched for each h1, h2 pairs (2 ≤ h2 – h1 < 

27) of standardised relative time series. 

 

275.0' dl  
(19) 

 

where d (magnitude-characteristic) and l’ (duration-characteristic) are determined by Eqs. 

(20) and (21): 
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Further conditions are that 
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The usual length of the outer periods is 24 months in both sides of the potential outlier-period. 

However, if an outlier-period is close to an endpoint of B, lB or lA can be 12 or even 0. The 

two outer periods together must contain at least 36 months for providing statistical sample of 

adequate size for the calculations. For the fulfilment of this condition, if lB = 0 then lA = 36 

and if lA = 0 then lB = 36. In (21), the sum of cm within the outlier period is included in order 

to take into account the seasonal imbalance of the period. It is necessary, because biases due 

to breaks seasonally vary, and thus a long-standing bias with enhanced seasonal cycle could 

be detected as short-term outlier-period when a seasonal peak of the long-term bias and 

random noise accidentally add up. The sum of cm is an indicator of the seasonal imbalance 

and it is normalised with the absolute value of sum of cm over a half year (i.e. 3.5, see the 

denominator of the coefficient). The 0.75 in the counter is an empirical constant.   

 

Phase (ii): The first and last months of the outlier-period are re-estimated with fitting optimal 

step-function in window [bh1-lB,bh2+lA]. For longer than 9 month sections harmonic functions 



68 
 

are fitted instead of constant values and from this point of view the procedure is the same as 

the break detection part of Secondary Detection (D2011). Differing from Secondary 

Detection, solutions with exactly two breaks are accepted only, and the first and second 

breaks are expected in the periods [h1 − 14, h1 −1] and [h2, h2 + 13], respectively. So that, the 

final duration of an outlier-period is equal or greater than the pre-estimated duration. If h1 or 

h2 coincides with one endpoint of B, then one only break is searched, since the other endpoint 

of the outlier-period is defined by the endpoint of B. 

 

I-4.2. Secondary detection 

The parameterized penalty term of the Caussinus – Lyazrhi criterion is applied (eqs. 9-10), 

and here p = 1.8. There is no other change relative to ACMANT1. 

 

I-5. Exclusion of detected breaks 

I-5.1 Causes of possible exclusions 

Detected breaks may be deleted for the following reasons: 

i) If all the time series have break at the same time, the equation system of ANOVA is non-

determined. 

 

ii) A large number of simultaneous breaks reduce the reliability of the results, since the basic 

theory of the statistical homogenization is that the break is individual and the other station 

series are free from break at the same time. If the number of simultaneous breaks approaches 

to or exceeds the half of the number of time series within network, then there is a high risk 

that the correct series will be adjusted instead of the biased series. 

 

iii) The inclusion of very close breaks (in time) or breaks with insignificant shift-size reduces 

the accuracy, since the random error of v’ in eq. (13) increases with the shortening of the 

homogeneous period. 

 

iv) When a break is detected with bivariate detection, it is possible that the shift-size is 

significant only in one of the variables examined. 

 

v) The calculated shift sizes by ANOVA may indicate that a detected break is not significant 

statistically, in spite of it seemed to be significant during the detection phase. 

 

In accordance with i), ii) and iii), the number of simultaneous breaks is limited in ACMANT2 

even when all breaks seem to be significant, and, on the other hand, breaks with non-

significant shift sizes are always deleted. The technical solution of the exclusion of breaks is 

as follows. 

 

I-5.2. Significance of breaks 
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For the possible exclusion of one or more breaks, a significance order must be determined. 

For breaks which are detected in different phases (by different routines) of ACMANT2, the 

phase determines the order of significance, i.e. breaks detected in later phases of the 

procedure are considered to be more significant than those that detected in earlier phases, 

independently from other characteristics of the breaks. As a consequence, breaks of 

Secondary Detection are more significant than the breaks of Main Detection, the results of 

Main Detection overwrite the results of Pre-detection and the breaks of Main Detection are 

more significant than the breaks detected by Filtering of outlier periods. 

 

Sometimes the rank order of significance must be determined for breaks detected by the same 

routine. As the assessment of significance of break k is limited to the examination of the 

period between jk-1 and jk+1 (which includes 1 detected break), the single break model can be 

applied for these assessments and thus the use of t-test and its modified versions are 

appropriate here. t-test is applied with the simplification that the standard deviation (σ) is 

considered to be constant for a given series, it is because the signal-to-noise ratio is generally 

too low to estimate specific σ values for individual homogeneous sections with sufficient 

confidence. With this simplification, the calculation of t-statistic (τ) is given by (24). 
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In (24), l1 = jk – jk-1, l2 = jk+1 – jk, l = l1 + l2 and d denotes the shift size. For determining the 

order of significances only, instead of absolute significances, τ* (25) can be used instead of τ. 
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I-5.3. Reduction of the number of synchronous breaks 

In ACMANT2, the number of synchronous breaks is not allowed to reach the 50% of the 

number of time series which are homogenized together at the section including the 

synchronous break. This rule is valid both for Pre-Homogenization and Main 

Homogenization. In Pre-homogenization the number of breaks is checked separately for 

variables E and Z, while in Main Homogenization the break-list is always identical for E and 

Z until the final filtering of insignificant breaks, for technical reasons. For the limitation of 

synchronous breaks the least significant breaks are deleted from the break-list when it is 

necessary. The rank order of significance is determined by the origin of the break or with the 

calculation of τ*. If the timings of two breaks have 1 month difference only, then they are 

considered to be synchronous. In the Main Homogenization, a combination of the shift-sizes 

of E and Z is considered in d2 (26). 
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I-5.4. Exclusion of breaks due to too short section of homogeneous period 

The minimum distance between two adjacent breaks of the break-list is 5 months. The origin 

of the breaks is considered for determining and excluding the less significant break, if it is 

necessary for complying with the rule. Note that Filtering of outlier periods and Secondary 

Detection can detect shorter IHs than 5 months, but the biases due to such IHs are treated with 

interpolation and the breaks bordering such IHs are never included in break lists. 

 

I-5.5. Exclusion of insignificant breaks 

The significance of breaks is checked by t-test, separately for E and Z, both in Pre-

homogenization and Main Homogenization. In Main Homogenization, breaks with τ 

indicating insignificant shift-size at the 0.05 level are considered to be insignificant. If two 

adjacent breaks are insignificant, then only one break (with the smaller τ) is excluded in one 

particular step, thereafter the check of significance is repeated applying the reduced break-list. 

If more than two sequent breaks are insignificant, then the first and last insignificant breaks 

are excluded, thereafter the check of significance is repeated. 

In Pre-homogenization, only one break can be excluded in one specific step, i.e. the one with 

the lowest statistical significance. Here, modified t-statistics are calculated, i.e. dτ is examined 

instead of τ and the threshold statistic is lower (higher) for E (Z) than the relevant threshold of 

τ by the multiplier 0.842 (1.786). These modifications are based on test experiments. 

 

I-6. Adjustments before the homogenized section 

Relative homogenization often cannot be applied for early sections of time series when the 

density of observing network is inadequate. However, breaks of the homogenized section 

might be responsible for biases both within the homogenized section and before that. Thus 

adjustments can be applied for early sections of time series, even when break detection was 

not performed for them. Such adjustments will improve the data accuracy when the impact of 

detected breaks is not overwritten by some undetected breaks in the early sections. 

 

I-6.1. Concepts of treated section and homogenized section 

For treated sections the ratio of missing data and the length of data gaps are limited. Observed 

data out of the treated section do not take part in any calculation and they remain unchanged 

during the homogenization procedure. The homogenized section can be shorter than the 

treated section when the number of comparable time series and their spatial correlations are 

inadequate to create reliable reference series for some periods of the treated section. Each 

input time series has 0 or 1 treated section including 0 or 1 homogenized section (see their 

deduction in the Manual). Periods of the treated section out of the homogenized section are 

not subjected to break detection and outlier filtering, but the data of such periods may take 

part in gap filling, and they might be adjusted as well. 

 

I-6.2. Deduction of the adjustment terms for data before the homogenized section 
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In ACMANT2 the mean estimated bias of the first 30 years of the homogenized section is 

considered to be “persistent bias” and the relevant adjustment is applied for the treated section 

before the homogenized section. If the length of the homogenized section is shorter than 30 

years, then the persistent bias is zero by definition. The change of the adjustment-terms close 

to the beginning of the homogenized section is gradual to avoid creating seeming breaks due 

to the rapid alteration of adjustment terms. For this reason, adjustment terms change linearly 

in the 3 years before the homogenized section (from the adjustment terms of the first year of 

the homogenized section to those of the persistent bias). From the fourth years before the 

homogenized period the adjustment terms of the persistent bias will be applied backwards 

until the beginning of the treated section. 

 

I-7. Deduction of daily adjustment terms 

Monthly adjustment terms equal with the daily adjustment term in a middle day of months, 

more precisely: on 15 January, 14 February, and on 16 (15) of other months in non-leap years 

(leap years). These days are named middle days. For any other day of the year the adjustment 

term is calculated with linear interpolation between the adjustment terms of the two closest 

middle days. 

 

 

APPENDIX II. DIFFERENCES IN HOMOGENIZING Tmin RELATIVE TO 

HOMOGENIZING Tmax OR Tmean 

 

II-1. Detection on low time resolution 

In homogenizing Tmin (or homogenizing temperatures of tropical or monsoonal regions) 

always the univariate detection (formulas 3, 4 and 5) is applied.  

 

In the Main Detection, the coefficient in the modified Caussinus – Lyazrhi criterion (eq. 10) 

p = 1.4. 

   

In the Pre-homogenization eq. (18) is applied for determining p, but with modified 

parameterization: 

 

;6.21 p  ;3.12 p       0.203 p  

 

 

 

II-2. Monthly precision 

Two-phase step function is fitted instead of harmonic functions. There is no change here in 

the parameterization. 
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II-3. Filtering of outlier periods 

Eqs. (19) and (21) are simplified here to (27), as the modification of l due to seasonal 

accumulation of biases is not applicable here. 

 

275.0 dl  
(27) 

 

Another change is that in phase ii of this routine always step functions are fitted (and never 

harmonic functions). 

 

There is no change here in the parameterization. 

 

II-4. Secondary Detection 

In searching the most likely break positions around the maximum of accumulated anomalies, 

always step functions are fitted. 

 

Changes in the parameterization: 

Threshold for 5-month accumulated anomalies: 2.15 

Threshold for 10-month accumulated anomalies: 1.5 

p-coefficient of the modified Caussinus – Lyazrhi criterion: 2.0. 

 

II-5 Calculation of adjustment terms 

The biases of E only are calculated. In the model of Tmin homogenization the annual cycle of 

biases is zero, therefore the adjustment term is constant within homogeneous subperiods. 
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Abstract 

 

In 2013 the Israel Meteorological Service (IMS) began using the homogenization methods 

systematically. After an examination of several common homogenization methods recommended by 

WMO and ACTION COST-ES0601, a procedure for optimal break-points detection has been 

developed for the monthly maximum and minimum temperature time series. The present work 

describes this procedure along with a few results obtained for the period of 1950-2012. 

In our first experiments, it was found out that the absolute homogeneity tests applied to the 

temperature series as recorded in the Israeli meteorological stations gave insufficient results. 

Therefore, the relative methods which refer to the reference stations have been chosen. 

Our approach for optimal break-points detection integrates a number of advanced homogenization 

methods: ACMANT, HOMER, RHtestsV3 and AnClim. The reference series were based on more than 

30 stations. A cluster analysis was applied to find the most suitable reference stations for each base 

station. In making the final decisions on the break-points' locations, we were relying on the exclusive 

reliable metadata found in the IMS archive. Sometimes, however, the finally established location of a 

break-point was not among the events documented in a station's recorded history. After establishing 

the optimal (most approved) break-points' locations, the adjustment step of the homogenization 

procedure was carried out. 

 

 

1. INTRODUCTION 

 

Israel is located in the subtropical region next to the southeastern corner of the Mediterranean 

Sea, and its climate is varying from the Mediterranean climate in the northern and central 

parts of the country through the semiarid to arid climate in the southern and southeastern 

parts. Israel's climate is affected as well by the complex topography over a very small area: A 

coastal plain in the west through a mountain range that goes from north to south, in the central 

part of the country, and a deep depression - the Jordan – Dead Sea Valley, in the east. All 

these factors produce a wide climatic variety all over the country. It should be mentioned that 

the dynamics of urban development and intensive industrialization along with the expansion 

of agricultural activity and afforestation in the last sixty years, have produced dramatic 

changes in the country's landscape. All these complex factors make the analysis and the 

construction of a homogeneous series in Israel quite a challenge. 
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In general, inhomogeneity in the time series can be caused by several factors. In Israel, the 

typical factors causing inhomogeneity in the temperature data series are: 

 Relocation – almost all of our stations have changed their location during the stations' 

history, sometimes more than once. 

 Instrumentation – there were many thermometer replacements and calibrations 

recorded in the stations' history. A common replacement of manual instruments with 

electronic sensors that began during 1990s caused a break-point in most cases. 

Upgrading the electronic sensors in the following years was sometimes a source for 

additional break-points as well.   

 Change in screen design – a replacement of the original Stevenson screen with another 

type may cause a break-point in the temperature series. 

 In addition to these key factors, there were maintenance problems and changes in the 

station's vicinity including gradual changes like urbanization. 

 

In light of the aforementioned problems, a systematic use of the homogenization methods was 

adopted at the IMS in 2013. After examining several common homogenization methods 

recommended by WMO and ACTION COST-ES0601, a procedure for optimal break-points 

detection has been developed for the monthly maximum and minimum temperature time 

series. 

 

Three main problems have been found while carrying out the homogenization procedure in 

the relative mode: (a) scarcity of neighboring stations from the same climate region as that of 

the base station, (b) lack of stations with long temperature records, especially during the 

1950s and backward and (c) discontinuity of the data. In some cases there were just fragments 

of records, stations and periods. This last issue made it difficult and sometimes even 

impossible to construct a reference series because there was no common period for all the 

neighboring stations' time series (hereinafter NSTS). 

 

The aim of this work was to develop a technique enabling the best break-point location 

through an integration of the most suitable features of several homogeneity methods. The 

integrated homogenization model accompanied with a few examples of its application is 

described in Sections 2 and 3. 

 

 

2. METHODOLOGY 

 

2.1. Quality control 

 

Most of the temperature data (from both the base and neighboring stations) were undergoing a 

systematic quality control procedure. In addition, the HOMER fast quality control tool 

(Mestre et al., 2013) based on CLIMATOL (Guijarro, 2011) was applied to analyze the 

outliers, histograms and boxplots. The outliers detected by ACMANT (Domonkos, 2011) 

were analyzed as well. 
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2.2. Homogeneity methods and software 

The integrated approach proposed here is based on a combination of four main methods: 

 AnClim (Štěpánek, 2008) – This software contains several common homogeneity tests 

such as the SNHT (Alexandersson, 1986), Easterling-Peterson test (Easterling and 

Peterson, 1995) and Vincent test (Vincent, 1998). In our study, this software mainly 

serves for building the reference series and performing some basic absolute and 

relative homogeneity tests. The final decision on a break-point location with AnClim 

is being made after at least two different tests (using different methods) located at the 

same specific break-point.  

 RHtestsV3 (Wang and Feng, 2010) – This method is based on the penalized maximal t 

or F test (Wang et al., 2007; Wang, 2008). These tests are applied in both the absolute 

(PMF) and relative (PMT) mode. The RHtestsV3 preliminary results of the 

statistically identified dates of the break-points are verified versus the documented 

dates and fixed where needed. Then the significance of small shifts is reassessed. 

 ACMANT (The Adapted Caussinus-Mestre Algorithm for Networks of Temperature 

series) – One of the most recommended methods by WMO and COST ACTION and 

was found among those achieving very good results in the 2012 benchmark (Venema 

et al., 2012). This method is based on a bivariate detection of changes that includes a 

penalty term (Caussinus and Mestre, 2004). The ACMANT works fully automatically 

and its results are based on the stations combining the network. 

 HOMER (HOMogenization software in R) – One of the latest advanced methods that 

includes the finest features from several leading methods like PRODIG (Caussinus 

and Mestre, 2004), ACMANT and joint segmentation method (Picard et al., 2011). 

HOMER is an interactive method, which takes advantage of metadata. There are some 

subjective decision parts where an expert intervention is required. 

