

Comparison of Three Interpolation Schemes for Six Parameters

Kira Rehfeldt¹, Christine Kolbe¹, Markus Ziese¹, Elke Rustemeier¹, Stefan Krähenmann², Andreas Becker¹

¹ Global Precipitation Climatology Centre, DWD ² Zentrales Klimabüro, DWD

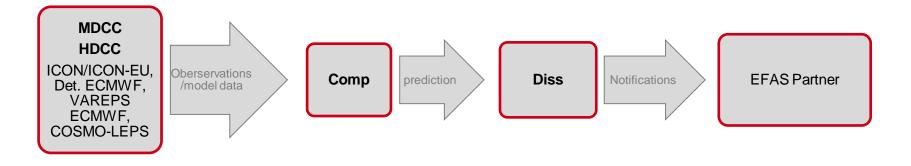
9th SEMINAR FOR HOMOGENIZATION AND QUALITY CONTROL IN CLIMATOLOGICAL DATABASES AND 4th CONFERENCE ON SPATIAL INTERPOLATION TECHNIQUES IN CLIMATOLOGY AND METEOROLOGY April 6, 2017

Comparison of three Interpolation Schemes

European Flood Awareness System –

The EFAS Meteorological Data Collection Center

- Data basis
- Methods
- Results
- → Summary



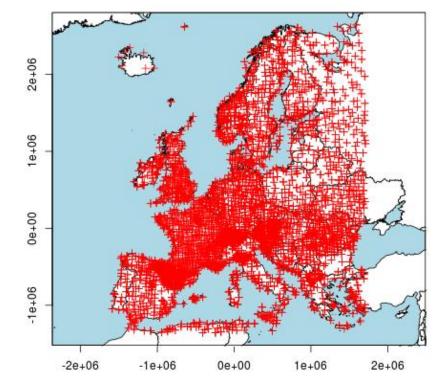
The operational EFAS (https://www.efas.eu/about-efas.html).

European Flood Awareness System - EFAS

- **EFAS Meteorological data collection Centre**: KISTERS AG and Deutscher Wetterdienst
- → EFAS Hydrological data collection Centre: REDIAM (ES) and ELIMCO (ES)
- → EFAS Computational Centre: European Centre for Medium-Range Weather Forecasts (UK)
- EFAS Dissemination Centre: Swedish Meteorological and Hydrological Institute, Rijkswaterstaat (NL) and Slovak Hydro-Meteorological Institute

European Flood Awareness System - EFAS

- first operational European system for monitoring and forecasting floods across
 Europe
- → flood early warning information up to 10 days in advance
- ➔ hydrological model: LISFLOOD
- → collection of daily and sub-daily station observations



Deutscher Wetterdienst Wetter und Klima aus einer Hand

Data basis

- ➔ May 2014
- ➔ Parameters:
 - precipitation totals [mm/day]
 - minimum temperature [°C]
 - maximum temperature [°C]
 - mean vapour pressure [hPa]
 - mean wind speed [m/s]
 - radiation totals [J/m²]

Station locations for precipitation measurements in May 2014 (EFAS domain).

Methods

- Inverse Distance Weighting (IDW) (Ntegeka et al., 2013)
 - geometric scheme
 - used as reference to assess the tested schemes
 - weight depends on distance (~ 1/d²) and number of available stations
 - simple, robust scheme
 - low computational cost

Modified
 SHPEREMAP (SP)

(Shepard, 1968; Willmott et al., 1985)

- geometric scheme with distance and angular weighting
- weight depends on distance, distribution and number of available stations

- Ordinary Kriging (OK) (Krige, 1966)
 - spatial correlations
 between observations
 - weights calculated by means of variograms

Results - Overview

- → <u>cross-validation</u> (leave-one-out approach)
- different error metrics
 - Mean Error (ME)
 - Mean Absolute Error (MAE)
- → Yamamoto

DW

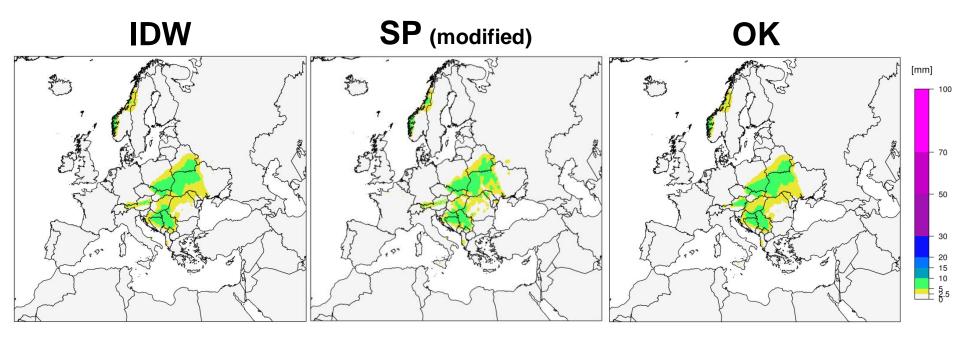
Results - Different measures of errors

Table 1: Summary of error measures ME and MAE for three interpolations schemes.

