

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Temperature and precipitation grid datasets for climate monitoring based on homogeneous time series in Switzerland

F. A. Isotta, M. Begert and C. Frei 6th April 2017

Content

Introduction: motivation, method

Results and evaluation

Conclusion and outlook

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

Content

Introduction: motivation, method

Results and evaluation

Conclusion and outlook

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

O Introduction - Motivation

- Develop new datasets for monthly temperature and precipitation suitable for climate monitoring (regularly updated)
 - 1864-2016 (-now), 1901-2016 (-now) and 1961-2016 (-now)
 - Only with homogenized station data
 - Continuous measurements (no gaps)
 - Constant station density and distribution (same stations every time step)

O Introduction - Motivation

• The amount of stations fulfilling all requirements is low

	Temperature 🎚	Precipitation 🤗
1864-2016	20	17
1901-2016	28	69
1961-2016	54	292

O Introduction - Method

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

6

RSOI - Overview O

Reduced Space Optimal Interpolation (Kaplan et al., 1997; Schmidli et al. 2001, 2002; • Schiemann et al., 2010; Masson et al., 2015)

7

(back-transformed for P)

Content

Introduction: motivation, method

Results and evaluation

Conclusion and outlook

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

RSOI – Results and evaluation

- Calibration period: 1981-2010
- Reconstruction period: 1961-2016, 1901-2016, 1864-2016
- Dimensionality reduction (truncation): 12 (1), 30/22/14 (2)
- Evaluation:
 - Tests with changing calibration (length and period), truncation, data quality, stations amount
 - Use of crossvalidation (leave-one-out): *x*_{*i*,*reconstr*}, *x*_{*i*,*obs*}
 - Mean absolute error (MAE)
 Mean-Squared Error Skill Score (MSESS)
 1= perfect reconstruction, 0=no skill
 Msess = 1 \frac{\sum_{i=1}^n (x_{i,reconstr} x_{i,obs})^2}{\sum_{i=1}^n (x_{i,obs} \overline{x_{i,obs}})^2} \frac{\sum_{i,obs}}{\sum_{i=1}^n (x_{i,obs} \overline{x_{i,obs}})^2} + \frac{\sum_{i,obs}}{\sum_{i,obs}} + \frac{\sum_{i,obs}}{\sum_{i,obs}}} + \frac{\sum_{i,obs}}{\sum_{i,obs}} + \frac{\sum_{i,obs}}{\sum_{i,obs}}} + \frac{\sum_{i,obs}}{\sum_{i,obs}} + \frac{\sum_{i,obs}}{\sum_{i,obs}}} +

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

PC loading 1 – 65%

PC loading 2 – 15%

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

Mean absolute error (degC, mm/month)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} (|x_{i,reconstr} - x_{i,obs}|)$$

t	Grid	# stat	ALL	DJF	MAM	JJA	SON	# stat xval
1961 2016	Reconstr.	54	0.26	0.35	0.21	0.19	0.27	
1901 20 <u>1</u> 6	Reconstr.	28	0.33	0.42	0.28	0.26	0.33	20
1864 2016	Reconstr.	20	0.37	0.47	0.32	0.30	0.37	

t	Grid	# stat	ALL	DJF	MAM	JJA	SON	# stat xval
1961 2016	Reconstr.	292	12.2	9.6	11.2	17.1	11.0	
1901 2016	Reconstr.	69	14.2	10.8	13.3	19.9	13.1	17
1864 2016	Reconstr.	17	16.9	13.1	15.7	22.7	16.1	

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

Skill: MSESS 1901/1961-2016

Explained temporal variance

• Most of the stations have MSESS > 0.85

Explained spatial variance

20

Trend 1961-2016

Theil-Sen trend estimate (degC/10y) Stippling: statistically not significant (0.05) (Mann-Kendall; multiple hypothesis testing: Benjamini, Y., and Hochberg, Y., 1995)

Trend 1864/1901-2016

Theil-Sen trend estimate (degC/10y) Stippling: statistically not significant (0.05) (Mann-Kendall; multiple hypothesis testing: Benjamini, Y., and Hochberg, Y., 1995)

Trend 1901-2016

Theil-Sen trend estimate (degC/10y) Stippling: statistically not significant (0.05) (Mann-Kendall; multiple hypothesis testing: Benjamini, Y., and Hochberg, Y., 1995)

Trend 1961-2016

Theil-Sen trend estimate [mm/(y*10y)] Stippling: statistically not significant (0.05) (Mann-Kendall; multiple hypothesis testing: Benjamini, Y., and Hochberg, Y., 1995)

Trend 1864/1901-2016

Theil-Sen trend estimate [mm/(y*10y)] Stippling: statistically not significant (0.05) (Mann-Kendall; multiple hypothesis testing: Benjamini, Y., and Hochberg, Y., 1995)

Trend 1901-2016

Theil-Sen trend estimate [mm/(season*10y)] Stippling: statistically not significant (0.05) (Mann-Kendall; multiple hypothesis testing: Benjamini, Y., and Hochberg, Y., 1995)

Datasets comparison, MAE (1961-1980)

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

Content

Introduction: motivation, method

Results and evaluation

Conclusion and outlook

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei

Conclusion and outlook

RSOI method

- RSOI is an attractive method to benefit of short-term high-resolution information to reconstruct longer time scales with less observations available.
- Method suitable for complex terrain where variations are spatially anchored.
- Successful reconstruction of time series and spatial distribution of temperature and precipitation
- The discrepancies between observations and reconstruction are relatively moderate (MAE≈0.3 degC) and 15 mm/month ♀
- Reconstruction improves long-term consistency
- Potential for application in the entire Alpine Region

Temperature and precipitation grid dataset for climate monitoring based on homogeneous time series in Switzerland F. Isotta, M. Begert and C. Frei