Global temperature trend biases and statistical homogenization methods

Victor Venema & Ralf Lindau

@VariabilityBlog variable-variability.blogspot.com

Outline talk

- Early warming (1850 to 1920, red rectangle)
 - Warming estimates of the main global datasets
 - Non-climatic temperature changes
 - Other early climatic changes
- Cooling biases in the instrumental record
- Performance of homogenisation methods
 - Annual means

Global temperature changes

Figure: IPCC (2013)

Berkeley Earth – global land temperature

Sea Surface Temperature (AR5)

Indications of more early warming

- Inhomogeneities in temperature observations
 - Well-homogenized national dataset see more warming up to 1920 than global datasets
 - Transition to Stevenson screen
 - old data too warm
 - Small adjustments for this transition in GHCNv3

Temperature difference series – 3 countries

Temperature difference series – 4 countries

Physical reasons: Radiation errors

Montsouris/French screen (in Spain)

Photo: URV, Tarragona, SCREEN experiment

Radiation error

Parallel measurements Transition to Stevenson screens

- North-West Europe: < 0.2°C (Various, Parker)
- Basel, Switzerland: ~0 (0.25)°C (Wild screen)
- Kremsmünster, Austria: 0.2°C (North-wall)
- Adelaide, South Australia: 0.2°C (Glaisher stand)
- Spain: 0.35 (0.5)°C (French screen)
- Sri Lanka: 0.37°C (Tropical screen)
- India: 0.42° (Tropical screen)

Winter and summer trend

Inhomogeneities in GHCNv3

Global Land Surface Temperature

Adjustments

Averaging: Zeke Hausfather Data: GHCNv3

Climatic changes in 19th century

- Trend in lake temperatures, ice season shorter
 - http://tinyurl.com/lake-temp
- Glacier retreat
- Sea level rise

Lake and river freezing

Temperature reconstruction from glaciers

Oerlemans, J., 2005: Extracting a Climate Signal from 169 Glacier Records. *Science*, **308**, no. 5722, pp. 675-677.

Sea level rise

Church & White, 2011

Conclusions – early warming

- A warm bias in the early instrumental data
 - Parallel data suggest clear bias
 - Transition to Stevenson screens
 - Corrections GHCNv3 small and early
 - Winter trend stronger than summer trend
- Large differences between global and national datasets
- Station data is just one line of evidence

Conclusions – early warming

- Warming
 - River and lake freezing
 - Glaciers
 - Proxy data
 - Sea level rise
- More than expected?
 - Needs quantitative study
 - Berkeley Earth shows some warming over land (Arctic)
 - Would need colocation of datasets
 - Much of the evidence is from cold climates
 - Another indication of a remaining warm bias
- http://tinyurl.com/earlywarming

Difference (national – BEST)

Difference (national – BEST)

Sources of global temperature trend bias

- Details: http://tinyurl.com/reasons-temp-bias
- Transition to Stevenson screens
- Transition to Automatic Weather Stations
- Urbanization
 - Urban Heat Island and relocations
 - Relocations to airports
- Station siting quality
 - Centre of villages to current location outside
- Irrigation & watering

Relocations

 Cooling relocations based on relative statistical homogenization:

Beijing	-0.75°C	Yan et al. (2010)
Hefei	-0.7°C	Yang et al.(2013)
China	-0.2°C	Xu et al. (2013)
Bulgaria (2009)	~0°C	Syrakova et al.
Nordic+UK	-0.11°C	Tuomenvirta (2001)

Multiple breakpoint problem More is different

- Decomposition difference time series
 - Break signal + Noise
 - Causinus & Mestre (2004)
- Maximise break variance
- Penalty term to determine

$$ln(1-v) + \frac{2\ln(n)k}{n-1} = \min^{\frac{1}{9}}$$

 Penalty term not optimal: Lindau & Venema (2013)

Time

Break detection and SNR

Skill of standard search versus an arbitrary segmention

7 breaks within 100 time steps, 1000 repetitions SNR = Break variance / 2.0 noise variance signals 1.5 RMS skill for: deviation of Random segmentation 0 Standard search +1.0 Mean squared Mean square deviation of signals 0.5 $-0 \leftarrow Random$ Inserted (true signal) Computed adjustments + Standard 0.0 Lindau & Venema (2016) 1.5 0.0 0.5 1.0 2.0 to be submitted Signal-to-noise ratio SNR

Correction by decomposition

Undercorrecting trend biases

- Computing the adjustments is a regression
 - Predictors: break positions (+ station temps)
 - Predictands: adjustments (+ regional signal)
- Numerical test (all breaks are known)
 ANOVA adjustments are unbiased (but noisy)
- Imperfect predictors (break positions)
 - Break variance is underestimated
 - Trend biases will be undercorrected
 - All breaks detected, but error in position of 2 year:
 - 18% of trend bias remains
 - Artificial, but gives idea of the order of magnitude

NOAA validation study for USA

Clustering and Sign Bias-C20C1

NOAA validation study for USA

Difference BEST, GISS, CRUCY (1901-2010)

Regional trend bias correction

- A small bias in breaks can lead to large-scale temperature trend errors
- Correction with composite reference
 - Reference has the same bias

Temperature raw and homogenized (smoothed)

Conclusions

- Trend difference between well-homogenized datasets and global collections
 - Land surface temperature
- Relative homogenization: cooling bias data
 Trend bias likely undercorrected
- Physical understanding of cooling bias poor
 - Transition to Stevenson screens seems undercorrected
- Many other changes in climate system fast
- Climatology urgently need a major investment in homogenization research

Future research - Homogenization

- Need better mathematical understanding of how well trend biases can be removed
 - Numerical understanding: ISTI global benchmarking
- Need better homogenization methods
 - Multiple breakpoint methods
 - Low signal to noise ratio
 - Determination of optimal number of breaks
 - Joint detection
 - Noise reduction of difference time series
 - Apply them to global datasets
- Need to exchange more data & metadata

Future research – Physical reasons

- Understanding of cooling biases is poor
 - Reduction radiation errors
 - Relocations, better siting
 - Irrigation and watering near weather stations
- Large global parallel dataset can help (ISTI-POST)
 - Transition to AWS
 - Transition to Stevenson screen
 - Relocations
 - o Changes in weather variability and extreme weather
 o Poster
 - o Precipitation, humidity, wind(?)

Future research – Other climatic changes

- Need to study other climatic changes in the light of possible temperature trend biases
 - If trend in other parameters do not fit with models, temperature trend bias often not considered
 - Other changes that go faster/slower than expected?
 - Permafrost?
 - Ground temperatures?
- Station record is just one of many
 - Consilience of evidence