

Quality Control and Homogenisation of the Belgian Historical Weather Data

C. Delvaux, R. Ingels, V. Vrabel, M. Journée, C. Bertrand

Royal Meteorological Institute of Belgium Climatological and Meteorological Information Service

Introduction

• Recent digitization project of belgian data

- Based on monthly climate bulletin
- daily data (temperature and precipitation)
- from 1880 to 1950
- Extend the Belgian daily data already available in our database from 1951 to nowadays

	Station de Bourg Leopold. Observateur M. Barbiere																		
			C.	lori	, all) ion.	; da	met.	de	Jui	R	et /	184	ni S	hen	res de	ie ni	atin.	
1	2	3	4	5	6	7			10	it	12	8	14	15	10	1		17	
Date	B	iromèl	re	Tempér	ulure	Psyc	hromèt	ne	Dirich	on et fe	The du	ette	Nebulo	Forme	Fau		Rema	ques	
mons	Th du bar	Hant	Barem rednit	Max	Min	Th sec	Th hum	Hamdite	Direction	Force	Derdum	Force	sité	auages	tomber			1	
								1		-			1	Vin.	1				
1	22	66.0	633	24,4	9.9	20.1	15.6	01	SW	2	NW	1	4	111					
2	22	64.0	613	27.1	13,0	228	182	60	0	0	NW.	• •	0	0					6
3	23	611	58.3	313	1 3.1	22.8	19.0	69	0	0	NE		0	00					21
4	24	592	563	30.7	15.7	262	20.7	59	NW		NW	2	-1	Via	0,25				
5	24	54.4	57.0	32.9	16.0	22.0	19.0	75	SE	1	SE		8	inhi	0,25				
6		1.	-81	1.1	11.	1.8.	173	12	SW		SW		1 5	ni	0.25	-			
7	20	61.1	0	l'y			1.	55						1ºres	k				
1	22	61.9	392	24.7	10,0	24.3	16.0	112	vv	1			11						
8	24	59.7	568	28.3	13.7	25.2	17.5	4.5	0	0	5	1 1	0	11	11				
9	25	57.8	547	29.4	16.1	25.7	17.9	43	£	1	E	+ 2	1	Ulta	4,0				
10	25	53.7	50.7	32.6	15.7	24.7	14.7	62	S	- 1	S	2	1	Stro	10,0				
11	23	568	54.0	298	145	180	15.1	66	w	1%	W	2	4	City 2	13,5	-			
12	1.1	158	54	123/	1.66	2.6	182	72	1 .	1	s		2	Kin	1.5	-			
12		00.9	50,1	10.4	1 4.4	21,0	10,0	63					1	lin	11.5	-			
13	25	59.9	568	28.7	17.1	27.4	22,2	00	w	1	12	1.	14	1	1.				
14	124	-61.	58.1	32,3	16.6	19.9	17.2	-4-	S.W.	2	SW	+ '	1-4	101	1.				
15	23	60.	8 58.0	24.9	14.7	22.6	183	65	SW	2	SW	2	7	Gizze	200,0	-			
16	24	54.	7 51.8	26.0	16.9	25.4	106	56	SSW	2	ENE		2	Giyze	10,3	-			
17	2.4	56	532	302	15.1	1.06	17.7	83	SW	2	SW	2	8	ni	8,5	-			
10	1 20	1	-	1		1.56	1.62	8%	1	2	e	1		Ini					
10	120	619	1 39.5	120,5	11.0	1	1.4.0	MG	0.	1	1	1 -	9	Ent	3 4	-			
19	23	612	58.7	223	10,2	17.1	14.7	14	W	2	W	1 2	1 8	1	10	-			
20	24	63.	61.	0 20.8	6.1	15.8	12.4	64	NW	1	NW	-	5	- Ch	ATT D				
: 21	-1.0	60.	\$ 585	204	10.3	17.7	147	172	NW	1%	SW	-	3	ni	1%	1			
22	2 24	548	56.	21.9	12.9	16.7	15.7	100	NW	1 2	NW	1 1	2 1	Cm	¥.				
2	1 20	60	576	231	150	201	186	86	Sw	3	SW			Gint	-17				
2		ch	1					100		1 -			1	n	:0	F			
	1-20	54!	\$ 52.0	140.0	11.5	10.0	1.5,2	N.	1	1	1	1			10,0	_			
2	20	56.	0 53.6	21,2	10.9	16.5	13.5	P	w	3	W	+ -		s fin	11,0	-			
20	3 13	63.	60.8	212	7.9	15.6	128	72	NW	1	N.W		1 2	Cn	17,0		-		
23	1 12	57.	548	17.0	10.3	15.7	143	86	SW	2	SW	1.	2	1 97.	: 2,0	2			
28	2	58	564	1 7.7	03	156	140	90	N	1	N		, 1	7 221	2.	1			
20		1 12	54	17	1.0		1.11	119						8 27	1	et			
2/		1.	39.	20.5	11,2	13.3	1	Poll	1		, I	1		Cr		1			
00		63.	9 61.0	19.	13.8	16.1	14.3	87	NW	12	NM	*	1 7	1 1	1.				
31	1-1-5	65.	8 63.4	4 21.3	9.0	15.0	13.0	199	N	-	N	+-	1	6 Gir	qu.	~			
Mara	ne	1	54	125	1.3	105		12				-	10	5-1-	h7.	K			
-			1		in the	9,0		6 10					14	81	711	7.			
-	Mar	thealt	de terre	and	. 3	200-	5.1	Nésus	né gé	<i>ucral</i>	du n	nois,	-1	d	N	NNE NE	ENE	E ESE	SE SSE
-	Min	absolu	ieny	- la	- 1	2 (10	201						-	nuage	4 4	,	1	3	1
	Total	de l'a	au tor	mbée :	9%		25	-			1	reque	nce	gurun	4	SSW SH	WSW	W-WN	W NW NNW
1	Nomb	re de j	ours d	e plui	er a	1, de.	neige,	0;				des ve	nts.	nuage	s' 7'	1 20	1	13 .	11
-	de gr	ele, 2	; de	tonner	re, 1 2	, de	bronil	lard,	0					giroue	tte 10	18	1	11	12
1																			

