Long-term homogenised precipitation data sets for Norway

Elin Lundstad, Department of climate services, Norwegian Meteorological institute
Petr Stepanek \& Pavel Zahradníček, Global Change Research Institute, Czech Academy of Sciences
19.04.2017

Objectives

- Establish a quality assurance tools to identify and adjust for homogeneity breaks
- Develop methodology to generate "homogenized" daily values of precipitation and temperature for given locations
- Produce homogenized monthly and daily values of temperature and precipitation for a number of long climate series
- Faciliate analysis by providing homogenized data to external users

Background for this work

- Cooperation on the field of homogenization of the Norwegian meteorological institute and Czech hydrometeorological institute (past, around 2004-2010, air temperature) and Global Change Research Institute, Czech Academy of Sciences (now, 2016 - X, precipitation)
- Air temperature records - finished in the last years (Home.R, MASH), now the task is precipitation
- Homogenization results applying SNHT, Home.R and MASH
- New results (for precipitation):
- November 2016, the first version
- March 2017, cleaned version from main problems (detected in the first version, time shift etc.)

Precipitation homogenization, past

- About 20 years ago (1991-96) the SNHT method was used on some Norwegian annual precipitation series and monthly temperature series.
- The first results were presented in the DNMI report KLIMA publications (Hanssen-Bauer et al. 1991) and (Førland and HanssenBauer, 1992, in Norwegian).
- The last one was published in English in 1994 (Hanssen-Bauer and Førland).
- In the first one 151 annual precipitation series of 75 years length were tested; 52 stations were classified as homogeneous, 99 with at least one break point

Homogenizing Long Norwegian Precipitation Series. Source: I. Bauer-Hanssen and E.J. Førland, MET NO AMS 1994 (7) No. 6

Homogenization of precipitation data in Norway (past)

The norwegian precipitation regions

Regional precipitation the last 100 years
 Region 1-6

Regional precipitation the last 100 years Region 7-13

Precipitation homogenization, update

Precipitation measurements

- 248 long precipitation series (1896-2015, various length), monthly data (with outlook to process daily data)

Precipitation Stations quailableod harought the time

Correlogram of first difference $\mathbf{1 0 0}$ sampled series

Precipitation homogenization, update

- Home.R and MASH applied in the first step
- But Home.R (applying former definition of the regions): even if it worked excellently for air temperature, it was not the case for precipitation (finding outliers, finding breaks, ...)
- Only MASH could be used so far
- Need to compare it with another independent source (verification): AnClim + ProClim DB solution

Other Home.R precipitation issues

00000000 rarrm00000300d vs 00000005 rarrm00012650d OCT

00000000 rarrm00000300d vs 00000004 rarrm00011900d OCT

Other Home.R precipitation issues

 ... ?00000000 rarrm00000300d OCT

Homogenization using AnClim and ProClimDB

- Being developed since 1996
- Combination of several methods (break detection \& correction, spatial interpolation)
- Experience with data from other countries (Slovakia, Austria, Germany, USA, Croatia, Bhutan and others)

Download data from database (e.g. Oracle)

(LoadData)

Quality control

(ProClimDB)

Homogenization

(ProClimDB/AnClim)

"Technical" series and grid points calculation
(ProClimDB)

ProcData software, only one Data file, accompanied by Info_file

database processing
\$Processing window (profile: slovensko)
Menu: Reference
Calculates reference series for each station gin

Item: From Correlations
 Source files:

Selects given Number of stations with average com

Data file (Data Info file)	
	:_et_hurv_mes_new_reconstr2
	dataidata_info.dlof

Correlations column

ProClimDB software

Refer. Series
Ref Info file

Open File
Save as ... (Copy)
Save as DBF IV

Settings

∇ Create Info File only Number of Stations 5

Limit-correlation $0.2 ; 100$
Maximum altitude diff. -100
V Weighted average
Years per one part

Overlap - years
\lceil Allow lenght $+j$ - overlay Correlations column K13

Process info:

Number of stations: 5
Difference in measuring periods (base and st taken into account!
Neighbours selected according to: correlatior based on K13 column

- additional condition: limit distance: maximu

Neighbours can differ in altitude at least: 100 m
Base station has to have a lenght at least: 20 years.
Neighbours have to have a lenght at least: 20 years.
Minimum length of period in common: 10 years (selecting 5 stations out of 5).
Selected stations from the same region only! (Column 'Region' in the Info_file).