 

2.3. The homogenization model at the IMS 

The integrated model includes four main methods as described above: AnClim, ACMANT, 

RHtestsV3 and HOMER. The first step is an application of the absolute tests using AnClim 

and RHtestsV3. The second step is using the relative methods which are the core of this 

procedure. The whole model is presented in Figure 1: 

 



76 
 

 

 

 

 

Fig. 1. The IMS homogenization model. "HT" stands for "homogeneity tests" and "QC" for "quality 

control".  

 

2.3.1. Building the reference series 

First, an initial set of the reference stations, located in the same climate region as that of the 

base station, is built. Secondly, the boxplot and cluster analysis are applied to this initial set in 

order to eliminate the less related stations, using the 'fast climatol check' of HOMER. Then a 

weighted average based on the squared correlation coefficient (r2) is calculated between the 

base and each of the NSTS: 

 

  

   

 

yi – base series value at i-th time. i=1,…,n. 

y – average temperature of the base series. 

Qi – temperature value at i-th time. 

xj – the j-th neighboring station time series. j=1,…,k 

k – total number of neighboring stations. 

jx – average temperature of the j-th neighboring station. 

rj – correlation coefficient between the base and j-th neighboring station.  
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After building the reference series (using AnClim), it is transformed into the reference 

temperature anomaly series.  

 

2.3.2. Homogeneity tests using AnClim, RHtestsV3 and ACMANT 

At this step, the relative tests are applied to the base and reference temperature anomaly 

series. The significant outputs of AnClim are summarized and then RHtestsV3 is applied. The 

RHtestsV3 allows a user to modify manually the break-points' locations according to 

metadata. After the objective break-points detection with RHtestsV3, a modification of the 

dates is done on the base of the reliable metadata. The 'StepSize.wRef' function is used to 

reassess the significance of the updated break-points' dates. 

 

In parallel with the AnClim and RHtestsV3, ACMANT is also applied. The ACMANT 

performance is fully automatic and it uses a composite reference series for spatial 

comparisons. Application of ACMANT is done twice: first, with an automatic outliers' 

filtering and then, without it, after the removal of the manually approved ones. The outputs of 

the second run are taken into account as the final results of this test.            

 

2.3.3. Homogeneity tests using HOMER 

The use of HOMER obliges an expert to make some subjective decisions. The consequences 

of wrong decisions may lead to a false break-point detection and an impaired adjustment. 

After gaining experience with the three methods described in 2.3.2, we have a good 

knowledge about the break-points' locations, so it can be assumed that we are capable to make 

better decisions at the subjective parts of HOMER. 

 

HOMER is used mainly for verification of our results through (a) comparison with other 

methods, (b) analysis of our NSTS using a pairwise detection, and (c) comparison of the 

calculated correction factors at the adjustment step. 

 

2.3.4. Summarizing the outputs and establishing the final break-points' locations 

At this step, we summarize all the described outcomes and cross-check them with our 

metadata. It should be noted that the metadata comes into consideration only after the 

detection phase in order to validate and support the results. At this step, the final 

establishment of the optimal break-points' locations is made. The IMS archive contains 

exclusively reliable metadata. However, this archive is not complete, therefore several final 

break-points have no metadata support.  

 

2.3.5. Adjustment 

After the final establishment of the break-points' locations, we proceed to the adjustment step. 

It can be performed either manually or automatically with ACMANT or HOMER. The 

manual adjustment is based on the mean differences between the base and reference series. 

The same principle is applied in RHtestsV3. The distinction between the RHtestsV3 and the 

manual technique is that in the latter, each month is associated with its specific correction 
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factor while the RHtestsV3 uses the same mean correction factor (an annual average) for all 

the months. Both the ACMANT and HOMER make an automatic adjustment. Normally, we 

prefer the manual adjustment where (a) there is a lack of stations with a common period to 

perform a full ACMANT/HOMER run and/or (b) the final break-points' dates are resulted 

from a combination of different methods. However, in few cases the ACMANT adjustments 

are being used, especially where there are short time fragments of the NSTS making the 

building of the long united reference series and the derivation of the correction factors (for the 

entire period) almost impossible.  

 

 

3. RESULTS 

 

In this section, applications of several specific blocks of the homogenization model (Figure 1) 

are presented: use of the cluster analysis, RHtestsV3, HOMER, establishing the break-points' 

locations and adjustment. Also shown are the final results for the Negba maximum and 

minimum temperatures. 

 

3.1. Cluster analysis 

After choosing the most correlated neighboring stations located in the same climate region of 

the base station, a cluster analysis was applied to improve the reference series. In Figure 2, 

such application to the Negba minimum temperatures is presented. The annual mean 

correlation coefficients between the base station and each of the neighboring stations of Beit 

Jimal, Besor Farm, Mazkeret Batya are quite high: 0.78, 0.84, 0.91, respectively. Despite the 

fact that we were intuitively tempted to use these stations, due to their proximity to Negba, a 

cluster analysis brought into consideration other stations as the preferred ones. It was found 

out that it is quite a frequent case where for a minimum temperature series there is no intuitive 

“hint”. The spatial distribution of minimum temperatures typically has a local character, while 

that of the maximum temperatures usually represent a much wider area. In some cases there 

was no alternative, and due to a scarcity of the neighboring stations with common time 

periods, the less climatologically suitable stations were used. In such cases, the data adopted 

from a less suitable station (but still quite well correlated) were taken for the shortest time 

period as possible, only to complete the calculation. 
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Fig. 2. Cluster analysis for the Negba minimum temperatures. The red rectangle in the map embraces the 

stations selected by the cluster analysis. 

 

3.2. Analysis with RHtestsV3 

At this step, a base series meets with its reference series. The reference series consists of 

several NSTS. It is very important to know the number and quality of the neighboring stations 

included in each part of the reference series. The temperatures differences between the base 

and reference series obtained with the PMT method (Wang et al, 2007; Wang, 2008) are 

shown in Figure 3. In this case, it was decided to cut off the time series for the 

homogenization procedure by 2011, due to a break-point detected in 2012 which was caused 

by an electronic sensor replacement (the new sensor was found to be more sensitive). When 

the tested period was truncated in 2011, the break-point in 1998 became insignificant. 

Moreover, a metadata support was found for almost all the detected break-points. Several 

break-points detected at the beginning (up to the first 8 years) of the tested period were finally 

defined as false due to the inhomogeneity found in one, two, or three NSTS that comprised 

the reference series for that period (see 3.3). This is an example of how a small number of 

neighboring stations and their inhomogeneity can have a negative impact on the reference 

series that eventually may lead to a false outcome. 

 

Fig. 3. Negba: Monthly differences between the base and reference minimum temperature series (black), 

break-points and metadata (red).  
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3.3. Pairwise detection using HOMER 

Figure 4 introduces the pairwise detection (univariate detection) performed by HOMER. Each 

panel shows the annual differences between the base station and one of its neighbors. 

According to this figure, it seems like there are break-points in 1955, 1977, and 1995.  The 

break-point of 1977 was found to be true, while those of 1955 and 1995 eventually appeared 

to be false. It was found out that for these two latter break-points, the source for 

inhomogeneity was in the neighboring time series whereas the base series was detected as 

homogeneous for those periods. This was concluded through analyzing the results of the 

pairwise detection for the corresponding neighboring stations (not shown). These examples 

show how the NSTS may influence the reference series and lead to false detections in the base 

series. 

 

Fig. 4. Pairwise detection using HOMER for the Negba minimum temperatures. Each panel shows the 

difference in the minimum temperatures between the Negba and each of its neighboring stations. Vertical 

black lines represent the break-points.  

 

3.4. Establishing the optimal break-point location 

This is the final step of the break-points detection. Two examples are given in Tables 1 and 2. 

According to these tables, it is possible to obtain the optimal locations of the break-points. 

Table 1 summarizes the break-points, relevant metadata and methods for the Negba annual 

minimum temperature (Tn). As mentioned above, the metadata was used to validate the 

results, only after the detection phase. The break-points' locations were not forced by the 

metadata, to avoid any influence on the objective detection of the significant changes. In this 

case, the finally established break-points' locations were according to ACMANT, because 

there were (a) metadata support, (b) similarity to the results obtained with other methods and 
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(c) agreement with the definition of the 1955 and 1957 break-points as false (caused by 

inhomogeneity in the reference series, Figure 3).  

 

Table 1. The final break-points' locations for the Negba Tn detected by different methods, and relevant 

metadata. "E.P" stands for Easterling and Peterson (1995), which was the only method in AnClim that 

spotted the 1964 and 1971 break-points. Bold 'V' represents the finally chosen (optimal) break-points.  

Break points AnClim RHtestsV3 ACMANT Metadata 

1955 V V    

1957  V    

1964 E.P V V Relocation 

1971 E.P V V Thermometer replacement 

1977 V V V Relocation & Change in screen design 

 

 

In Table 2, showing the results for the Zefat minimum temperature series, we established the 

optimal break-points' locations according to RHtestsV3 for three main reasons: 

1) There was reliable metadata support for almost all the break-points. 

2)  The significant results were in common with other methods. 

3) For the period 1990-2012, a reliable reference series has been obtained, comprising   

of 3 to 5 NSTS and resembling quite well the climate signal in that period. 

 

Table 2. The final break-points' locations for the Zefat Tn series, detected by different methods and 

relevant metadata. AWS – automatic weather station. Bold 'V' represents the finally chosen optimal 

break-points. 

Break points AnClim RHtestsV3 ACMANT Metadata 

1990 V V V No metadata 

1992  V V Thermometer replacement 

1995  V  Thermometer replacement 

2000 V V V Calibration 

2004 V V  Starting the use of the AWS data 

2008  V  Electronic sensor replacement 

 

 

3.5. Comparison of different adjustment methods 

The results obtained with different adjustment methods for the Negba maximum temperature 

anomalies are displayed in Figure 5. It should be noticed that the signs and magnitudes of the 

correction factors are quite similar for all the methods (Figure 5b), except the quantile 

matching (RHtestsV3) which was found to be inadequate for our temperature series. In 

addition, it should be mentioned that the ACMANT considered our data only from 1953, 

because there were less than four NSTS for the period 1950 to 1952, which is not enough for 
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ACMANT's requirements. The manual and RHtestsV3 annual correction factors were 

identical (dissimilarities between these methods exist for the seasonal and the monthly 

adjustments, see 2.3.5). 

 

 

 

 

Fig. 5. The Negba annual maximum temperature anomalies' adjustment with different methods. Panel (a) 

shows four adjustment methods: manual, RHtestsV3 (both are based on mean adjustment), ACMANT 

(ANOVA) and RHtestsV3 (quantile matching). Panel (b) shows the annual correction factors [oC]. 

 

 

3.6. Final results for the Negba maximum and minimum temperature series 

The final results for the Negba temperature anomaly series are presented in Figure 6. The 

graphs show the base vs. the adjusted series for the maximum (Figure 6a) and minimum 

(Figure 6b) temperatures. The maximum temperature series has six break-points (green 

vertical lines), while the minimum temperature series has three break-points. The annual 

correction factors are summarized in Table 3. 
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Fig. 6. The Negba temperature anomaly series, base vs. adjusted, (a) for maximum temperature and (b) 

for minimum temperature. The break-points' locations are marked with green vertical lines. 

 

Table 3. The annual correction factors [oC] for the Negba maximum  

and minimum temperatures. 

Parameter Break-point 
Correction 
factor [oC] 

Tx 

1952 0.40 

1953 0.97 

1960 0.40 

1963 -0.10 

1967 -0.33 

1974 -0.15 

Tn 

1965 0.39 

1970 0.63 

1977 0.47 

 

 

b 

a 
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4. CONCLUSIONS AND SUMMARY 

 

This work presents the homogenization model developed at the IMS. This homogenization 

model is based on an integration of several advanced homogeneity methods. Such an 

approach enables raising, to the best of our knowledge, the reliability of break-points' 

locations. The absolute homogeneity tests were found to be insufficient for the Israeli long 

temperature series since they detected real climate signals as break-points. The relative 

homogeneity methods produced good results, especially when a cluster analysis was applied. 

An integrated approach allows merging the results obtained with different methods, getting 

the optimal break-points' locations, and minimizing the risk of a false break-point detection. 

 

The adjustment may be performed either manually, subject to the possibility of building a 

long and reliable reference series, or with ACMANT or HOMER if the time series of the 

neighboring reference stations have too short common periods. In addition, these two latter 

methods helped us to improve the estimates for the correction factors. 

 

The location of Israel in the subtropical region and the complexity of its climatic regime with 

several climate regions over such a small and narrow country make the homogenization 

procedure to be quite a challenge. This forces us to use different methods, according to 

availability and reliability of our data. With the integrated approach described in this paper, 

we can analyze and fix the long temperature series for different regions to find the optimal 

break-points' locations and to apply proper adjustments. That will enable us to construct a 

reliable long-term base series aiming to best understand the climate change in our region. 
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Abstract 

 

The Greater Mediterranean Region (GMR) has a very long and rich history in monitoring of the 

atmosphere, going back in time several centuries in some countries and at least to the mid of 19th 

century across much of the GMR. 

However, despite the efforts undertaken by National Meteorological and Hydrological Services 

(NMHS), research centres, universities and motivated individuals in Data Rescue (DARE) activities, 

available and accessible digital climate data are still mostly restricted to the second half of the 20th 

century for a few countries and since 1970's for most of the GMR. This reality is preventing the region 

from developing more robust, accurate and reliable assessments of climate variability and change and 

its adverse impacts on the socio-ecosystems of the Mediterranean Basin, at the same time it is 

impeding the development of optimum strategies to mitigate and/or adapt the countries to the current 

and future impacts of climate change. 

In addition, the fragmentation and scarcity of long-term and high-quality surface climate records is 

hampering our ability for better detecting, predicting and adapting the countries to present and future 

impacts of climate variability and change as well. This is particularly over this climate change ‘hot-

spot’ region. 

The WMO/MEditerranean (climate)DAta REscue (MEDARE) Initiative was set up to address 

developimg, accessible and traceable comprehensive long and high-quality instrumental surface 

climate datasets for the GMR. 

The MEDARE community exercises and implements its functions and actions throughout (4) working 

groups (WG1-WG4) under leading of rotational steering group (SG). 

This structure has allowed the MEDARE community to undertake many other organizational, 

implementation and dissemination activities in order to raise awareness on the importance of bringing 

historical climate datasets into the 21st century, which is paving the way to get achieved the 

MEDARE’s end-goal and objectives. 

Among very important objectives of MEDARE initiative are represented in the following lines: 

- To develop comprehensive, long and high-quality surface climate datasets for the GMR with a 

focus on the relevant essential climate variables (i.e Temperature, precipitation, air and sea 

pressure, .. etc.) of the Global Climate Observing System (GCOS) at different scales of time, 

which are currently required to support the work of the UNFCCC, the IPCC and the 

WMO/World Climate Program (WCP); 
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- To seek and mobilise resources and efforts at the national, regional and international scales in 

support of Data Rescue and Homogenisation (DARE&H) of long and key climate records 

over the GMR. 

MEDARE web-site for linking the MEDAREcommunity already implementd, updatied and 

maintained, while the on-line MEDARE portal metadata base infrastructure for the longest and key 

Mediterraneanclimate records: about 700 sites documented for mainly Tx(max temp)/Tn(min temp), 

RR(rainfall) and SLP(sea levei pressure) at daily (sub-daily) scales, puplated to be used by scientists, 

stakeholders, policy-makers and the general public within the region. 

Other efforts for recovering, digitising, quality controlling and homogenising total of 38 daily Tx and 

Tn time-series for various locations in the southern and eastern parts of the Mediterranean Basin, 

where their recent part extends into the first decade of the 21th century while for some of them data are 

available since the late part of the 19thcentury, are being completed under the EU-funded EUropean 

Reanalysis and Observations for Monitoring (EURO4M) project, linked to the World Meteorological 

Organization (WMO) Mediterranean (climate) DAta REscue (MEDARE) Initiative. 

Finally, build up the Mediterranean climate databases for GMR is being the end goal of the MEDARE 

Initiative. 

 

 

1. INTRODUCTION 

 

The MEditerranean (climate) DAta REscue (MEDARE) Initiative is:-  

– A joint-WMO effort (established on November, 2007) whose common goals being the 

enhancement of bringing historical climate datasets into the 21st century, which is 

paving the way to get achieved the MEDARE’s end-goal of building up the 

Mediterranean climate databases of  Greater Mediterranean Region (GMR); 

– Following the MEDARE recipe: bringing together climatologists and scientists from 

Mediterranean NMHS & Academia to exchange their experiences (both theoretical 

and operational) on DARE; 

– promoting a new culture of data and knowledge sharing within GMR; 

– Non-regularly-funded WMO project and run on a volunteer basis. 