Introduction

• Project

Create high quality climatological long series in Belgium (*period 1880-2015*)

Parameters

Daily maximum temperature (TX) Daily minimum temperature (TN) Precipitation (RR)

• Main steps to obtain good results

- \rightarrow creation of long series
- \rightarrow quality control of the data
- \rightarrow monthly homogenization of the data (HOMER Ongoing work)

Creation of long series

Almost none of the stations covers the entire period of time ->

The long series can be a combination of stations

maximum distance (10 km) maximum elevation difference (50 m)

Long series (1880 – 2015)
27 RR & 16 TT
Short series (1951 – 2015)
162 RR & 66 TT

 Specific quality control needed for the new encoded data (1880 – 1950) of the long series (~ 1 million data) because of the bad quality of the data

Examples of the most frequent errors found

1) during encoding : wrong parameter encoded, duplicated data, confusion between missing/zero values, data attributed to a wrong station, classical typing error

difficult to find, even with accurate test 9.9 °C -> 5.5 °C

 Specific quality control needed for the new encoded data (1880 – 1949) of the long series (~ 1 million data) because of the bad quality of the data

Examples of the most frequent errors found

2) Observer error : precipitation not measured every day \rightarrow accumulation

3) Transmission of data :Bad communication between the institute and the observer

➔ About 20 % of data have been modified between 1880 – 1950 !

- New quality control procedures *Minimum data quality required*
- Applied to all the daily data (1880 2015)
- Basic tests to more specific tests
- Apply a quality index for each daily data
 Validated data (v)
- Suspicious data (sX) where X explain why the data is suspicious
- Corrected data (c)
- Examples of some tests with TT (made for TN and TX)

 $T_{min} < TN < T_{max}$

Envelope which assumes that the annual temperature variations follow a sinusoidal wave

-> Upper and lower bounds by regions

-> Based on validated extreme temperature data observed each day

Example for TN – Lemberge (1981)

|TN(day)-TN(day-1)| < E

E based on the extreme temperature difference observed between two consecutive validated data

by month & by regions

Month	ε (τν)
Jan	14.3
Feb	12.5
Mar	12
Apr	10.1
May	10.4
Jun	10.3
Jul	9.6
Aug	9.4
Sep	10.6
Oct	11.7
Nov	13.2
Dec	12.6

1) Classic spatial test

5 closest neighboring values Based on "distance + 100 * altitude"

- Inverse Distance Weighting
- Standard Deviation

TX values suspicious (too warm) if : **TX** > IDW + Standard Deviation + 6°C *AND*

TX > TX (of the 5 neighbors!) + 4°C

- Quality Control procedures is realized in two times
- -> First run allows to assign a first quality index to all the data
 -> Second run takes only validated data for spatial tests

Date	TX (Leuven)	Trend	5 closest neighbors	Quality Index
9/07/1942	26.1			
10/07/1942	16.3 (s51!)	$\downarrow \downarrow \downarrow$	ALL ↓↓↓	s51
11/07/1942	19.2	† ††	ALL ↓↓↓	\$52 v

Results :

~ 99.5 % of validated temperature data (about 10000 values) Can be explained by the basic QC already made for data from 1951 About 80 % of the suspicious values are detected by spatial tests

Some corrections when it was possible (especially for *s1* and *s2*) Only when no doubt

Homogenisation of temperature short series

Station locations

- 66 stations (short series TT)
- From 1951 to 2015
- At least 90 % of daily data
- 11 foreign stations
 - 5 FR
 - 3 GE
 - 3 DE

Metadata

- Station catenations
- Shelter relocation
- Change of shelter type
- Change of instrument
- Automatisation
- Change of observer
- Other things like information on the shelter site

Methodology

- HOMER
- Trainings
- 3 people working separatly on different cluster composition
- Common breaks (usually big ones)
- Improving breaks list
- Re-do homogenisation with final clusters