Stations processed
1:B1BRBY01_TMA_21
n.anaim. -...

Run
Last Output Quit

ProClimDB software

Henu: ReferenceCaiculates reference series for each station given in info File		
Hem: From Correlations		
Source files: Data file (Data Info file) \square:-e't_hurv_mes_new_reconstr2.dbf dstaidata_info.dbf dataicorrel.dbf		Destination files: Refer. Series Refinfo file \square
Settings	Process into:	
		5 geriods (base according to: corre n: limit distance: m er in altitude at leas have a lenght at lea eriod in common: 1 m the same region
$K 13$	Run	Last outurul

国ref info t.dbf - Show_DBF.exe v1.2.4

- |a|x

File Edit Edit2 Records Fields Options Help

-

No	Bottom	Sort	Delete	Insert	Modi Stru	Command	Excel	Close

Spatial dependence

- A strong spatial dependence is crucial for successful homogenization
- Precipitation may occur very locally
- With distance and higher altitude difference, correlations drops quickly down
- In case of Norway we find the strongest dependence in winter and lowest in summer or autumn. From individual months, the weakest correlation is in April

Spatial dependence

Data Quality Control

- Own approach, combination of several methods

Interquartile ranges

Comparing with neighbours
Comparing with expected values

Comparing with radar information (not possible for Norway)

A	B		C	D	E	F	G	H	1	J	K	L	M	N
REGIC	ID	∇	YE	MONT	D $\sqrt{ }$	ST_BASE	EXPECT	REMAP	ST_1	ST_2	ST_3	ST_4	STS	DIF1!
T_03:30	B2BTUR01_T_03:30					241,00		Altitude	235,00	670,00	203,00	210,00	749,00	1
T_03:30	B2BZAB01_T_03:30							st_ 1 , di	11,58					
T_03:30	B1PROT01_T_03:30							st_2, di		36,85				
T_03:30	O3PRER01_T_03:30							st_3, di			59,12			
T_03:30	O2OLOM01_T_03:30							st_4, di				62,88		
T_03:30	O1CERV01_T_03:30							st_S, di					91,95	
T_03:30	B2BTUR01_T_03:30		2006	6	25	27,30	17,28		17,30	16,10	15,50	15,80	16,10	-7

Data quality control

Data quality control

- 22 suspicious values detected in first version
- 19 suspicious values detected in second clean-up version

Homogenization

- Detection - monthly data
- Two types of reference series
- one reference series calculated from the nearest or the best correlated neighbours stations
- Pair-wise detection - comparison with each neighbours station individually
- SNHT, Bivariate and t-test, and Home.R

Homogenization

- Ensemble approach - results from many tests, for all month, seasons and annual value