MEDARE also integrated by most of the Mediterranean NMHS (Albania & Portugal not 

included yet) and endorsed by WMO EC-60 (June, 2008) and quoted by GFCS (2013) as one 

of DARE initiatives to be supported. 

 

 

2. THE RATIONALE & NEED FOR MEDARE 

 

Mediterranean region has a long and rich history in monitoring of the atmosphere, going back 

in time several centuries in some countries and at least to the mid of 19th century across much 



88 
 

of the GMR. However, limited availability and accessibility of long and high-quality climate 

series represents the biggest challenge in the region. 

This is hampering progress on our capability to detect, predict & adapt the countries to the 

impacts of climate variability & change and it is limiting the timely delivery of 

 

 

Oldest climate data source in the Algerian NMHS archive (1856-1861). Courtesy of Mehdi Kerrouche 

climate products and services. Following factors could be considered the key challenges: 

– short period climate records  (e.g. from 1970's onwards) availability and accessibility; 

– poor spatial coverage (limited observing stations), especially over southern and south-

eastern Mediterranean countries ; 

– lack of quality climatic time series . 

 

 

3. MEDARE COMPOSITION 

 

MEDARE community composed of 37 organizations, including 25 Mediterranean NMHS and 

11 research centres with about 100 individual members and  4 working groups (WG) as 

follows: 

-WG1. interests with inventorying/assessing/approaching of old material sources and 

holders; 
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-WG2. interests with DARE techniques and procedures (including digitization); 

-WG3. interests with approaches on best practices for quality controlling and 

homogenizing specific climate variables; 

-WG4. interests with promotional activities, bringing MEDARE to the wider scientific 

and other communities. 

Steering Group (SG) leads all MEDARE community activities; the 2nd SG is composed of: 

• Manola Brunet &SerhatSensoy (Co-chairs) 

• Victor Venema (University of Bonn) 

• Athanasios Sarantopoulos (Greece NMHS) 

• Fatima Elguelai (Morocco NMHS) 

• Khalid Elfadli (Libya NMHS) 

• Yolanda Luna (Spain NMHS) 

• JanjaMilkovic (Croatia NMHS) 

• DjamelBoucherf (Algeria NMHS) 

• MesutDemircan (Turkey NMHS) 

• Marius Theophilou (Cyprus NMHS)  

 

 

(MEDARE 2nd SG (Istanbul, Turkey, 27-28/Sep/2012) 

 

 

4. MEDARE OBJECTIVES 

 

MEDARE has a wide spectrum of goals and objectives on regional and national scales 

which could be briefed as following:  

● Fostering DARE projects at national, sub-regional and regional scales; 

● Mobilising resources (human and financial) to undertake DARE projects over the 

GMR; 

● Innovating on DARE techniques (from efficient data transfer into digital format to 

time-series QC and homogenisation); 
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● Capacity building through training activities (regional workshops and tailored training 

programs); 

● Increasing awareness on the need for DARE among stake-holders and decision-

makers (several dissemination material elaborated and distributed); 

● Linking MEDARE members to other DARE initiatives to better coordination and 

avoid duplication with special links to ECA&D and ICA&D and WMO DARE-I. 

 

 

5. MAIN PROGRESS & ACTIVITIES MADE SINCE THE LAST (3) YEARS 

 

i. Updating and maintaining the MEDARE web-site for linking the MEDARE 

Community 

ii. Defining, implementing and populating the MEDARE portal Metadata Base 

(http://app.omm.urv.cat/urv)with country and research projects metadata on 

long and key Mediterranean climate records: about 700 sites documented for 

mainly min. & max. temperature (Tn/Tx) and rainfall (RR) as well as sea level 

pressure (SLP) variables at daily (sub-daily) scales  

iii. Paving the way for MEDARE becoming a WMO/WIS Data Collection and 

Production Centre (DCPC) 

iv. Undertaking DARE activities over North Africa and Middle East countries 

under the opportunity that brought us by EU-EURO4M 

project(EUropean Reanalysis and Observations for Monitoring project) and in 

cooperation with NMHS in these areas 

 

 



91 
 

6. MEDARE 

 

6.1.MEDARE web-page 

MEDARE main online web-page established since 2008’s for linking the MEDARE 

Community & joint users. 

http
://w

ww.omm.urv.cat/M
EDARE/index.html

 

MEDARE main web-page 

 

6.2.Medare portal metadata base 

It is managed by C3/URV (Centre for Climate Change (C3), University Rovira i Virgili, 

Tarragona, Spain) and ccontributed mainly by Med. NMHS, but with a significant input from 

the DARE component of the EURO4M project: 35 metadata providers & 261 users. 

656Total

8Turkey

18Tunisia

72Spain

20Slovenia

56FYR of Macedonia

30Morocco

28Libya 

3Lebanon

12Jordan

54Italy

15Israel

44Greece

14France

62Egypt

13Croatia

10Bulgaria

7Andorra

190Algeria

No. of observing sites

in MEDARE metadata base
Country name

656Total

8Turkey

18Tunisia

72Spain

20Slovenia

56FYR of Macedonia

30Morocco

28Libya 

3Lebanon

12Jordan

54Italy

15Israel

44Greece

14France

62Egypt

13Croatia

10Bulgaria

7Andorra

190Algeria

No. of observing sites

in MEDARE metadata base
Country name
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The portal is the on-line accessibility (psw protected), but accessible through Toulouse GISC, 

with remarkable improvement in coverage over southern and south-eastern areas. It is being 

also useful for identifying the “TARGET” records to be developed (digitised and 

homogenised) but this only contains METADATA, NO DATA. 

 

 

 

 

The MEDARE Metadata Base: contributions & access 

 

 

The MEDARE portal and Metadata Base: easy access and using 
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6.3.MEDARE as WIS/DATA collection and production centre (DCPC): steps taken 

&status 

MEDARE endorsed by the Spanish PR (16th March 2011) and starting the process and 

fulfilling in the CBS Expert Team on GISC-DCPC Demonstration Process (ET-GDDP) 

questionnaire. A test account & the ET-GDDP audit of MEDARE metadata (in compliance 

with WMO/WIS standards) completed on July 2012, on August 2012, MEDARE metadata 

publicly available on the Toulouse GISC site: (http://wisp.meteo.fr:8080/openwis-user-

portal/srv/en/main.home),and on the MEDARE portal: (http://app.omm.urv.cat/urv/). 

 

 

 

6.4.The MEDARE datasets under development 

Based on MEARE formula (bringing together NMHS & Academia) and under the EU-FP7 

EURO4M project, the first ancient series are being recovered and populated at the MEDARE 

database. 
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MEDARE DARE activities over southern and south-eastern Mediterranean countries under EURO4M 

(recovering, digitising and quality controlling processes) 

 

The focus put on southern (North Africa) and eastern Mediterranean countries , involving the 

recovery & development of ancient climate daily (Tx/Tn, RR (about 65 series) and hourly 

SLP (38 series) from various sources (from digitisation to QC & homogenisation). Combining 

process of the ancient parts with recently observations fractions by data exchange agreements 

with several NMHS (e.g. Algeria, Cyprus, Libya, Jordan…) for developing long and high-

quality climate time-series already started. 

 

6.4.1.MEDARE dare activities over southern and south-eastern Mediterranean 

countries under EURO4M (recovering, digitising and quality controlling processes) 

A total of 38 daily Tx and Tn time-series for various locations in the southern and eastern 

parts of the Mediterranean Basin have been selected ; their recent part extends into the first 

decade of the 21st century, while for some of them data are available since the late part of the 

19th century. 

 

 

Location of sites with Tx/Tn data series that have been merged and homogenised 
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Data availability for the sites selected 

 

6.4.2.Homogenisation methods & results (Cited by: D. Efthymiadis   et al.  2013) 

The daily time series selected have been converted into monthly means and then subjected to 

homogenisation following two approaches:  

(1) the ACMANT method; 

(http://www.c3.urv.cat/data.html)  

(2) the HomeR method. 

(http://www.homogenisation.org/v_02_15/index.php?option=com_content&view=article&id

=93:homer&catid=1:general&Itemid=1)  

 The homogenisation methods have identified a series of breaks and estimated adjustment 

factors which are necessary for making the original time series homogeneous over their 

overall span. 

 

The density of breaks detected, i.e. the number of breaks per year, is similar in both the 

modern and ancient periods of data . However, since the stations network declines back in 

time the number of breaks per station available is higher in the early data periods and 

especially before the mid of 20th century. 

 

 

Original and ACMANT-homogenised times series for   Algiers (Algeria) 
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Number of ACMANT-detected breaks per year and per station for Tx and Tn. 

 

The stations meta-data over the ancient period are poorly documented in the data sources used 

for the data recovery, making difficult the attribution of breaks. Nevertheless, certain breaks 

coincide with stations relocation or stations-data merging points within the merged-data series 

been homogenized. While the two homogenization methods produce comparable results, 

discrepancies are also observed, especially in the data-sparse decades of the late of 19th and 

early of 20th centuries. 

 

 

Low-pass filtered temperature anomalies (°C) of homogenised series for the average of selected south-

western Mediterranean stations (upper panel) and Libyan stations (lower panel) 

 

Another factor affecting the homogenization effectiveness is the various data gaps and the 

intermittent character of the data time series recovered. It is expected that as more stations 

data may additionally be recovered in this geographical area, the two methods’ homogenized 

products will further converge resulting in time series of increasing reliability and thus 

suitable for long-term studies. 

 

 

7. CONCLUSIONS 

 

 MEDARE wants to contribute by enhancing GMR climate data availability and 

accessibility; 

 Long-term & high-quality climate series are the basic input that underpin climate 

products and services; 
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 The elaboration of some changes in mean and extreme states of the climate or 

decadal climate prediction, demand the longest and more reliable climate information; 

 Historical climate series should be contemplated as global cultural heritage to be 

preserved, developed and made freely accessible;  

 The application of the ACMANT and HomeR methods on the long-term data-

merged series leads to similar homogenized and Tx products;  

 The data recovered together with existing data bases and other ongoing data-

rescue efforts will provide an insight in the historical climatic variations over the 

southern and eastern parts of the Mediterranean Basin and will shed more light on the 

origins and the potential response of the overall Mediterranean climate to natural and 

anthropogenic forcing.  
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Abstract  

 

Monthly mean wind speed data were gathered from all Spanish series with a minimum of 10 years of 

data in the period 1951-2013, resulting in the selection of 233 series. Monthly wind speed averages 

were initially drawn from daily wind runs, but since they had too many missing data, mean wind speed 

recorded at 07, 13 and 18 UTC were obtained as well. These datasets were homogenized by means or 

the R package Climatol twice: 1) using a ratio normalization of the data; 2) applying a cubic root 

transformation to the data and standardizing them. Around two thirds of the series were found 

inhomogeneous through both normalization methods, which gave also similar results in terms of mean 

RMSE when estimating the series from the neighboring stations and mean SNHT of the final 

homogenized series. But the overall correlations of the wind series were not good enough, and showed 

a poor spatial coherence. Wind speed series were then extracted from the NCEP reanalysis to explore 

their potential value as reference series, but more than 80% of them were found inhomogeneous, 

probably because of their less noisy nature. Therefore, wind speed seems an element very prone to 

inhomogeneities, since it is very sensitive to obstacles and surface roughness changes in the 

surroundings of the observatories, and at the same time difficult to homogenize, because local air 

circulations as thermal winds may contribute to a significant part of the wind speed values, worsening 

the correlations between neighboring stations in complex regions. Anyway, wind speed trends were 

computed from these preliminary homogenization exercises, yielding negative figures mostly ranging 

between -1 and -2 m/s/century in the colder months of the year. 

 

 

1. INTRODUCTION 

 

Wind is an important climatic element for many economic areas: agriculture (modulating 

evapotranspiration), water resources (controlling evaporation from dams and natural 

surfaces), leisure (outdoor activities, sailing, etc),  and renewable energy production. For this 

reason, many work has been devoted to study its spatial and temporal variability (McVicar et 

al., 2012, refer 148 papers on wind speed trends). 

 

Wind speed has been traditionally measured in meteorological observatories with cup 

anemometers, although FUESS type used differential dynamic air pressure, and in recent 

times sonic anemometers are deployed as well. Changes of instrumentation or calibration 

drifts (e. g., increase of friction in the rotating axis) are a source of inhomogeneities in the 

series, as are instrument relocation or changes in the surroundings (new buildings, growing 

trees, etc), since wind is very sensitive to obstacles, orography, and surface roughness. 
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Yet many variability studies do not try to homogenize these series, but just to select those 

having a long period of observation which appear of a reasonable quality according to meta-

data, visual inspection or basic comparison with a suitable reference (Dadaser-Celik and 

Cengiz, 2014). 

 

Wan et al. (2010) did a thorough adjustment and homogenization of 117 Canadian wind 

stations with a minimum of 45 years of observation using the package RHtestV2 (Wang and 

Feng, 2007), and a recent paper by Azorín-Molina et al. (2014) also applied an 

homogenization package (AnClim, by Stepanek, 2004, using MM5 output as reference series) 

in their study of 67 wind speed series from Portugal and Spain selected for completeness in 

the period 1961-2011. 

 

In this work, a more extensive homogenization is applied to most Spanish wind speed series, 

testing different approaches whose results are discussed, to end with a preliminary evaluation 

of the trends of the homogenized series. 

 

 

2. METHODOLOGY 

 

2.1. Data 

Monthly mean wind speed data were gathered from all Spanish series with a minimum of 10 

years of data in the period 1951-2013, resulting in the selection of 233 series. Monthly wind 

speed averages were initially drawn from daily wind runs, but since they had too many 

missing data, mean wind speed recorded at 07, 13 and 18 UTC were obtained as well. These 

latter values were an 8 % higher in average than those computed from daily wind runs. 

Figure 1 shows the number of data from both origins, the sharp increase in 1961 being due 

because data digitization from that year on were prioritized. 

 

To complement observational series, wind speed monthly averages from NCEP reanalysis 

(Kalnay et al., 1996) were also downloaded from NOAA servers. 

 

2.2. Homogenization method 

These series were homogenized with the 'Climatol' R package (Guijarro, 2014), that provides  

automatic quality control (outlier correction), homogenization (shift correction) and missing 

data attribution. The package begins by normalizing all data and computing a reference series 

for each observed series by averaging up to 10 data (if available) at every time step. As 

reference data are chosen by proximity, nearest data can be used even without any common 

period of observation with the problem series, taking advantage of short observational series 

that otherwise would be disregarded. 
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Series of anomalies are then computed by subtracting the reference series from the original 

series, allowing a simple detection of outliers (which are rejected if lying beyond a prescribed 

threshold) and breaks (shifts in the mean). Shift detection is performed by the well known 

SNHT test (Alexandersson, 1986), applied in stepped windows first to cope with multiple 

breaks, and then on the whole series to get all the power of the test. 

 

These reference series are not assumed to be homogeneous, but only significantly less 

inhomogeneous than the original series. Therefore, an iterative application of the detection 

algorithm from big to small inhomogeneities in successive passes is performed, splitting the 

series at each noticeable break. Finally, newly computed reference series are straightforwardly 

used to fill any missing data in the series, including the reconstruction of the split series 

generated in the break detection process. 

 

This methodology is able to yield results of a quality comparable with other good methods (as 

shown in http://www.climatol.eu/DARE/testhomog.html), and was applied to monthly wind 

speed series from wind runs (WRun), wind speed measured three times per day (WSm3) and 

NCEP reanalysis (WSRe), with two kind of normalizations: ratio to the series means, and full 

standardization. Ratio normalizations are normally used with variables with a zero lower limit 

and an L-shape probability distribution, while full standardization (removing the mean and 

dividing by the standard deviation) is applied to variables with a (near) normal distribution. 

Therefore, wind speed data were cubic root transformed (when greater than 1.0) in order to 

normalize their probability distribution. 

 

Finally, trends of the homogenized series were obtained by regression with time, with the help 

of a post-processing function of the same computer package. 

 

 

Fig. 1. Number of average monthly wind speed data available from daily wind runs and from observations 

at 07, 13 and 18 hours UTC. 
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3. RESULTS AND DISCUSSION 

 

3.1. Homogenization results 

The first exploratory graphics yielded by Climatol show correlograms quickly decaying with 

distance, resulting in a spatially incoherent distribution of stations clustered according to their 

inter-correlations (Figure 2, upper row). This points to a high influence of topography and 

other features of the surroundings of the observatories on their wind measurements, 

precluding the use of nearby series as the better references. Wang (2008) already noticed that 

a reference wind speed series built by averaging neighboring stations gave worse results than 

another of geostrophic wind calculated from homogenized series of pressure. Yet the use of 

pressure gradients does not account for local thermal winds (see or valley breezes) that may 

contribute to a high portion of the average wind speed in regions with complex orography and 

coastal configuration.  