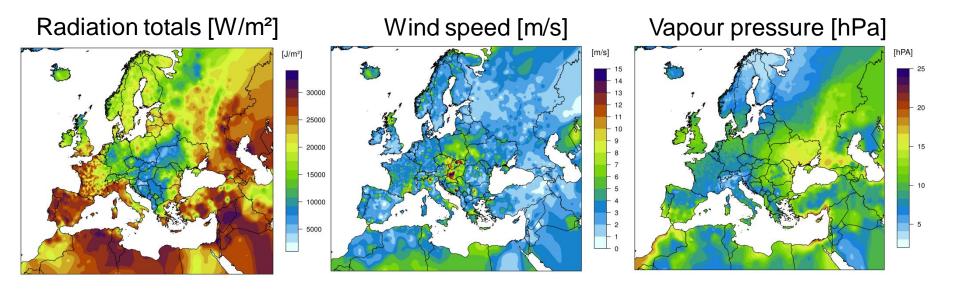
Parameter	ME			MAE		
	IDW	SP	OK	IDW	SP	ОК
Precipitation totals [mm/day]	0.89	-0.02	-0.02	2.32	1.36	1.40
Minimum temperature [°C]	0.06	0.04	0.06	1.60	1.62	1.62
Maximum temperature [°C]	0.04	0.05	0.00	1.76	1.78	1.79
Wind speed [m/s]	0.03	0.01	0.03	0.96	1.02	0.97
Vapor pressure [hPa]	0.01	0.00	0.02	0.85	0.84	0.85
Radiation totals [J/m ²]	22	17	15	2152	2284	2153

computing times for EFAS domain (1'500'000 grid points, including ocean areas)

IDW	modified SP	OK
470 sec	550 sec	700 sec


Results – Yamamoto's approach

- \rightarrow interpolation standard deviation (Yamamoto, 2000)
- → at each grid point as the weighted average of the squared differences between observations and interpolated values
 - reasonable computational effort
 - correlated with CV-error
 - underestimates CV-error
- provides reliable uncertainty estimates for operational applications


Results (15.05.2014) – Precipitation totals [mm/day]

Results (15.05.2014) – SPHEREMAP (modified)

Summary

- → Inverse Distance Weighting (IDW) performs best regarding Mean Absolute Error (MAE) and computational time, modified SPHEREMAP regarding Mean Error (ME)
- Ordinary Kriging (OK) yields highest error values
- modified SPHEREMAP is recommended as interpolation method, because...
 - reliable grids
 - low bias
 - robust against variable station density

Copyright Hans Eder / panthermedia.net

Questions / Comments?

Literature review

V. Ntegeka, P. Salamon, G. Gomes, H. Sint, V. Lorini, M. Zambrano-Bigiarini, J. Thielen; 2013; EFAS-Meteo: A European daily high-resolution gridded meteorological data set for 1990 – 2011: DOI: 10.2788/51262.

C.J. Willmott, C.M. Rowe, W.D. Philpot; 1985; Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring; The American Carthographer; Vol. 12; pp. 5-16.

D.G. Krige; 1966; Two-dimensional weighted moving average trend surfaces for ore valuation; Proceedings of the Symposium on Mathematical Statistics and Computer Applications in Ore Valuation; pp. 13-38.

C. J. Willmott, K. Matsuura; 2006; On the use of dimensioned measures of error to evaluate the performance of spatial interpolators; International Journal of Geographical Information Science; DOI: 10.1080/13658810500286976.

J. K. Yamamoto; 2000; An Alternative Measure of the Reliability of Ordinary Kriging Estimates; Mathematical Geology; DOI: 10.1023/A:1007577916868.

D. Shepard; 1968; A two-dimensional interpolation function for irregularly spaced data; Proc. 23rd ACM Nat. Conf.; Brandon/Systems Press; Princeton; NJ; pp. 517-524.

Important equations

Howerse Distance Weigthing

 $\frac{\sum_{i=1}^{n} \frac{z(x_i)}{d^{x}(x_0, x_i)}}{1}$ $z(x_i)$ $z^*(\boldsymbol{x_0}) = \frac{1}{\sum_{i=1}^{n} \frac{1}{d^x(\boldsymbol{x_0}, \boldsymbol{x_i})}}$

$$z^*(\boldsymbol{u}) = \sum_{\alpha=1}^{n(\boldsymbol{u})} \lambda_{\alpha}(\boldsymbol{u}) z(\boldsymbol{u}_{\alpha}) + \left[1 - \sum_{\alpha=1}^{n(\boldsymbol{u})} \lambda_{\alpha}(\boldsymbol{u})\right] m(\boldsymbol{u})$$

YAMAMOTO

$$s_0 = \sqrt{\sum_{i=1}^n \lambda_i [z(x_i) - z * (x_0)]^2}$$

Modified SPHEREMAP