Clusters

Creation based on : • proximity

- correlation
- climatic area

- 5 clusters
- Around 15 stations

First results with HOMER

ΤN

ТΧ

TT code	TT name	date	amplitude	MMD	metadata
817	FONTAINE-LES-	12/1967	-0.52		instrument change
	CLERCS				
2019	LOBBES	1/1984	0.72		station catenation
2020	GOSSELIES	8/1974	0.20		station catenation
2043	DENEE-MAREDSOUS	12/1981	-1.33		station catenation
2044	FLORENNES	12/1987	0.31		
2045	THIRIMONT	4/1974	0.46		station catenation
2045	THIRIMONT	12/1993	-0.63		
2046	MALONNE	10/1997	-0.67		station catenation
2047	LESSIVE		no breaks		
2048	CINEY	12/2007	-0.34		
2049	ROCHEFORT	12/1966	-0.22		
2049	ROCHEFORT	12/2008	-0.25		
2050	HOUYET		no breaks		
2051	THIMISTER		no breaks		
2052	WALHORN		no breaks		
2060	FORGES		no breaks		
2066	SCRY	12/1962	-1.21		station catenation
2066	SCRY	12/2005	0.39		

TT code	TT name	date	amplitude	MMD	metadata
817	FONTAINE-LES-		no breaks		
	CLERCS				
2019	LOBBES	1/1984	-0.56		station catenation
2020	GOSSELIES	8/1974	0.28		station catenation
2020	GOSSELIES	12/1995	-0.27		
2043	DENEE-MAREDSOUS	12/1966	0.30		
2044	FLORENNES	12/1987	0.46		
2044	FLORENNES	12/1996	-0.44		
2045	THIRIMONT	4/1974	-0.93		station catenation
2046	MALONNE	10/1997	-0.58		station catenation
2047	LESSIVE	5/1974	2.79		observer change
2047	LESSIVE	9/1999	0.53		station catenation
2048	CINEY	12/1981	-0.23		
2049	ROCHEFORT	12/2009	0.25		
2050	HOUYET		no breaks		
2051	THIMISTER	12/1975	0.28		
2051	THIMISTER	4/1989	-0.52		relocation
2051	THIMISTER	12/2004	0.39		station catenation
2052	WALHORN		no breaks		
2060	FORGES	12/1963	-0.29		
2066	SCRY	12/1962	-1.42		station catenation

First results with HOMER

ТΧ

TT code	TT name	date	amplitude	MMD	metadata
817	FONTAINE-LES-		no breaks		
	CLERCS				
2019	LOBBES	1/1984	-0.56		station catenation
2020	GOSSELIES	8/1974	0.28		station catenation
2020	GOSSELIES	12/1995	-0.27		
2043	DENEE-MAREDSOUS	12/1966	0.30		
2044	FLORENNES	12/1987	0.46		
2044	FLORENNES	12/1996	-0.44		
2045	THIRIMONT	4/1974	-0.93		station catenation
2046	MALONNE	10/1007	-0.58		station catonation
2047	LESSIVE	5/1974	2.79		observer change
2047	LESSIVE	9/1999	0.53		station catenation
2048	CINEY	12/1981	-0.25		
2049	ROCHEFORT	12/2009	0.25		
2050	HOUYET		no breaks		
2051	THIMISTER	12/1975	0.28		
2051	THIMISTER	4/1989	-0.52		relocation
2051	THIMISTER	12/2004	0.39		station catenation
2052	WALHORN		no breaks		
2060	FORGES	12/1963	-0.29		
2066	SCRY	12/1962	-1.42		station catenation

Lessive station

Compare HOMER with something else ?

Parallel data on Uccle site \rightarrow extrapolation by linear regression

Linear regression

Sensitivity study between HOMER and linear regression

Two regression models where computed for TN and TX

code TT	type	1954 - 1983	1984-1999	2000-2015
904	$_{\rm tn}$		6.7	7.3
905	tn	6.0	6.6	7.1
904	$^{\mathrm{tx}}$		14.0	14.7
905	$\mathbf{t}\mathbf{x}$	14.4	14.9	15.7

msr	linear model	linear model $+$	linear model	linear model	homer
	trained on daily	monthly corr.	trained on	+ monthly	
	data	trained on daily	monthly data	corr. trained on	
		data	-	monthly data	
tn	0.14	0.15	0.13	0.14	0.19
$\mathbf{t}\mathbf{x}$	0.26	0.23	0.27	0.23	0.23

Linear regression

Residuals for monthly data during 1984–1999

method

- HOMER
- lin on daily data
- lin on monthly data
- + lin+month on daily data
- lin+month on monthly data

HOMER oddities

- Begining and ending of series (interpolation and homogenisation)
- Climatic events
- ACMANT? Didn't use
- Order of break implantation consequence
- Difference TX/TN ?

Conclusion & perspectives

Sometimes very difficult to get all metadata, especially for older stations before 50'

Homer → Human factor very important, be very careful → Sensitivity test ok

What's next ? \rightarrow Spatial interpolation of homogenised temperature, long series and precipitation, daily homogenisation