| Test | Ref | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | Win | Spr | Sum | Aut | Year |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | avg | 1927 | 1929 | 1927 | 1927 | 1927 | 1928 | 1927 | 1926 | 1926 | 1926 | 1926 | 1926 | 1927 | 1927 | 1927 | 1926 | 1927 |
| A | | | 1930 | | | | | | | | | | | | | | | |
| A | corr | 1927 | 1927 | 1927 | 1927 | 1927 | 1928 | 1927 | 1926 | 1926 | 1926 | 1926 | 1926 | 1927 | 1927 | 1927 | 1926 | 1927 |
| A | | | | 1939 | | 1938 | 1939 | 1940 | 1922 | | | | | | 1937 | 1937 | | 1935 |
| A | dist | 1927 | 1928 | 1927 | 1927 | 1927 | 1928 | 1927 | 1926 | 1926 | 1926 | 1926 | 1926 | 1927 | 1927 | 1927 | 1926 | 1927 |
| A | | | 1930 | | | | | | | | 1940 | | | | | | | 1918 |
| B | avg | 1927 | 1928 | 1927 | 1927 | 1927 | 1928 | 1927 | 1926 | 1926 | 1926 | 1926 | 1926 | 1927 | 1927 | 1927 | 1926 | 1927 |
| B | | | | | | | | | 1922 | | | | | | | | | |
| B | corr | 1927 | 1927 | 1927 | 1927 | 1927 | 1928 | 1927 | 1926 | 1926 | 1926 | 1926 | 1926 | 1927 | 1927 | 1927 | 1926 | 1927 |
| B | | | | 1936 | | 1938 | 1939 | 1944 | 1922 | | | | | 1935 | 1937 | 1937 | | 1935 |
| B | | | | | | | | | 1937 | | | | | | | | | |
| B | dist | 1927 | 1928 | 1927 | 1927 | 1927 | 1928 | 1927 | 1926 | 1926 | 1926 | 1926 | 1926 | 1927 | 1927 | 1927 | 1926 | 1927 |
| B | | 1930 | | | | | | | | | 1940 | | | 1931 | | | 1913 | 1918 |
| V | corr | | | | | | | | | | | | | 1927 | | | 1926 | |
| V | | | | | | | | | | | | | | | 1937 | 1922 | | 1935 |
| V | | | | | | | | | | | | | | | | 1937 | | |
| V | dist | | | | | | | | | | | | | 1927 | 1927 | 1927 | | |
| V | | | | | | | | | | | | | | | | | | 1918 |

Homogenization - results

- 1st version: 245 stations and 307 detected breaks
- 2nd version (cleanup): 248 stations and 222 detected breaks

Number of stations with given number of breaks

Homogenization - results

- 1. version: 245 stations and 307 detected breaks
- 2. version (cleanup): 248 stations and 222 detected breaks

Number of breaks found per iteration
Number of new breaks

Inhomogeneities detection

- Large number of detections (tens of thousands)
- It is necessary to establish threshold - significance (empirically or through testing)
- Most inhomogeneities are detected in winter months and in annual values

Inhomogeneities detection

Number of breaks in individual years

Inhomogeneities adjustment

- Reference series calculated from 5 neighbours best correlated or nearest stations
- Correction factor is calculated from differences 20 years before and after breaks
- Final correction factor is smooth by Gauss low pass filter for individual month
- Normally we use own method for correcting daily data, in this phase we used only monthly data

Inhomogeneities adjustment

- Average absolute size is much higher than median - mainly in winter months
- Average correction factor is 14.9 \% and median is 10.6 \%
- In winter months correction is two times higher than in summer

Absolute size of the adjustment (ratio)

Inhomogeneities adjustment

- Correction factor was higher in the 1st iteration of detection/correction (largest breaks were detected in the 1st iteration)
- 1st iteration (16.8 \%), 2nd itereation (12.8 \%), 3rd iteration (11.8 \%)

Absolute size of the adjustment (ratio)

Inhomogeneities adjustment

Change of the correlations after adjustment (in case of negative correlations, the series were not adjusted)

Homogenization - new series

MASH homogenization results

1314 Breaks

- Average 5,2 breaks pr station
- 30 stations without breaks

- 30 stations: > 11 breaks

Comparison with MASH results

Number of stations with given number of breaks
ProClimDB
MASH

- >3

Comparison with MASH results

Inhomogeneities adjustment (correction factor)

- ProClimDB:
- Average is 14.9 \%
- median is 10.6 \%
- MASH (six times more breaks):
- Average is $3,9 \%$
- median is 2.0%

Lesson Learned

Won knowledge and experience with state-of-the-art algorithms for homogeneity testing (Home.R, MASH)

The algorithms are essentially suitable, but must be interpreted and compared carefully with metadata series.

Important to analyze annual, seasonal and monthly values.

Benefit to apply various algorithms, provide more robust detection of violations.

Homogenization of daily values are important (tails of the frequency distribution and extreme values) - it will be the next step

CzechGlobe

Norwegian
Meteorological
Institute

Thanks for the attention!

Telephone: +47 22963169
E-mail: elinl@met.no
Twitter: @nile_2011