 

 

Fig. 2. Correlograms (left) and spatial distribution of clustered stations (right) of observed (up) and 

reanalysis (down) wind speed series. Cluster analysis was limited to a maximum of 100 stations, the other 

133 being represented by dots in the upper right map. 
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To account for this local wind circulations, outputs from mesoscale model simulations would 

be a better reference, as those from MM5 model used by Azorín-Molina et al. (2014), 

although its 10 km resolution is insufficient to capture most small scale thermal winds. 

Resolutions of 1 km or less would be needed to achieve a full picture of air circulation near 

the ground, but these simulations are very costly in computer requirements, hindering their 

use as references for the homogenization of long wind series. Therefore, reanalysis products 

are a more affordable source of reference series for wind homogenization studies, and the 

NCEP series gathered here display a better spatial consistency than the observational series 

(Figure 2, lower row). However, their density is much lower than that of the observational 

series, and then a direct application of Climatol to a joint (observed plus analyzed) data-set 

would be using as references more nearby measured series than those more distant of the 

reanalysis. For these reason, homogenization has been applied separately to each dataset as a 

first approach in this work. 

 

Results of the different homogenizations performed are summarized in Table 1, containing 

the number of corrected outliers and breaks, the percentage of inhomogeneous series, the 

mean RMSE of the data when computed from nearby stations and the mean SNHT of the 

homogenized series. Both ratio and standardization normalization types gave similar results in 

the wind run series, with slightly better (lower) values of RMSE and SNHT averages with the 

ratio normalization, more breaks and less outliers, making this the preferred normalization 

strategy for this variable. But this is not so clear in the series computed from three hourly 

observations (WSm3): Mean RMSE is also slightly lower with the ratio normalization (R), 

but the mean SNHT of the homogenized series is lower with the full standardization of cubic 

root transformed data (S3r). This is probably due to the higher number of breaks corrected, 

that could be explained by a lower noise in the series of cubic root transformed data. The 

number of outliers is also noticeable, more than doubling that of the ratio normalization. 

Around two thirds of the observational series appear as inhomogeneous, with one or more 

breaks corrected, while only about one third of the Spanish series analyzed by Azorín-Molina 

et al. (2014) were found inhomogeneous during 1961-2011. 

 

No outlier was detected in the reanalysis series with any of the normalization types, but they 

are not free from shifts in the mean, with 31 and 36 breaks detected and corrected in the two 

homogenization processes. Moreover, as there are only 22 series coming from reanalysis, the 

percentage of inhomogeneous series is far higher than expected: 81.8% with the ratio 

normalization and 90.9% with the full standardization. Most of the breaks are detected in the 

second stage of the process, when SNHT is applied to the whole series of anomalies, since 

only 2 and 3 breaks are detected in the first stage respectively, with the stepped windows  

SNHT. A possible explanation, to be further investigated, is that the presumed lower noise of 

the reanalysis series allows the test to achieve significant values that would not be reached in 

more irregular observational series. As to RMSE and SNHT figures, the full standardization 

of cubic root values strategy yield better results in this case. 

 



103 
 

 

Table 1. Outliers and breaks corrected, percentage of inhomogeneous series, mean RMSE of the data 

when computed from nearby stations and mean SNHT of the resulting homogenized series, for the 

three data-sets WRun (wind speeds computed from wind daily runs), WSm3 (average wind speed 

measured three times per day) and WSRe (wind speed from reanalysis). Homogenizations were 

applied with two different settings: ratio normalization of original data (R) and full standardization of 

cubic root transformed data (S3r). 

 

 Outliers Breaks % Inhom. Mean RMSE Mean SNHT 

WRun (R) 71 268 64.4 0.38 8.30 

WRun (S3r) 75 240 60.1 0.41 9.24 

WSm3 (R) 38 360 66.5 0.46 10.64 

WSm3 (S3r) 97 409 68.2 0.48 9.50 

WSRe (R) 0 31 81.8 0.42 10.2 

WSRe (S3r) 0 36 90.9 0.40 8.28 

 

 

3.2. Trends of the homogenized wind speed series 

Annual trends computed from the three homogenized monthly wind speed datasets and both 

methods of normalization are shown in Figure 3, displaying a majority of decreasing values 

between -0.02 and -2.50 m/s/century. Wind runs present less negative trends than wind 

observed three times per day, and the ratio normalization also yield less negative trends than 

the full standardization, which generates some very negative outliers. This fact makes the 

ratio normalization to be preferred to the standardization of cubic root transformed data, 

although both gave similar results in therms of RMSE and SNHT of the homogenized series.  

 

On the other hand, reanalysis series have less negative trends than the observational datasets, 

backing the hypothesis of the influence of increasing surface roughness on the negative trends 

of wind speed series observed in many regions (Vautard et al., 2010; Wever, 2012). 
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Fig. 3. Annual trends computed from the three homogenized monthly wind speed datasets and both 

methods of normalization. 

 

Monthly trends of the three observations per day wind speed monthly averages are presented 

in Figure 4, showing the higher wind decreases of around -2 m/s/century from November-

December until May, while in the warmer months, from June to October, trend values are 

near -1.5 m/s/century. 

 

This seasonal distribution of trends is in accordance with Azorín-Molina et al. (2004) results, 

although their values were weaker and even positive in summer. But they used a lower 

number of stations (less than 50 from Spain), did not include the Canary islands, and the 

period of study was shorter (1961-2011). 

 

 

Fig. 4. Monthly trends of the homogenized (with ration normalization method) wind speed averages of 

three observations per day. 
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4. CONCLUSIONS AND FUTURE WORK 

 

The Climatol package has allowed an easy homogenization of two datasets of 233 wind speed 

Spanish series with two different normalization methods. 

 

Wind series appear to be very sensitive to changes and local influences, and are difficult to 

homogenize, especially in regions with complex orography and coastal configuration, because 

nearby stations may be poorly correlated. 

 

Most wind speed trends are negative, especially in winter, with typical values between -1 and 

-2 m/s/century. Trends of reanalysis series are less negative than the observational series, 

pointing at a possible influence of an increasing roughness in the surroundings of the 

observatories. 

 

Future work will be devoted to further investigating the benefits of using reanalysis products 

as a source of reference series to improve the homogenization of the wind speed 

climatological series, and also to study the geographical distribution of wind speed trends on 

land and sea, to ascertain the influence of roughness changes on the observed trends. 

 

 

Acknowledgements 

NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 

from their Web site at http://www.esrl.noaa.gov/psd/ 

 

 

References 

 

Alexandersson H (1986): A homogeneity test applied to precipitation data. Jour. of Climatol., 6, 661-675. 

Azorín-Molina C, Vicente-Serrano SM, McVicar TR, Jerez S, Sánchez-Lorenzo A, López-Moreno JI, Revuelto 

J, Trigo RM, López-Bustins JA, Espirito-Santo F (2014): Homogenization and Assessment of Observed 

Near-Surface Wind Speed Trends over Spain and Portugal, 1961-2011. J. of Climate, 27:3692-3712. 

Dadaser-Celik F, Cengiz E (2014): Wind speed trends over Turkey from 1975 to 2006. Int. J. Climatol., 

34:1913-1927. 

Guijarro JA (2014): User's Guide to Climatol. 40 pp., http://www.climatol.eu/climatol-guide.pdf 

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J,  

Zhu W, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, 

Reynolds J, Jenne R, Joseph D (1996): The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. 

Soc., 77, 437-470. 

Li Z, Yan Z, Tu K, Liu W, Wang Y (2011): Changes in wind speed and extremes in Beijing during 1960-2008 

based on homogenized observations. Advances in Atmospheric Sciences, 28:408-420. 



106 
 

McVicar TR, Roderick ML, Donohue RJ, Li LT, Niel TGV, Thomas A, Grieser J, Jhajharia D, Himri Y, 

Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012): Global review and 

synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 

416-417: 182-205. 

Stepanek P (2004): AnClim: Software for time series analysis and homogenization. Department of Geography, 

Faculty of Natural Sciences, Masaryk University. 

Vautard R, Cattiaux Yiou P, Thépaut JN, Ciais P (2010): Northern Hemisphere atmospheric stilling partly 

attributed to an increase in surface roughness. Nat. Geosci., 3, 756–761, doi:10.1038/ngeo979. 

Wever N (2012): Quantifying trends in surface roughness and the effect on surface wind speed observations. J. 

Geophys. Res., 117, D11104, doi:10.1029/2011JD017118. 

Wan H, Wang XL, Swail VR (2010): Homogenization and Trend Analysis of Canadian Near-Surface Wind 

Speeds. J. of Climate, 23:1209-1225. 

Wang XL, Feng Y (2007): RHtestV2 user manual. Climate Research 

 Division, Science and Technology Branch, Environment 

 Canada, 19 pp. 

Wang XL (2008): Accounting for Autocorrelation in Detecting Mean Shifts in Climate Data Series Using the 

Penalized Maximal t or F Test. Jour. Appl. Meteor. and Climatol., 47:2423-2444. 



107 
 

MATHEMATICAL QUESTIONS OF SPATIAL INTERPOLATION  

OF CLIMATE VARIABLES 

 

 

Tamás Szentimrey, Zita Bihari, Mónika Lakatos 

 

Hungarian Meteorological Service 

(szentimrey.t@met.hu) 

 

 

Abstract 

 

We focus on the basic mathematical and theoretical questions of spatial interpolation of 

meteorological elements. Nowadays in meteorology the most often applied procedures for spatial 

interpolation are the geostatistical interpolation methods built also in GIS software. The mathematical 

basis of these methods is the geostatistics that is an exact but special part of the mathematical 

statistics. However special meteorological spatial interpolation methods for climate variables also can 

be developed on the basis of the mathematical statistical theory. The main difference between the 

geostatistical and meteorological interpolation methods can be found in the amount of information 

used for modeling the necessary statistical parameters. In geostatistics the usable information or the 

sample for modeling is only the actual predictors, which are a single realization in time. While in 

meteorology we have spatiotemporal data, namely the long data series which form a sample in time 

and space as well. The long data series is such a speciality of the meteorology that makes possible to 

model efficiently the statistical parameters in question. The planned topics to be discussed are as 

follows. 

– Interpolation formulas depending on the spatial probability distribution of climate variables.  

– Estimation and modeling of statistical parameters (e.g.: spatial trend, covariance or variogram) 

for interpolation formulas using spatiotemporal sample and supplementary model variables 

(topography).  

– Use of background information (e.g.: dynamical forecast results, satellite, radar data) for spatial 

interpolation, data assimilation. 

– Creation of gridded climatological databases. 

 

 

1. INTRODUCTION 

 

First let us consider the abstract schema of the meteorological examinations. The initial stage 

is the meteorology that means the qualitative formulation of the given problem. The next 

stage is the mathematics in order to formulate the problem quantitatively. The third stage is to 

develop software on the basis of the mathematics. Finally the last stage is again the 

meteorology that is the application of the developed software and evaluation of the obtained 

results. In the practice however the mathematics is sometimes neglected. Instead of adequate 

mathematical formulation of the meteorological problem ready-made software are applied to 

solve the problem. Of course in this case the results are not authentic either. 
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Concerning our topic we have the following question. What kind of mathematics of spatial 

interpolation is adequate for meteorology?  Nowadays the geostatistical interpolation methods 

built in GIS software are applied in meteorology. The mathematical basis of these methods is 

the geostatistics that is an exact but special part of the mathematical statistics. The speciality 

is connected with the assumption that the data are purely spatial. Consequently, as we see it, 

the geostatistical methods cannot efficiently use the meteorological data series while the data 

series make possible to obtain the necessary climate information for the interpolation in 

meteorology.  
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SPATIAL INTERPOLATION      
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EXAMINATION OF  
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for arbitrary location  

(network planning) 

e.g.,  automatic stations  

 

FORECAST 

e.g.,  data assimilation, 

variational analysis 

         : data and method or/and result 

         : only method or/and result 

         : only data  

 

Fig. 1. Block diagram for the possible connection between various basic meteorological topics and systems 

 



109 
 

Modeling of the climate statistical parameters is a key issue to the interpolation of 

meteorological elements and that modeling can be based on the long data series. However the 

data series are usually affected by inhomogeneities (artificial shifts), due to changes in the 

measurement conditions (relocations, instrumentation) therefore the direct analysis of the raw 

data series can lead to wrong conclusions. In order to deal with this crucial problem many 

statistical homogenization procedures have been developed for detection and correction of 

these inhomogeneities. Similarly to the connection of interpolation and homogenization in our 

conception the meteorological questions cannot be treated separately. Therefore we present a 

block diagram (Fig. 1) to illustrate the possible connection between various important 

meteorological topics. The software MASH (Multiple Analysis of Series for Homogenization; 

Szentimrey, 1999, 2014) and MISH (Meteorological Interpolation based on Surface 

Homogenized Data Basis; Szentimrey and Bihari, 2007, 2014) were developed by us. These 

software were applied also in CARPATCLIM project. 
 

 

2. MATHEMATICAL OVERVIEW OF SPATIAL INTERPOLATION PROBLEM  

IN METEOROLOGY 

 

According to the interpolation problem the unknown predictand  tZ ,0s  is estimated by use 

of the known predictors  tZ i ,s   Mi ,...,1 where the location vectors s  are the elements 

of the given space domain D  and t  is the time. 

 

2.1 Additive model of spatial interpolation  

The type of the adequate interpolation formula depends on the probability distribution of the 

meteorological variable. Assuming normal distribution (e.g. temperature) the additive (linear) 

formula is adequate. 

 

2.1.1 Statistical parameters 

In general the interpolation formulas have some unknown interpolation parameters which are 

known functions of certain statistical parameters. At the additive interpolation formulas the 

basic statistical parameters can be divided into two groups such as the local and the stochastic 

parameters. The local parameters are the expected values     MitZ i ,...,0,E s . The 

stochastic parameters are the covariance or the variogram values belonging to the predictand 

and predictors such as, 

c :   predictand-predictors covariance vector,  

C :  predictors-predictors covariance matrix,  

γ :   predictand-predictors variogram vector, 

Γ :  predictors-predictors variogram matrix.  

The covariance is preferred in mathematical statistics and meteorology while the variogram is 

preferred in geostatistics. 
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2.1.2 Linear meteorological model for expected values  

At the statistical modeling of the meteorological elements we have to assume that the 

expected values of the variables are changing in space and in time alike. The spatial change 

means that the climate is different in the regions. The temporal change is the result of the 

possible global climate change. Consequently in case of linear modeling of expected values 

we assume that 

 

      ii EttZ ss  ,E    Mi ,..,0  (1) 

 

where  t  is the temporal trend or the climate change signal and  sE  is the spatial trend.  

 

2.1.3 Additive (Linear) Interpolation Formula 

Assuming the linear model (1) the appropriate additive meteorological interpolation formula 

is as follows,  

   





M

i

ii tZtZ
1

00 ,, ss   

where 1
1




M

i

i   because of unknown  t . 

The optimal interpolation parameters  Mii ,...,1,0   minimize the root-mean-square 

error,    
























2

00 ,,E tZtZRMSE ss .  

These optimal parameters are known functions of statistical parameters! 

The optimal constant term is:       



M

i

ii EE
1

00 ss  

The vector of weighting factors  M ,..,1

T λ  can be written in covariance form 

  1

1T

1T
TTT 1 












 
 C

1C1

cC1
1cλ , 

or equivalently in variogram form  

  1

1T

1T
TTT 1 












 
 Γ

1Γ1

γΓ1
1γλ . 

Consequently the unknown statistical parameters are the spatial trend differences 

    MiEE i ,...,10  ss and the covariances Cc, . In essence these parameters are climate 

parameters which in fact means we could interpolate optimally if we knew the climate.  
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Remark 

Unfortunately inadequate formulas are often applied in the practice:  

- Inverse Distance Weighting (IDW):  

   00   that is excluding spatial trend, and  Mii ,...,1  based on distances are   

   not optimal weighting factors. 

- Ordinary kriging: 00   excludes the spatial trend. 

Adequate formulas are in meteorology:  

- Universal kriging formula,  

- Regression (residual, detrended) kriging formula. 

But in geostatistics modeling of statistical parameters is based on only the actual predictors. 

 

2.1.4 Possibility for modeling of unknown statistical parameters in Meteorology 

The special possibility in meteorology is to use the long meteorological data series for 

modeling of the climate statistical parameters in question. The data series make possible to 

know the climate in accordance with the fundament of statistical climatology! 

The main difference between geostatistics and meteorology can be found in the amount of 

information being usable for modeling the statistical parameters. In geostatistics the usable 

information or the sample for modeling is only the actual predictors    MitZ i ,...,1, s  

which belong to a fixed instant of time, that is a single realization in time. While in 

meteorology we have spatiotemporal data, namely the long data series which form a sample 

in time and space as well and make possible to model the climate statistical parameters in 

question. If the meteorological stations  Kkk ,..,1S   DS  have long data series then 

spatial trend differences    lk EE SS    Klk ,...,1,   as well as the covariances 

    lk ZZ SS ,cov   Klk ,...,1,   can be estimated statistically. Consequently these 

parameters are essentially known and provide much more information for modeling than the 

predictors    MitZ i ,...,1, s  only. However nowadays unfortunately the geostatistical 

interpolation methods built in GIS software are applied in meteorology mostly. 

 

2.2 Multiplicative model of spatial interpolation  

In this paper only the linear or additive model was described in detail which is appropriate in 

case of normal probability distribution. However perhaps it is worthwhile to remark that for 

case of a quasi lognormal distribution (e.g. precipitation sum) we deduced a mixed additive 

multiplicative formula which is used also in our MISH system and it can be written in the 

following form, 
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where the interpolation parameters are ,0,0  iq  Mii ,...,10   and 1
1




M

i

i .  
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3. INTERPOLATION WITH BACKGROUND INFORMATION 

 

The background information e.g. forecast, satellite, radar data can be efficiently used to 

decrease the interpolation error. In this paper only the interpolation based on additive model 

or normal distribution is presented. 

According to the section 2.1.3 let us assume that, 

 tZ ,0s : predictand, 

   





M

i

ii tZtZ
1

00 ,, ss  : interpolated predictand, 

moreover there is given, 

  DtG  ssG ,  : background information on a dense grid. 

 

3.1 The principle of interpolation with background information 

The interpolated predictand given G  can be expressed as, 

        











Gssss tZtZtZtZ G ,,E,, 0000  

where     











Gss tZtZ ,,E 00  is the conditional expectation of    tZtZ ,, 00 ss


 , given G . 

 

3.2 Reanalysis data, Data Assimilation 

The reanalysis data are based on the data assimilation which procedure is in strong 

relationship with the methodology of interpolation with background information. The Bayes 

estimation theory is the mathematical background of the data assimilation and the following 

variational cost function has to be minimized in order to estimate the analysis field, 

 

         FzyPFzygzQgzz  

0

1T

0

1T
J  (2) 

 

z : analysis field, predictand (grid),  

g : given background field (forecast), 

0y : given observations, predictors;  zyFz 0E , 

Q : background error covariance matrix, 

P : observation error covariance matrix. 

 

It can be proved that this procedure is essentially an interpolation with background 

information including a quality control part for the predictors. 
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However there are several problems with the reanalysis data in the practice: 

  i, Inhomogeneous predictor station data series are used. 

 ii, Few stations are used with little spatial representativity. 

iii, There are also some problems with the data assimilation formula (2): 

- Lack of good climate statistical parameters in matrix Q. 

- Formula (2) includes an implicit assumption of   ggz E . 

 

 

4. GRIDDED DATABASES 

 

We emphasize the importance of gridded databases based on observations with good quality! 

For example there is the CARPATCLIM project implemented during the last years. The main 

aim of this project was to produce gridded climatological database for the Carpathian Region 

using unified methods. The grids cover the area between latitudes 44°N and 50°N, and 

longitudes 17°E and 27°E. Daily values of more than ten meteorological variables were 

calculated on a 0.1° spatial resolution grid for the period 1961-2010. Climate statistics 

(monthly and annual values) and different climate indices were also determined from the 

daily grids. For ensuring the usage of largest possible station density the necessary work 

phases were implemented on national level but by the same methods and software. The 

commonly used methods and software were the method MASH (Multiple Analysis of Series 

for Homogenization) for homogenization, quality control, completion of the observed daily 

data series; and the method MISH (Meteorological Interpolation based on Surface 

Homogenized Data Basis) for gridding of homogenized daily data series. Besides the 

common software, the harmonization of the results across country borders was promoted also 

by near border data exchange.  

CARPATCLIM homepage: http://www.carpatclim-eu.org/pages/home/ 

 

4.1. Software MISH  

Our method MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) 

for the spatial interpolation of surface meteorological elements was developed (Szentimrey 

and Bihari, 2007, 2014) according to the mathematical background that is outlined in Sections 

2, 3.  This is a meteorological system not only in respect of the aim but in respect of the tools 

as well. It means that using all the valuable meteorological information – e.g. climate and 

possible background information – is required. 

The last software version MISHv1.03 consists of two units that are the modeling and the 

interpolation systems. The interpolation system can be operated on the results of the modeling 

system. We summarize briefly the most important facts about these two units of the 

developed software. 

Modeling subsystem for climate statistical (local and stochastic) parameters: 

– Based on long homogenized data series and supplementary deterministic model variables. 

The model variables may be such as height, topography, distance from the sea etc.. 

Neighbourhood modeling, correlation model for each grid point. 
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– Benchmark study, cross-validation test for interpolation error or representativity.  

– Modeling procedure must be executed only once before the interpolation applications! 

Interpolation subsystem:  

– Additive (e.g. temperature) or multiplicative (e.g. precipitation) model and interpolation 

formula can be used depending on the climate elements. 

– Daily, monthly values and many years’ means can be interpolated. 

– Few predictors are also sufficient for the interpolation and no problem if the greater part 

of daily precipitation predictors is equal to 0. 

– The interpolation error or representativity is modeled too.  

– Capability for application of supplementary background information (stochastic variables) 

e.g. satellite, radar, forecast data. 

– Data series completion that is missing value interpolation, completion for monthly or 

daily station data series.  

– Interpolation, gridding of monthly or daily station data series for given predictand 

locations. In case of gridding the predictand locations are the nodes of a relatively dense 

grid.  

 

Our MISH-MASH software can be downloaded from: 

http://www.met.hu/en/omsz/rendezvenyek/homogenizationand_interpolation/software/ 
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THE USE OF DAILY DATA IN CLIMATE ASSESSMENTS 

 

In order to take advantage of the best possible temporal resolution of climate data, there is an 

increased need for including daily series into climate assessments. However, raw (observed) 

data are not always convenient due to data gaps and inhomogeneities. 

Construction of quality controlled and homogenized datasets with gaps filled in was the first 

step in solving this problem. Still, uneven spatial distribution of measurement sites could not 

represent spatial distribution of values of a climate element adequately. Thus, spatial 

interpolation techniques had to be applied as necessary step in obtaining the best possible 

climate maps. 

 

Types of available daily data 

Hence, there are three types of climate data: 

 Raw (observed) data feature gaps and inhomogeneities in series; 

 Homogenized data, where the gaps are filled in and inhomogeneities are mostly 

eliminated, but series are with "spotty" data, not representative for any wider area; 

 Gridded (spatially interpolated) data, where any wider area is uniformly covered with 

data. 

Both homogenization and spatial interpolation procedures are designed to obtain the best 

possible output from the climate data, without gaps, artificial changes in measurements and 

various data density. Still, every procedure involve techniques that modify the data.  

Although every type of data has its own advantages, results of such climate assessments 

depend upon the choice of type of data. 

 

 

PRACTICAL USE OF DAILY PRECIPITATION DATA IN DIFFERENT STUDIES 

 

In order to examine to what extent this choice might affect the results, a comparison of data 

processing products from daily precipitation series has been made between the raw, 

homogenized and gridded datasets. 
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Raw (observed) data are the primary source of data for climate assessments. These data are in 

daily or sub-daily temporal resolution, depending on the observation schedule of a weather 

station. Climate assessments require calculations of various values of lower temporal 

resolution (i.e. daily from sub-daily, monthly, annual resolution). These are rather simple 

calculations of average, maximum, minimum values, counts and standard deviations. 

Calculated values are further used in an assessment. 

Naturally, homogenized and gridded data might also be used the same way as raw data, 

deriving the same products of calculations. However, homogenization techniques might 

modify daily data on a basis of calculated values of lower temporal resolution and/or other 

statistical tools. 

Since precipitation data have the greatest spatial and temporal variability, modifications of 

their daily values might produce the most obvious modifications in products that come from 

calculated values.  

Two types of data processing products from daily precipitation data were examined: climate 

indices and extreme daily precipitation. 

 

Data and methods 

In its various stages, project CARPATCLIM 

has dealt with the three types of data. 

Therefore, raw and homogenized daily 

precipitation data from 73 stations in Serbia 

are used. Data referring to the grid point 

nearest to the measurement sites are used for 

gridded data series. All series involve the 50-

year period, 1961-2010. 

Homogenization and filling in the data gaps 

is performed using MASH method and 

software (version v3.03), where 11 raw data 

series from neighboring countries and 38 raw 

data series from central Serbia, all within the 

50 km distance from the territory of Serbia 

north of 44 N, are included as bordering 

territory. Spatial interpolation is performed 

using MISH method and software. 

 

 

CALCULATION OF CLIMATE INDICES 

 

Climate indices are simply calculated values used for climate change assessment. They are 

calculated on daily data basis and, as a result, annual index values are returned. There are 27 

core indices, derived from daily maximum and minimum temperature and daily precipitation 

data. The definitions for a core set of 27 descriptive indices of extremes are defined by the 

Joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices 

(ETCCDMI) and they are recommended by WMO. 

Fig. 1. Network of precipitation stations 
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A subset of 11 indices processed in this survey are derived from daily precipitation data only 

(Table 1). 

 

Table 1. A subset of CLIVAR/ETCCDMI indices derived from daily precipitation data only 

 

Index Index full name Definition Unit 

CDD Consecutive dry 

days 

Maximum number of consecutive dry days 

with RR<1mm 

days 

CWD Consecutive wet 

days 

Maximum number of consecutive wet days 

with RR>1mm 

days 

PRCPTOT  
Annual total wet-

day precipitation  

Annual total PRCP in wet days (RR>=1mm)  mm  

R10  
Number of heavy 

precipitation days  

Annual count of days when PRCP>10mm  mm  

R20  

Number of very 

heavy precipitation 

days  

Annual count of days when PRCP>20mm  mm  

R25  
Number of days 

above 25mm 

Annual count of days when PRCP>25mm mm  

R95p  Very wet days  Annual total PRCP when RR>95th percentile  mm  

R99p  Extremely wet days  Annual total PRCP when RR>99th percentile  mm  

Rx1day  

Max 1-day 

precipitation 

amount  

Monthly max 1-day precipitation  mm  

Rx5day  

Max 5-day 

precipitation 

amount  

Monthly max 5-day consecutive precipitation  mm  

SDII  
Simple daily 

intensity index  

Annual total precipitation divided by the 

number of wet days (defined by PRCP 

>=1mm) in the year  

mm/day  

 

Indices are calculated for the three types of data from all series. The results are compared 

between the types of data. In order to present spatial pattern of the results, a comparison of 

series is given for four stations from different parts of northern Serbia: Beograd (central part), 

Kragujevac (southern part), Valjevo (western part) and Palić (northern part). 

 

Consecutive dry days (CDD) practically match between raw and homogenized series, while 

gridded series are slightly different. This difference might come from small changes in values 

around the threshold of 1 mm within gridding procedure. However, trends in values are 

mostly unchanged. 
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Fig. 2. Consecutive dry days (CDD) calculated from raw, homogenized and gridded datasets for Beograd 

(upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 1961-2010 

 

Consecutive wet days (CWD) also have a good match between raw and homogenized series, 

while gridded series still differ slightly from the two other series. Since the same threshold is 

used as the criterion for determining values of this index and CDD, the problem of small 

changes of values around 1 mm might also be attributed to CWD. 

 

 

Fig. 3. Consecutive wet days (CWD) calculated from raw, homogenized and gridded datasets for Beograd 

(upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 1961-2010 

 

Annual total wet day precipitation (PRCPTOT) has almost the same values in raw and 

homogenized series, while gridded series are slightly different. The match between raw and 

homogenized series practically show the true effect of homogenization procedure, since the 
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MASH method is based on calculations on monthly temporal resolution. Here, 

homogenization has performed well, correcting suspicious values only. 

 

 

Fig. 4. Annual total wet day precipitation (PRCPTOT) calculated from raw, homogenized and gridded 

datasets for Beograd (upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 

1961-2010 

 

Number of heavy precipitation days (R10) matches quite well between all series, except in 

Kragujevac. Gridding must have been under influence of sparse station network in the 

southern part of examined part of Serbia, producing differences in values around 10 mm or 

more. 

 

 

 

Fig. 5. Number of heavy precipitation days (R10) calculated from raw, homogenized and gridded datasets 

for Beograd (upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 1961-2010 



120 
 

 

Number of very heavy precipitation days (R20) experiences practically the same problem 

as with R10. However, due to smaller values of R20, these differences between gridded and 

other series are relatively more significant. 

 

Fig. 6. Number of very heavy precipitation days (R20) calculated from raw, homogenized and gridded 

datasets for Beograd (upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 

1961-2010 

 

Number of days above 25mm (R25) behaves the same way as R20, but with a little more 

emphasis on differences between gridded and other series, relatively significant due to low 

index values. 

 

 

Fig. 7. Number of days above 25mm (R25), calculated from raw, homogenized and gridded datasets for 

Beograd (upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 1961-2010 
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Very wet days (R95p) show seldom differences between raw and homogenized series. Most 

probably, these differences are due to elimination of outliers and correction of suspiciously 

high values in homogenization procedure. Gridded data also differ from two other series, but 

in more or less the same magnitude as in PRCPTOT. 

 

Fig. 8. Very wet days (R95p), calculated from raw, homogenized and gridded datasets for Beograd (upper 

left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 1961-2010 

 

Extremely wet days (R99p) are similar to R95p, showing the same differences of a similar 

magnitude. Outliers from raw series are still visible through mismatches with homogenized 

series. 

 

 

Fig. 9. Extremely wet days (R99p), calculated from raw, homogenized and gridded datasets for Beograd 

(upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 1961-2010 

 

Max 1-day precipitation amount (Rx1day) has clear differences between raw and 

homogenized series at outlier data. However, these differences do not change index trends 
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significantly, for very few points being replaced by lower values. Gridded series produce 

similar or lower data values. 

 

Fig. 10. Max 1-day precipitation amount (Rx1day), calculated from raw, homogenized and gridded 

datasets for Beograd (upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 

1961-2010 

 

Max 5-day precipitation amount (Rx5day) has significantly lower differences between the 

series than Rx1day. This comes from the fact that Rx1day is only a single selected value, 

while Rx5day index values include other, lower values than maximum. Still, descriptions of 

changes are the same as Rx1day, since both indices deal with extreme precipitation values. 

 

 

Fig. 11. Max 5-day precipitation amount (Rx5day), calculated from raw, homogenized and gridded 

datasets for Beograd (upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 

1961-2010 
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Simple daily intensity index (SDII) is the most complex index of the eleven selected indices, 

taking both values and number of days into account. Therefore, differences between the series 

are not necessarily in favor of any series. While Kragujevac has values from gridded series 

higher than from raw or homogenized series, Valjevo presents the opposite case. 

Nevertheless, raw and homogenized series show very good match. 

 

 

Fig. 12. Simple daily intensity index (SDII), calculated from raw, homogenized and gridded datasets for 

Beograd (upper left), Kragujevac (upper right), Valjevo (lower left) and Palić (lower right), 1961-2010 

 

As could be seen from the presented results, all three types of data can be used for calculation 

of climate indices. Raw and homogenized series match in most cases, while series from 

gridded data are different from the original series. Larger differences occur with indices that 

are derived from very high and extreme values, which is due to smoothing effect of spatial 

interpolation of data. 

Daily precipitation data are amongst the most variable climate parameters both in time and in 

space. Very high and extreme values might cover a wide range of values that rarely and sparse 

occur almost independently. Thus, it is a tricky task to confirm and verify such values. 

Interpolated data always intercept between two or more source values, and thus never bring an 

extreme value as a result. This is the main cause of the smoothing effect of spatial 

interpolation that cut down most of very high and especially extreme values. 

Bearing all these findings in mind, it is recommended to use raw and quality controlled or 

homogenized data rather than spatially interpolated data for calculation of climate extremes. 

Spatial interpolation does not support preservation of any spatial pattern that come from raw 

or homogenized values. 

 

 

CALCULATION OF EXTREME VALUES FOR A RETURN PERIOD 

 

Extreme precipitation values are important not only in climatology. These values are amongst 

the main inputs in civil engineering for designing buildings and other objects. They also 
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present one of the main input data for hydrological forecasts. Since extreme precipitation 

values are of a crucial interest in many fields, a special care has to be taken to perform their 

calculation. One of the most common approaches is to calculate maximum expected 

precipitation value for a return period. 

Calculation of extreme daily precipitation is performed using Gumbel method via extRemes 

software (R-platform). The return period was set to 100 years. Since both software and 

method require the complete series of 50 values (one value for each year of the series), series 

with gaps of at least one year are discarded from this survey. Thus, a comparison of the 

results could be performed for 32 remaining stations with no gaps in raw series. 

 

 

Fig. 13. Extreme precipitation calculated for 100-year return period, homogenized vs. raw series 

(mm/mm) 

 

Comparison of the calculated extreme precipitation from the three types of data is given as a 

proportion of one value vs. another, using a dimensionless value (mm/mm). Similarly to 

calculation of climate indices, extreme daily precipitation was calculated from selected raw 

and homogenized series as well as series from the grid point nearest to the measurement 

location. In order to get an insight of any possible spatial pattern of values, the proportion 

values are given as a map. Such map does not represent a true spatial distribution of values for 

every pixel of the map; it only emphasizes differences between the results derived from the 

series. 
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Effects of the homogenization procedure is presented through comparison of homogenized 

vs. raw series (Figure 13). Homogenized series reduced maximum precipitation to 85% of 

values from raw series. Spatial pattern of changes seem to depend upon network density. The 

highest ratios are calculated for northern area with dense network, while lower values are 

returned from areas with sparse network (eastern and central part of the examined area). 

Another important influence is noted for Vršac, close to the eastern border, where an 

excessive maximum value is present in war series. Homogenization procedure reduced its 

maximum value to 77% of raw series value. This reduction is the most important effect of 

homogenization reflected upon extreme values. 

Effects of spatial interpolation is presented through comparison of gridded vs. homogenized 

series (Figure 14). Similarly to comparison of homogenized vs. raw series, the highest ratios 

are in high network density area, while low ratios maintain in the area with sparse stations. 

Also, the lowest ratio is calculated for Vršac, due to very high maximum precipitation value 

in homogenized series. The value from gridded series reduced the value from homogenized 

series by 60%. Smoothing effect of spatial interpolation techniques is a main cause of 

differences between gridded and homogenized series. 

After the two techniques of data processing, homogenization and gridding, a comparison 

between gridded vs. raw series shows their joint effect (Figure 15). Since the two effects are 

similar, it is obvious that their joint effect produces similar pattern of change. 

Comparison of maps of extreme precipitation values for 100-year period from raw and 

gridded series show two main features. First, all values are reduced significantly, making 

values from gridded series only 55% to 95% of values from raw series. This is very serious 

problem, since neither climate assessment nor other activities (civil engineering, hydrology) 

would claim such reduction of extreme values to be valid. Second, spatial pattern of these 

values is not preserved (Figure 16). In fact, it is greatly distorted, since high values in raw 

series are not necessary the same in gridded series. Practically, any possible map of calculated 

extreme precipitation values makes no sense. 

Fig. 14. Extreme precipitation calculated for 

100-year return period, gridded vs. 

homogenized series (mm/mm) 

Fig. 15. Extreme precipitation calculated for 100-

year return period, gridded vs. homogenized series 

(mm/mm) 
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Fig. 16. Extreme precipitation calculated for 100-year return period from raw series (left) and gridded 

series (right) 

 

 

DISCUSSION OF THE RESULTS AND CONCLUSIONS 

 

The comparison analysis of these indices showed that there are certain differences between 

raw and homogenized data. Grid point data that showed more significant differences from 

other two types of data. These differences include lower extreme values after homogenization 

and change of spatial distribution pattern. 

The differences come from various factors, which include:  

 elimination of outlying values (not necessarily errors, but real values) during 

homogenization, 

 smoothing effects in spatial interpolation, 

 low network density feature the highest magnitude of changes, while dense networks 

suffer minor losses. 

The best results are derived from raw series. If raw series are not complete, filling in the gaps 

as a part of a homogenization procedure is quite good solution. However, completely 

homogenized and especially spatially interpolated series return less satisfactory results for 

shown practical use of daily precipitation data. 

On the other hand, both homogenization and spatial interpolation procedure are optimal on a 

monthly basis, since performed calculations are based on monthly temporal resolution. This 

basis is satisfactory for the most features of climate assessments. 

This survey shows the good and poor sides of homogenization and gridding daily 

precipitation datasets. The given results show that choice of dataset should depend upon the 

purpose of future surveys that engage daily precipitation data. Climatological assessments 

should use daily data only as a source for calculation of data in more robust temporal 

distribution. Therefore, homogenized and spatially interpolated values might perform better 
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than raw series. On the other hand, climate indicies and calculation of extreme precipitation 

values for a return period should prefer using raw daily data. 
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Abstract 

 

Results of homogenization of climate data series collected in Ukraine are presented in the paper. We 

considered two data sets. First set is monthly mean air temperature data and second one is monthly 

sums of precipitation. In both cases, data were collected at 174 Ukrainian climatological stations, 

which are uniformly distributed on Ukrainian territory. 

Homogenization of climate data series was performed by means of the MASH software. We used a 

quasi-automatic algorithm for MASH, which was tested, proved and used in CARPATCLIM project. 

After homogenization we obtained test statistics which proximate critical value. 

Comparison of break points detected by MASH with metadata has shown that approximately 30 % of 

detected break points can be explained by metadata 

 

 

1. INTRODUCTION 

 

Collecting data is a very important stage of climatologic research because its quality always 

affects the result, and often becomes a great source of errors. According to the results 

presented by Venema et. al. (2014) we can conclude that there exists a variety of error sources 

- starting from those caused by external factors, and finishing with negligence during the 

digitizing process conducted manually. Thus, the very first thing after collecting data should 

be to insure quality control. To complete this task, we can use a number of methods and 

programs. According to the results of benchmarking conducted in the framework of COST 

Action HOME (Venema et. al, 2012), the MASH homogenization procedure is one of the best 

ones. 

 

The purpose of this study is to analyze two data sets collected in Ukraine, and to prepare them 

for wide use in UHMI research projects. The MASH procedure was used to perform quality 

control and to homogenize long monthly air temperatures and monthly precipitation sum data 

sets collected in Ukraine during time period 1961-2010 (2009 for precipitation sums). 
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2. DATA AND METHODOLOGY 

 

There are two steps in meteorological data quality control in Ukraine. First, the information 

passes an internal observation station quality control procedure. Second, the meteorological 

information passes through quality control performed by the Meteorological Division of 

Central Geophysical Observatory of the Ministry of Emergencies of Ukraine. Finally, the 

meteorological information is published in special tables, which insure that it is both 

qualitative and reliable. However, we should mention that checking homogenization of 

temperature and precipitation data using up-to-date homogenization procedures has not yet 

been performed. 

 

Thus, we have under consideration two data sets. The first set is monthly mean air 

temperature data, and the second is monthly sums of precipitation. In both cases, data were 

collected at 174 Ukrainian climatological stations, which are uniformly distributed throughout 

Ukrainian territory (Fig. 1). The mean distance between stations is approximately 50 km in 

flatland areas, and 30 km in mountainous regions. The period of interest is from 1961 to 2010. 

The original time series did not have a lot of missing data - less than 1 % in every time series. 

 

 

Fig. 1. Location of climatological stations used in the research 

 

A historical description of Ukrainian stations is published in special issues (Climatologic 

handbook, USSR, 1968; Climatologic handbook, Ukraine, 2011), which serve as sources of 

possible break points (metadata). Most Ukrainian stations were relocated several times, 

sometimes at a very long distance (about 20 km). Furthermore, the measuring methodology 

for temperature was changed at all Ukrainian climatologic stations. In 1966, four-time 

observations were replaced with eight-time observations. We should note that some correction 
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for monthly air temperature for a period with four time observations was proposed and 

implemented in published tables 

 

MASH software (Szentimrey, 1999) was applied according to the algorithm shared among 

participants of the CARPATCLIM project by T. Szentimrey. The algorithm is quasi-

automatic. However, in our case, the use of the algorithm was insufficient, because test 

statistics (TS) still remained quite high. Therefore, according to the MASH Manual 

(Szentimrey, 2011), some additional steps were used. 

 

Firstly, the MASH procedure was used without metadata in order to assess the efficiency of 

this software in break points detection. Exactly these results are presented below in the text. 

After this, the MASH software was run second tine with collected metadata. According to the 

recommendations of Venema et. al. (2012), the results of the second analysis can be 

considered more accurate. Therefore, these results will be used for further climatologic 

studies. 

 

 

3. RESULTS 

 

The inhomogeneity of the original air temperature time series was very high. For example, the 

average test statistics (TS) for yearly time series was equal to 301.33, which exceed the 

critical value (equal to 20.86) by more than 14 times. The TS for certain time series reached 

very high values (maximal TS was 25661.19) (Fig.2). After homogenization, we obtained the 

average TS 23.79, which seems to be acceptable (Fig. 3). 

 

Fig. 2. Example of inhomogeneity in air temperature data: top image - time series before homogenization 

process, the middle image  - time series after homogenization process, bottom image - inhomogeneity 
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Fig. 3. Test statistics (TS) of yearly air temperature (on the left) and yearly precipitation sum (on the 

right); red tables - TS before homogenization, blue tables - TS after homogenization, solid black line - 

critical value 

The precipitation time series were much more qualitative. The average TS for yearly time 

series was equal to 22.29, which was less than the critical value. However, the TS for several 

time series were still very high (Fig. 3). This means that homogenization was necessary. 

 

 

 

Fig. 4. Inhomogeneity in monthly air temperature (upper image) and  monthly precipitation sum (bottom 

image) 

 

According to the results, we constructed graphs of our time series inhomogeneity, based upon 

the MASHDRAW.BAT principle, but covering information from all stations during the entire 

period of time (Fig.4). It is clear from the observations the temperature time series include 

more inhomogeneities than the precipitation time series. It should also be noted that in the 

case of temperature, the percentage of positive and negative inhomogeneity was almost equal. 

Regarding the value, it should be mentioned that in 80% of cases, it was in a range from -0,2 

to 0,2,  and in 90% of the cases the range varied from -0,4 to 0,4. Little can be said about the 

inhomogeneity in the monthly precipitation sum. Only a few stations required 
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homogenization procedure, and in 90% of cases, the inhomogeneity values were lower than 

0,3.  

 

The MASH procedure reduced substantially the test statistics also in the case of monthly 

series. That can be seen from the files “Verisum”. Therefore, the homogenized time series 

(the homogenized data sets) can serve as a good base for further studies of current state of 

regional climate in Ukraine. 

 

In both cases (temperature and precipitation), homogenization was performed without any 

metadata. In order to assess the efficiency of the homogenization software in break points 

detection, we collected metadata (possible break points) from historical descriptions of 

Ukrainian climatologic stations. Comparison of break points detected by MASH with 

metadata has shown that approximately 30 % of detected break points can be explained by 

metadata (Fig. 5). 

 

  

 

Fig. 5. The average percentage of break points which can be explained by metadata in monthly air 

temperature (to the left), and monthly precipitation sum (to the right) time series.  

 

 

 

4. CONCLUSIONS 

 

According to the results, MASH software detected many inhomogeneities, but most of them 

were less than 1 degree in absolute value. Comparison of available metadata and research 

results showed matches in almost 30% of all cases, which corresponds to a higher than 

average result.  

 

The homogenized time series can serve as a good base for future studies of current state of 

regional climate in Ukraine, and also be used as a reference series for homogenization and 

quality control of another Ukrainian stations data. 
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Abstract 

 

This paper focuses on the homogenization activity was performed in the CARPATCLIM project. The 

main aim of CARPATCLIM was to create a daily harmonized gridded dataset during the period 

between 1961 and 2010 for the Carpathian Region. For ensuring the usage of largest possible station 

density the necessary work phases were implemented by counties with applying same methods and 

software. The common used methods and software in the project were the method MASH (Multiple 

Analysis of Series for Homogenization; Szentimrey) for homogenization, quality control, completion 

of the observed daily data series; and the method MISH (Meteorological Interpolation based on 

Surface Homogenized Data Basis; Szentimrey and Bihari) for gridding of homogenized daily data 

series. Besides the common software, the harmonization of the results across country borders was 

performed also by near border data exchange. The main steps of the homogenization process executed 

and the verification of the homogenization along with the quality control results are introduced in this 

paper. 

 

 

1. INTRODUCTION 

 

The main aim of CARPATCLIM project (CARPATCLIM homepage) was the spatial and 

temporal examination of the climate of the Carpathian Region using harmonized data and 

standard methodology. The consortium led by the Hungarian Meteorological Service (OMSZ) 

together with 10 partner organizations from 9 countries in the region was supported by the 

JRC to create a daily harmonized gridded dataset during the period between 1961 and 2010. 

The target area of the project partly includes the territory of Czech Republic, Slovakia, 

Poland, Ukraine, Romania, Serbia, Croatia, Austria and Hungary. 415 climate stations and 

904 precipitation stations were used in the project to achieve the objectives. The final 

outcome of the CARPATCLIM is a ~10 × 10 km resolution homogenized and gridded dataset 

on daily scale for 13 basic meteorological variables and several climate indicators, 37 in total, 

on different time scales from 1961 to 2010.  
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2. METHODOLOGY 

 

Uniform process of data homogenization was crucial due to the fact that significant 

differences might be occurred between the measurements and data handling of participant 

countries during the examined fifty-year-long period. The necessary work phases were 

implemented by country. The common used methods and software in the project were the 

method MASH (Multiple Analysis of Series for Homogenization; Szentimrey, 2011) for 

homogenization, quality control, completion of the observed daily data series; and the method 

MISH (Meteorological Interpolation based on Surface Homogenized Data Basis; Szentimrey 

and Bihari, 2007) for gridding of homogenized daily data series. The high quality of times 

series got through the commonly used MASH procedure are guaranteed by the excellent 

monthly benchmark results from the COST “HOME” Action (Venema et al., 2012). Besides 

the common software, the harmonization of the results across country borders was performed 

by near border data exchange. 

 

2.1. Main features of MASH 

The original MASH (Szentimrey, 1999) procedure was developed for homogenization of 

monthly series. The present version: MASHv3.03 (Szentimrey, 2011) has been expanded for 

daily series as well. The main features of the applied procedure in CARPATCLIM are 

summarized here. 

 

The MASHv3.03 software consists of two parts.  

Part 1: Quality control, missing data completion, and homogenization of monthly series:  

 Relative homogeneity test procedure. 

 Step by step procedure: the role of series (candidate or reference series) changes                            

step by step in the course of the procedure. 

 Additive (e.g., temperature) or multiplicative (e.g., precipitation) model can be used 

depending on the climate elements. 

 Providing the homogeneity of the seasonal and annual series as well. 

 Metadata (probable dates of break points) can be used automatically. 

 Homogenization and quality control (QC) results can be evaluated on the basis of 

verification tables generated automatically during the procedure. 

Part 2: Homogenization of daily series: 

 Based on the detected monthly inhomogeneities.  

 Including quality control (QC) and missing data completion for daily data. The quality 

control results can be evaluated by test tables generated automatically during the 

procedure. 
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These attributes are favourable to achieve the project goals in CARPATCLIM. The time 

resolution of variables is daily, the upgraded version of MASHv3.03 is able to homogenize 

and control these daily data as well. 

 

3. HOMOGENIZATION PROCESS IN THE CARPATCLIM 

 

According to the project specification, the elements listed in Table 1 have to be homogenized 

in the period of 1961–2010. The chosen homogenization model is depending on the 

distribution of given element. Additive model is used except in case of precipitation and wind 

speed, where the appropriate model is multiplicative.  

 

Table 1. The set of meteorological variables in daily temporal resolution were homogenized  

(JRC, 2010) 

 

VARIABLE  DESCRIPTION  UNITS    

TA  2 m mean daily air temperature  °C  

TMIN  Minimum air temperature from 18:00 to 06:00  °C 

TMAX  Maximum air temperature from 06:00 to 18:00  °C 

P  Accumulated total precipitation from 06:00 to 06:00  mm  

DD  10 m wind direction  0°-360°  

VV  10 m horizontal wind speed  m/s  

SUNSHINE  Sunshine duration  hours  

CC  Cloud cover  tenths 

RGLOBAL  Global radiation  MJ/m2  

RH Relative humidity  %  

PVAPOUR Surface vapour pressure  hPa  

PAIR Surface air pressure  hPa  

 

 

The main steps of homogenization in CARPATCLIM were as follows. 

1. Near border data exchange before homogenization. 

2. Homogenization, quality control, completion of the daily data series on national level by 

using near border data series. 

3. Near border data exchange after homogenization.  
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MASH is an automatically working software. The test results of the homogenization and 

quality control (e.g., detected errors, degree of inhomogeneity of the series system, number of 

break points, estimated corrections, and certain verification results) are documented in 

automatically generated tables during the homogenization process. 

 

3.1. Steps of creation of the homogenized station data series in CARPATCLIM 

I. Compilation of the raw station data series of each country. 

1. Selection of the stations (with the help of spherical coordinates: φ, λ). 

2. Collecting the daily station data series (missing data are allowed) and the metadata per 

countries. Exchange of the near border raw data series and the existing metadata 

between the neighboring countries. 

 

II. Homogenization, quality control, data completion of the station data series by MASH 

v3.03 on national level, using near border data. 

3. Derivation of monthly station data series from the daily station data series collected in 

step I.2. Homogenization, quality control, data completion of the monthly station data 

series. Metadata (probable dates of break points) can be used automatically. 

4. Daily station data series (step I.2): homogenization, quality control, data completion. 

This procedure is based on the results of step II.1. 

5. Exchange of the near border homogenized data for cross-border harmonization and for 

gridding (Module 2 of the project: modeling, interpolation).  

6. Evaluation of the verification results of the homogenization and quality control. 

Controlling of the cross-border harmonization of the data series. Note that further cross-

border harmonization is achieved after the modeling part of the gridding procedure in 

Module 2. 

 

Summary of the main steps of homogenization of daily data series with quality control and 

missing data completion in CARPATCLIM are as follows: 

 

 Monthly series derivation from daily series. 

 MASH homogenization procedure for monthly series, estimation of monthly 

inhomogeneities. (Metadata can be used automatically.) 

 Smooth estimation of daily inhomogeneities on the basis of estimated monthly 

inhomogeneities. 

 Automatic correction of daily series.  

 Automatic quality control (QC) of homogenized daily data. 

 Automatic missing daily data completion. 

 Monthly series derivation from the homogenized, quality controlled, and completed 

daily data. 
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 Test of homogeneity for the new monthly series with using the automatic verification 

results. 

 

3.2. Verification of the homogenization  

This chapter is an overview of the evaluation of the implemented homogenization process. 

Validation is an essential part of the process, to make sure that the data quality increased 

as a result of homogenization. Hence a verification part is integrated into the MASH 

system for interpretation of the outcomes, it makes the evaluation of the different phases 

of the homogenization possible from the initial to the final stage. The basic conception of 

the verification test is that the confidence in the homogenization may be increased by the 

joint comparative mathematical examination of the original and the homogenized data 

series.  

 

Two types of outcomes of the MASH software can be separated. The first type of output is the 

files containing the homogenized, controlled, and completed series, inhomogeneity series, 

detected breaks, and detected errors. The second type of output is the files containing the test 

results and verification tables in order to evaluate the homogenization. The verification tables 

contain the test statistics values before and after homogenization, measures to characterize the 

modification of series, the spatial representativity of the station network, and the evaluation of 

metadata. The quality control results for the daily data are also included. 

 

The verification procedure based on hypothesis test results. The null hypothesis is that 

examined series are homogeneous. The test statistics can be compared to the critical value 

before and after homogenization. The critical values belong to different significance levels are 

built in the MASH software (it is 20.86 on the 0.05 significance level in our case). The 

homogenization is successful if the test statistics after homogenization is low. The theoretical 

background and more details of the derivation of the verification statistics can be found in 

MASH manual (Szentimrey, 1999). 

 

The test statistics before (TSb) and after homogenization (TSa) and characteristics of the 

modified series are presented in this paper. Annual statistics are examined here; though all 

of them are produced automatically on the monthly and seasonal scales altogether. Tables 

2 to 4 contain the average measures for maximum and minimum temperatures and 

precipitation for each of the station systems and the QC results alike. Number of the 

partners in the header lines is as follows: Hungary and Croatia with their jointly handled 

dataset (1), Serbia (2), Romania (3), Ukraine (4), Slovakia (5), Poland (6), Czech 

Republic (7). The representativity is about 50 km for climate stations and 25 km for 

precipitation stations, respectively. Participants have contributed to the project with data 

of 415 climate stations and 904 precipitation stations in all. 
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The TSa has to be near to the critical value or much less than the TSb if the homogenization is 

acceptable. Moreover, the measures of the relative modification are expected to be in 

accordance with the relative change of the test statistics: (TSb-TSa)/TSb. The applied 

statistics for the measure of the relative modification is in fact the ratio of the RMSE (root 

mean square error) and the standard deviation. If the significant modification of series induces 

weak decreasing in the degree of inhomogeneity, overdrawing the series is unnecessary and 

erroneous. Tables 2–4 containing the summary statistics and the complementary diagrams in 

Figs. 1–3 support the evaluation of homogenization. 

 

The degree of inhomogeneity of the raw minimum temperatures (Table 3.) is substantially 

higher for Serbia (2) and much higher for the Hungarian and Croatian (1) dataset than in case 

of the maximum temperatures. The relative modification (42%) for the Hungarian and 

Croatian (1) series is achieved the most, although the largest improvement (Fig. 2.). The 

Serbian (2) system has been upgraded in the same rate by less relative modification.  The 

Slovakian (5) system is near to homogeneous after processing. Relative changes of the test 

statistics are small in the Romanian (3) and Ukrainian (4) series, in accordance with the low 

value of relative modification. At the Czech Republic (7), the degree of homogeneity 

increased with relatively high modification. It can be found that MASH reduced the 

inhomogeneity of all systems, but less than in the case of maximum temperatures. The QC 

results relating the minimum temperatures show that the number of erroneous data per station 

is the largest in the Ukrainian (4) system. The Romanian (3) and Ukrainian (4) series 

contained more than 400 (°C) negative error and almost 100 (°C) positive errors in the data. 

The smallest correction has to be performed in the Czech (7) system, although it is a minor 

system with 18 stations. 

 

Summary results of quality control and the homogenization performed in the project can be 

followed up and reported based on these tables. Verification statistics can be added to the 

homogenized series as the newly created metadata. 

 

Table 2. Average test statistics and quality control (QC) results for maximum temperature 

Station Sytem  1 2 3 4 5 6 7 

Number of stations 68 39 140 53 59 38 18 

TS after homog. (TSa) 23.6 55.7 39.0 23.7 26.4 24.8 26.7 

TS before homog. (TSb) 190.7 186.2 72.9 154.0 175.6 150.6 184.3 

Relative modification (%) 21 14 9 13 23 21 29 

Total number of errors 6307 3811 10241 5444 4542 3288 1400 

Maximal positive error (°C) 10.9 13.5 996.6 107.7 11.3 22.7 10.4 

Minimal negative error (°C) –2.3 –7.5 –21.0 –22.0 –14.5 –26.3 –6.2 



140 
 

 

 

0.88

0.70

0.46

0.85 0.85 0.84 0.86

0.21

0.14
0.09

0.13

0.23 0.21

0.29

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7

Station system 

(TSb-TSa)/TSb Relative modification of series

 

Fig. 1. Verification results for maximum temperature. 

 

 

Table 3 Average test statistics and quality control (QC) results for minimum temperature 

 

Station Sytem  1 2 3 4 5 6 7 

Number of stations 68 39 140 53 59 38 18 

TS after homog. (TSa) 24.3 52.5 52.5 51.9 28.5 43.5 37.8 

TS before homog. (TSb) 227.5 484.7 128.3 120.3 179.7 141.3 93.9 

Relative modification (%) 42 28 14 13 22 23 21 

Total number of errors 4110 2161 6689 4111 3197 2592 375 

Maximal positive error (°C) 23.7 11.8 95.1 79.3 14.9 15.9 0.7 

Minimal negative error (°C) –9.7 –8.0 –416.6 –417.6 –9.9 –10.0 –1.1 
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Fig. 2. Verification results for minimum temperature 

 

Analyzing the precipitation results, we have to take into consideration that the MASH 

procedure carefully detects the break points. Lower inhomogeneity arose for the precipitation 

series than for temperatures (Table 4). During the homogenization, all of the networks 

became more homogeneous; nevertheless, the modification was precautious. The test statistics 

indicates that the Polish (6) system was the most inhomogeneous, and the improvement is 

also little afterward, although the similar relative modification caused higher improvement 

than in the Romanian (3) system (Fig. 3.). The Slovakian (5) dataset passed through the most 

advance, at the expense of remarkable modifications of the series comparing to the others. 

Resulting from the QC numerous errors were detected, about in the rate of the amount of 

contributed stations. The amplitude of the errors in several systems is higher towards 

extremely heavy precipitations. 
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Table 4. Average test statistics and quality control (QC) results for precipitation  

 

Station sytem  1 2 3 4 5 6 7 

Number of stations 233 114 182 57 165 102 51 

TS after homog. (TSa) 21.6 31.27 28.09 25.61 21.89 38.97 35.53 

TS before homog. (TSb) 27.93 34.73 31.88 28.98 38.17 46.29 39.77 

Relative modification (%) 4 5 6 3 10 5 4 

Total number of errors 1531 672 975 313 803 408 223 

Maximal positive error 

(mm) 
71.94 230.27 10.27 179.46 94.29 93.36 60.38 

Minimal negative error 

(mm) 
23.24 –36.87 –1.52 –5.68 –59.46 –25.47 –11.41 
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Fig. 3. Verification results for precipitation 

 

 

Verification results for all the 12 elements can be followed up in the project deliverables 

related to the issues of the homogenization process (D1.12). The data rescue and digitization 
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activity in Module 1, and the data homogenization and QC performed by applying MASH 

procedure guarantee the availability of the high quality daily time series for the basic climate 

elements in the Carpathian region in the period of 1961–2010.  

 

3.3. Interpolation of homogenized data 

The final outcome of the CarpatClim tender service is a ~10 × 10 km resolution gridded 

dataset on daily scale for elements listed in Table 1. Interpolation of the homogenized time 

series is carried out by applying the MISH (Meteorological interpolation based on surface 

homogenized data basis; Szentimrey and Bihari, 2007) method. The MISH method was 

developed for interpolation of meteorological data, and an adequate mathematical background 

was also developed (Szentimrey et al., 2011) for the purpose of efficient use of all the 

valuable meteorological and auxiliary model information. The main difference between 

MISH and the usual geostatistical interpolation methods is the application of the 

meteorological data series for modeling. In geostatistics (Cressie, 1991), the sample for 

modeling is only the predictor data, which is a single realization in time, while in meteorology 

there are data series, i.e., a sample in time and space as well. 

 

3.4. Homogenized, harmonized and interpolated averages  

The cross border harmonization is essential in the project to avoid breaks at the boundaries on 

climate maps based on the gridded data. It can be ensured by the changes of the homogenized 

series across the borders as it was in case of the raw data exchange. Test statistics of the cross 

border harmonization are detailed in a publically available deliverable D2.5 (D2.5). The 

gridding of the harmonized series was executed by countries by applying MISH, and the 

merging of the separate but harmonized grid parts followed up in the end.  

The harmonized averages for the time interval of the project: 1961-2010 are presented on 

maps in Figs 4-14.  
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Fig. 4. Average maximum temperature in the period of 1961-2010 for Carpathian Region 

 

 

 

Fig. 5. Average minimum temperature in the period of 1961-2010 for Carpathian Region 
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Fig. 6. Annual mean precipitation in the period of 1961-2010 for Carpathian Region 

 

 

 

 

Fig. 7. Average surface air pressure in the period of 1961-2010 for Carpathian Region 
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Fig. 8. Yearly average global radiation in the period of 1961-2010 for Carpathian Region 

 

 

 

 

Fig. 9. Average cloudiness in the period of 1961-2010 for Carpathian Region 
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Fig. 10. Average vapour pressure in the period of 1961-2010 for Carpathian Region 

 

 

Fig. 11. Average relative humidity in the period of 1961-2010 for Carpathian Region 
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Fig. 12. Average sunshine duration in the period of 1961-2010 for Carpathian Region 

 

 

 

Fig. 13. Average wind speed on 10 m in the period of 1961-2010 for Carpathian Region 
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Fig. 14. Average wind direction on 10 m in the period of 1961-2010 for Carpathian Region 

 

 

4. CONCLUSION 

 

The CARPATCLIM project is a well-accomplished cooperation for applying a single 

homogenization method in a region fragmented by boundaries and a pioneer work for 

countervailing against differences in measuring practice and strict data policies. The high 

quality of times series got through the commonly used MASH procedure are guaranteed by 

the excellent monthly benchmark results from the COST “HOME” Action. The Climate of the 

Carpathian Region Project contributes to the availability of a set of homogeneous and 

spatially representative data to prepare climate change studies relevant in the region. The final 

outcome of the CARPATCLIM are the quality controlled, homogenized, in-situ daily time 

series and gridded data per country and the whole region as well, including a metadata 

catalogue with the documentation of the existing homogenized datasets. The daily grids with 

the metadata will be freely accessible for scientific purposes (CARPATCLIM homepage). 
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Abstract 

 

Global climate change affects regional atmospheric circulation, and thus, these changes may modify 

regional weather patterns such as regional storm tracks, main wind directions and wind speed values 

of a specific region (Emeis 2013). Therefore, it is essential to learn both the present wind conditions of 

the Carpathian Region and the regional effects of global warming as deeply as possible. Reliable 

estimation of mean and extreme parameters of wind climate contributes to assess future conditions and 

to adapt to the changing climate.  

To improve future wind assessments, different wind speed time series are checked, compared, and 

corrected. Firstly, wind speed and wind gust from Hungarian synoptic data sets (1975–2012) are 

homogenized using Multiple Analysis of Series for Homogenization (MASH) application (Szentimrey 

1999) developed at the Hungarian Meteorological Service. Quality of measured data sets improved 

after homogenization, and missing data were filled automatically by the software. Secondly, 

interdependence of different time series are estimated by comparing measured and ERA Interim 

reanalysis wind data series. Our results showed that spatial difference cannot be reproduced by 

homogeneous gridded reanalysis data unlike in case of station measurements. 

Both average and extreme values of homogenized station and grid point data sets were analyzed. We 

concluded that the seasonal variability is low, and biases of reanalysis data are smaller in summer than 

in winter. The high (i.e., 0.9 and 0.99) percentiles’ values are underestimated in the reanalysis data 

series for most of the analyzed grid points. Due to significant differences between distributions of 

measured and reanalysis data sets, wind speed and wind gust extreme value analysis of present wind 

climate are calculated from homogeneous data sets.  

 

Keywords: regional wind climate, homogenization, MASH, ERA Interim, extremes 

 

 

1. INTRODUCTION 

 

It is essential to learn the present state of wind climate and the regional changes of wind field 

due to global climate changes for drawing correct conclusions and estimating future 

consequences. Estimation of different wind climate parameters contributes to better 

understanding of regional environmental effects; moreover, it helps adaptation for changing 

climate. We aim to calculate mean and extreme wind parameters from reliable and quality 

controlled data series, therefore wind speed and wind gust data series of the Hungarian 
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synoptic station network are homogenized. This station network has been developed and 

installed by the Hungarian Meteorological Service (HMS) taking into account suggestions of 

the World Meteorological Organisation (WMO 2011). Because of the last decades’ 

developments of measurement and communication technologies, the wind observing network 

has changed several times, which is quite usual. The most significant change was automation 

– i.e., change traditional measuring instruments into automated measuring systems – during 

1995–1996. This major change introduced large variations in the climate signal, and caused 

inhomogeneities in the data sets. In fact, long instrumental records are very rarely 

homogeneous because of the changing surroundings of measuring sites (new buildings, 

vegetation growth, etc.). To avoid misinterpretation due to this inhomogeneity, the available 

time series can be divided into subsets. For instance, we used two subsets in case of previous  

wind climate analysis (Péliné et al. 2011) using wind data originating from traditional (1975–

1994) and automated (1997–2012) measuring systems.  

 

In addition to automation other causes may also lead to inhomogeneities such as substitution 

or relocation of weather stations, changing anemometer type or aging of the instruments, 

changes in measuring height, surroundings (e.g., urbanization), surface coverage, and 

roughness. Therefore, documentation of metadata is a crucial issue during any kind of 

meteorological measurement. 

 

The above-mentioned changes could result in inhomogeneities, which cannot be explained by 

climatological reasons. Brake points in the data sets coincide with change in the probability 

distribution function of the measurements. These inhomogeneities must be detected and 

removed before further analyses. For this purpose mathematical methods are widely used, one 

of them is the Multiple Analysis of Series for Homogenization, MASH v3.03 (Szentimrey, 

1999, 2011) developed in HMS. This technique is used here for homogenization of available 

daily wind speed time series between 1975 and 2012 for records of 19 Hungarian synoptic 

stations (Péliné et al. 2014). As a result, quality of the measured datasets improved 

significantly and reliability of datasets enhanced after filling the missing data.  

 

Homogeneity of reanalysis data sets is also tested with MASH application and it has been 

proved that gridded data sets are homogeneous. In addition, measured and reanalysis data 

series are compared with estimation of Weibull parameters calculated from wind speed 

distributions. 

 

 

2. HOMOGENIZATION WITH MASH APPLICATION 

 

A homogeneous climatological time series can be defined as time series where variability is 

only caused by changes in weather and climate (Aguilar et al. 2003). To decide whether or not 

a long time series is homogeneous, there are different detection and correction methods 

available for possible use. These methods are all based on mathematical formulation and 

climatological experience, however, their performances are different. Objective comparison 

of these existing methods was carried out in the framework of a scientific programme COST 

Action HOME ES0601: Advances in Homogenization Methods of Climate Series: an 
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integrated approach (HOME 2011; Szentimrey 2013). The HOME tests concluded that 

MASH was one of the most successful methods (Domonkos et al. 2012, Domonkos 2013, 

Venema et al. 2012), that is why we used it in this study. 

 

MASH application is a relative homogeneity test procedure (Szentimrey 1999). This tool 

consists of mathematical formulation, climatological station information (metadata), and 

software development for automation. Application does not assume that the reference series 

are homogeneous. The candidate series is chosen from the available time series (for example 

daily wind speed data), and the remaining series are considered as reference series. As 

running the application, the role of series changes step by step during the procedure. 

Depending on the climatic element, additive (for temperature) or multiplicative (for 

precipitation or wind speed) models can be used.  

 

It is possible to homogenize monthly, seasonal, or annual time series. The daily 

inhomogeneities can be derived from the monthly ones (Szentimrey 2008). The application 

provides automatically the probable dates of break points for further usage, and the 

homogenized, completed and quality controlled time series. Although MASH is able to use 

metadata (for example the date of relocation) during the break point detection, it was not used 

during this work. 

 

In this study, daily wind speed data sets for 19 stations (Fig. 1) were derived from at least 8 

hourly wind speed data a day. Before calculating daily wind speed, hourly data was quality 

controlled and corrected. Metadata of stations is summarized in Table 1. Data are available 

from 1975 to 2012 at most stations. At station Paks (No. 15), measurements started only on 

May 1, 1979. Altogether more than one year is missing at Zalaegerszeg (No. 11) during 1993 

and 1994. It is also important to note that 50 days are missing at Kecskemét (No. 17) in 2009.  

 

A multiplicative model was applied for homogenization of daily wind speed data using the 

0.05 significance level. Original series can be affected by climate change, inhomogeneity, and 

noise effect (Szentimrey 2011). 

 

 

Fig. 1. Hungarian stations used at MASH application for homogenization. 
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Table 1. Metadata of Hungarian stations (in 2012) used at MASH application for homogenization 

 

No. WMO Station name 
Lon  

[° E] 

Lat  

[° N] 

Altitude 

[m] 

Anemometer 

elevation 

[m] 

Missing 

data [%] 

1 12772 Miskolc 20.77 48.10 232.8 16.25    0.0 

2 12805 Sopron 16.60 47.68 233.8 18.40 < 0.1 

3 12812 Szombathely 16.65 47.20 201.1 10.56 < 0.1 

4 12822 Győr 17.67 47.71 116.7 11.16    0.0 

5 12843 Budapest Lőrinc 19.18 47.43 139.1 14.68 < 0.1 

6 12851 Kékestető 20.02 47.87 1011.3 25.07 < 0.1 

7 12860 Szolnok 20.13 47.17 108.1 10.40 < 0.1 

8 12882 Debrecen 21.61 47.49 107.6 10.23    0.1 

9 12892 Nyíregyháza 21.89 47.96 142.1 15.98    0.2 

10 12910 Szentgotthárd 16.31 46.91 311.7 16.61    0.1 

11 12915 Zalaegerszeg 16.81 46.93 240.1 10.40    3.3 

12 12925 Nagykanizsa 16.97 46.46 139.8 13.69    0.1 

13 12935 Siófok 18.04 46.91 108.2 15.10    0.0 

14 12942 Pécs 18.23 46.01 202.8 10.55    0.0 

15 12950 Paks 18.85 46.57   97.2   9.80  11.4 

16 12960 Baja 19.02 46.18 113.0 10.30    0.1 

17 12970 Kecskemét 19.75 46.91 114.0 10.40    0.4 

18 12982 Szeged 20.09 46.26   81.8 12.25 < 0.1 

19 12992 Békéscsaba 21.11 46.68   86.2   6.50 < 0.1 

 

Today, input data of climate models are the widely used gridded reanalysis fields generated 

from measured and observed data. Climate model runs driven by reanalysis fields are 

essential, and provide important knowledge for modern climate research. However, the 

question arises how reliable are different reanalysis data sets for estimation of wind climate 

parameters and validation of climate models. Global reanalysis data sets (e.g., ERA Interim) 

are used in our study that was provided by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) for researchers and climate modelers (Berrisford et al. 2009). 

 

ERA Interim is remarkably improved compared to the earlier ERA-40 reanalysis data sets 

(1957–2002) due to data assimilation methods and inclusion of more types of observations, 

e.g., satellite measurements (Berrisford et al. 2009). In our study, datasets of wind 
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components with fine resolution for the Carpathian Basin (45°–49.5°N and 15°–24°E) are 

analyzed for 1979–2012.  

 

Homogeneity of 10-meter daily average wind speed of 190 grid points of ERA Interim data 

sets is checked with MASH 3.03 software (Szentimrey 2011) for the Carpathian Basin 

between 1979 and 2012. Results of homogenization proved that these gridded data series are 

homogeneous. Values of the applied test statistics for characterization of inhomogeneity of 

time series were almost unchanged before and after homogenization and remained under the 

critical value (20.57; significant level: 0.05) at 72% of grid points. Values of yearly relative 

estimated inhomogeneity and yearly relative modification of time series differed from zero 

altogether 15% of the grid points. 

 

 

3. COMPARISON OF DATA SERIES 

 

Weibull distributions are fitted in order to compare reanalysis and measured data series. 

Shape parameter of Weibull distribution (kw) describes frequencies of larger wind speeds. The 

larger the value of kw, the smaller the variability of wind speed. Increasing scale parameter (λ) 

when constant shape parameter is assumed occurs as an elongation of probability density 

function (pdf) along the abscissa with decrease and right-shift of the maxima of pdf (Wilks 

2006). Variability of scale parameter is smaller in ERA Interim grid points (3.06–3.83) 

compared to the synoptic stations (2.13–4.51). Values of Weibull shape parameters of the 

reanalysis grid points are between 2.10 and 2.65, which are larger than what is found in case 

of the stations data (1.38–2.16). This overestimation of Weibull shape parameters reduces the 

variability of wind climate and the probability of extreme wind speed (Rodrigo et al. 2013). 

 

The main disadvantage of homogeneous gridded reanalysis data series is that spatial 

difference cannot be reproduced by reanalysis data unlike in case of station measurements. 

Monthly scale parameters of both station and gridded data averages are close in spring and 

summer when regional differences are compensated (Fig. 2). The monthly average shape 

parameters are almost equal in June, however, in all the other months overestimations are 

found at ERA Interim grid points. 

 

 

Fig. 2. Monthly station and gridpoint averages of scale (λ) and shape (kw) parameters calculated from 

fitted Weibull distributions of daily wind speed. 
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Shape parameters [dimensionless] are shown in Fig. 3 as a function of scale parameter [m/s] 

of fitted Weibull distributions. Smaller shape parameter can occur in winter due to cyclone 

activity. Higher scale parameter was found in spring when both the value and the variability 

of monthly average wind speed are the largest. Average station shape parameters are 

generally overestimated by the average gridpoint shape parameters, the similar is valid for 

scale parameter. The only exception occurs in springtime when average station scale 

parameters are underestimated by the average gridpoint scale parameters. Because the scale 

parameter depends on wind speed, that is why the wind speed is overestimated, except in 

spring. The smallest differences (biases) of calculated parameters are observed in June and 

July. 

 

 

Fig. 3. Parameters of Weibull distribution fitted daily wind speed data series of grid points (left up) and 

stations (right up) in every month (blue) and in different seasons (winter – black, spring – green, summer 

– yellow, autumn – brown). Monthly grid (unfilled) and station (filled) averages are plotted in the lower 

diagram.  

 

Both average and extreme values of homogenized station and grid point data sets were 

analyzed (Fig. 4), for comparison the nearest grid point of each station is selected. Regarding 

yearly percentile values, average bias of median of 19 grid points is +11% (minimum: -24%; 

maximum: +64%). Generally, higher percentile (0.90 and 0.99) values are smaller at 

reanalysis grid points than at the stations, except near Győr, Budapest, Szentgotthárd, 

Nagykanizsa, Paks and Baja (Nos. 4, 5, 10, 12, 15, and 16, respectively). Average bias of the 

0.90 percentiles of ERA Interim grid points is 2.5% (between -31% and +53%), and the 0.99 

percentile’s bias is -7.5% (between -39% and +40%).  
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Fig. 4. Different seasonal percentiles (square – 0.5, triangle – 0.9, circle – 0.99) values [m/s] for 19 

homogenized synoptic stations (colour) and ERA Interim grid points (black) calculated from 34-year time 

series (1979–2012) 

 

 

4. CONCLUSIONS 

 

As a summary of our study, we conclude that discrepancies between station datasets and 

gridded reanalysis datasets can be explained by the following possible causes. (1) Reanalysis 

data sets are basically created using limited number of measured data of regular 

meteorological stations. Hungary, similarly to other countries, reports its synoptic data in a 

standard code format to ECMWF according to the international cooperation of the member 

states. However, the number of stations of which data are transmitted fluctuates from year to 

year. There is only five stations – Miskolc, Budapest, Debrecen, Pécs, Szeged – from which 

time series are shared continuously starting from the 1979 till today. Since wind varies quite 

much spatially, when only a few stations with low spatial representation of a specific area are 

used for interpolation purposes, they result in relatively large errors. In contrast, estimation 

(interpolation) of atmospheric pressure for Hungary could be successful using only 5-7 

Hungarian stations’ data, because spatial representation of a specific station is much better in 

case of atmospheric pressure than wind. (2) Source observational data of reanalysis data sets 

were not homogenized before interpolation to the grid points, so inhomogeneities of predictor 

data may decrease correctness of reanalysis data. (3) Regarding gridding interpolation of 

meteorological elements, it is needed to interpolate not only spatially (i.e., as a GIS problem) 

but both spatially and temporally in order to create reliable time series in the grid points 

utilizing climatic knowledge. Reanalysis process is a data assimilation problem using 

variation analysis and supposing that the background field (where it exists) is equal to the 

analysis field. This approximation could lead to further sources of biases.   

Researchers should make every possible effort to use quality controlled, homogenized and 

reliable data sets in order to complete reliable wind climatological analysis and to estimate 

potential renewable wind energy sources. 
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ANNA MAMARA 

Hellenic National Meteorological Service  

annamamara@yahoo.gr 

HUNGARY 

TAMÁS SZENTIMREY 

Hungarian Meteorological Service 

szentimrey.t@met.hu 

ZITA BIHARI 

Hungarian Meteorological Service 

bihari.z@met.hu 

MÓNIKA LAKATOS 

Hungarian Meteorological Service 

lakatos.m@met.hu 

SÁNDOR SZALAI 

Szent István University 

Szalai.Sandor@mkk.szie.hu 

TAMÁS KOVÁCS 

Hungarian Meteorological Service 

kovacs.t@met.hu 

ENIKŐ VINCZE 

Hungarian Meteorological Service 

vincze.e@met.hu 

CSILLA PÉLINÉ NÉMETH 

Geoinformation Service of the Hungarian 

Defence Forces 

pelinenemeth.csilla@mhtehi.gov.hu 

IRELAND 

JOHN COLL 

Irish Climate Analysis and Research Unit 

john.coll@nuim.ie 

 

MARY CURLEY 

Met Éireann 

mary.curley@met.ie 

ISRAEL 

YIZHAK YOSEF 

Israel Meteorological Service Climatology 

Department 

yosefy@ims.gov.il 

ITALY 

FIORELLA ACQUAOTTA 

University of Turin, Earth Science 

Department, NatRisk 

fiorella.acquaotta@gmail.com 

JORDAN 

AHMAD MAH’D MOH’D TAYYAR  

Jordan Meteorological Department 

tayarcom@yahoo.com 

LIBYA 

KHALID ELFADLI IBRAHIM 

Libyan National Meteorological Centre 

kelfadli@yahoo.com 

MONTENEGRO 

MIRJANA SPALEVIC  

Institute of Hydrometeorology and 

Seismology of Montenegro  

mirjana.spalevic@meteo.co.me 

MOROCCO 

EL GUELAI FATIMA ZOHRA 

Moroccan Meteorological Service 

faty.elguelai@gmail.com 

POLAND 
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AGNIESZKA WYPYCH 

Institute of Geography and Spatial 

Management, Jagiellonian University 

agnieszka.wypych@uj.edu.pl 

ROMANIA 

MARIUS-VICTOR BIRSAN 

Meteo Romania (National Meteorological 

Administration) 

marius.birsan@gmail.com 

SERBIA 

GORDANA SIMIĆ 

Republic Hydrometeorological Service of 

Serbia 

gordana.simic@hidmet.gov.rs 

IVANA KORDIĆ 

Republic Hydrometeorological Service of 

Serbia 

ivana.kordic@hidmet.gov.rs 

PREDRAG PETROVIĆ 

Republic Hydrometeorological Service of 

Serbia 

predrag.petrovic@hidmet.gov.rs 

SLOVAKIA 

OLIVER BOCHNÍČEK 

Slovak Hydrometeorological Institute 

oliver.bochnicek@shmu.sk 

 

PETER KAJABA 

Slovak Hydrometeorological Institute 

peter.kajaba@shmu.sk 

SPAIN 

DHAIS PEÑA 

University of Saragossa 

dpang@unizar.es 

ETOR EMANUEL LUCIO-ECEIZA 

Universidad Complutense Madrid 

eelucio@fis.ucm.es 

JOSÉ A. GUIJARRO 

AEMET (Spanish State Meteorological 

Agency) 

jguijarrop@aemet.es 

 

 

NURIA CASABELLA 

CIEMAT (Centro de Investigaciones 

Energéticas, Medioambientales y 

Tecnológicas) & UCM (University 

Complutense of Madrid) 

nucasabe@ucm.es 

PÉTER DOMONKOS 

Centre for Climate Change (C3), 

University Rovira i Virgili, Tortosa, Spain 

peter.domonkos@urv.cat 

ENRIC AGUILAR 

CENTER FOR CLIMATE CHANGE, C3, 

URV 

enric.aguilar@urv.cat 

SWITZERLAND 

RENATE AUCHMANN  

Institute of Geography, University of Bern 

renate.auchmann@giub.unibe.ch 

TANZANIA 

PHILBERT MODEST LUHUNGA 

Tanzania Meteorological Agency (TMA) 

philuhunga@yahoo.com 

TUNISIA 

MELIKA NAFFATIA  

Institut National de la Météorologie 

melika@meteo.tn 

UNITED KINGDOM 

RACHEL WARREN 

College of Engineering, Maths and 

Physical Sciences, University of Exeter 

rw307@exeter.ac.uk 

ROBERT DUNN 

Met Office Hadley Centre  

robert.dunn@metoffice.gov.uk
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TIM LEGG 

Met Office 

tim.legg@metoffice.gov.uk 

 

UKRAINE 

VALERIIA SAVCHENKO 

Taras Shevchenko National University of Kyiv 

savchenkovaleria94@gmail.com 

WMO 

PEER HECHLER 

Data Management Applications Division 

phechler@wmo.int 



For more information, please contact:

World Meteorological Organization

Observing and Information Systems Department
Tel.: +41 (0) 22 730 82 68 – Fax: +41 (0) 22 730 80 21

E-mail: wcdmp@wmo.int 

7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland

www.wmo.int

Eighth Seminar for Homogenization and 
Quality Control in Climatological Databases 
and Third Conference on Spatial Interpolation 
Techniques in Climatology and Meteorology

(Budapest, Hungary, 12-16 May 2014)

Climate Data and Monitoring 
WCDMP-No. 84




