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Abstract —The paper focuses on the basic mathematical and theoretical questions of 

spatial interpolation of meteorological elements. Nowadays, in meteorology the most 

often applied procedures for spatial interpolation are the geostatistical interpolation 

methods built also in GIS software. The mathematical basis of these methods is the 

geostatistics that is an exact but special part of the mathematical statistics. However, 

special meteorological spatial interpolation methods for climate elements also exist, such 

as Gandin optimum interpolation as well as the MISH method developed at the 

Hungarian Meteorological Service in the last few years. These meteorological interpolation 

methods are also based on the mathematical statistical theory. Therefore, the basic type 

of the interpolation formulas applied by the geostatistical and meteorological methods 

are similar. One of our intentions is to present some comparison of the various kriging 

formulas, such as ordinary, universal, regression, residual, detrended, etc., ones. In 

general, these formulas can be derived from the multiple linear regression formula by 

using the generalized-least-squares estimation for certain unknown parameters. But the 

main difference between the geostatistical and meteorological interpolation methods can 

be found in the amount of information used for modeling the necessary statistical 

parameters. In geostatistics, the usable information or the sample for modeling is only the 

system of predictors, which is a single realization in time, while in meteorology we have 

spatiotemporal data, namely the long data series which form a sample in time and space as 

well. The long data series is such a speciality of the meteorology that makes possible to 

model efficiently the statistical parameters in question. 
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1. Introduction 

First let us consider the abstract scheme of the meteorological examinations. 

The initial stage is the meteorology that means the qualitative formulation of the 

given problem. The next stage is the mathematics in order to formulate the 

problem quantitatively. The third stage is to develop software on the basis of the 

mathematics. Finally, the last stage is again the meteorology that is the 

application of the developed software and evaluation of the obtained results. In 

the practice, however, the mathematics is sometimes neglected. Instead of 

adequate mathematical formulation of the meteorological problem, ready-made 

software are applied to solve the problem. Of course, in this case the results are 

not authentic either. Allow me a not word for word citation from John von 

Neumann: without quantitative formulation of the meteorological questions, we 

are not able to answer the simplest qualitative questions either. 

Concerning our topic we have the following question. What kind of 

mathematics of spatial interpolation is adequate for meteorology? Nowadays, 

the geostatistical interpolation methods built in GIS software are applied in 

meteorology. The mathematical basis of these methods is the geostatistics that is 

an exact but special part of the mathematical statistics. The speciality is 

connected with the assumption that the data are purely spatial. To illustrate this 

problem, here are some quotations from the valuable book of Noel A.C. 

Cressie: “Statistics for Spatial Data” (Cressie, 1991). On page 29: “The first 

part of this book is concerned with modeling data as a (partial) realization of a 

random process }:)({ DZ ss ….”. Explanation of the sentence is that the data 

are purely spatial data, since D  is a space domain. On page 30: “It is possible 

to allow for spatiotemporal data by considering the variable Z(s, t), but for most 

of this book it will be assumed that the data are purely spatial…”. Last, on page 

53: “Statistically speaking, some further assumptions have to be made. 

Otherwise, the data represent an incomplete sampling of a single realization, 

making inference impossible.” It means “incomplete sampling” in space, “single 

realization” in time. 

Consequently, as we see it, the geostatistical methods can not efficiently 

use the meteorological data series, while the data series make possible to obtain 

the necessary climate information for the interpolation in meteorology. 

2. Mathematical statistical model of spatial interpolation 

In practice, many kinds of interpolation methods exist, therefore, the question is 

the difference between them. According to the interpolation problem, the 

unknown predictand Z(s0, t) is estimated by use of the known predictors Z(si, t) 

),,...,1( Mi  where the location vectors s  are the elements of the given space 
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domain ,D  and t  is the time. The vector form of predictors is 

)].,(),.....,,([)( 1
T tZtZt MssZ   The type of the adequate interpolation formula 

depends on the probability distribution of the meteorological element in 

question. In this paper only the linear or additive formula is described in detail, 

which is appropriate in case of normal probability distribution. However, perhaps 

it is worthwhile to remark that for case of a quasi lognormal distribution (e.g., 

precipitation sum), we deduced a mixed additive multiplicative formula which 

is used also in our MISH system, and it can be written in the following form, 
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where the interpolation parameters are ,0,0  iq ),,...,1(0 Mii   and 
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2.1. Statistical parameters 

In general, the interpolation formulas have some unknown interpolation 

parameters which are known functions of certain statistical parameters. At the 

linear interpolation formulas the basic statistical parameters can be divided into 

two groups, such as the deterministic and the stochastic parameters.  

The deterministic or local parameters are the expected values 

).,...,0()),(E( Miti sZ  Let ))(E( tZ  denote the vector of expected values of 

predictors, i.e., ))].,((E)),....,,((E[))(E( 1
T tZtZt MssZ   

The stochastic parameters are the covariance or variogram values 

belonging to the predictand and predictors, such as 

c
 
: predictand-predictors covariance vector,  

C : predictors-predictors covariance matrix,  

γ :  predictand-predictors variogram vector, 

Γ : predictors-predictors variogram matrix.  

The covariance is preferred in mathematical statistics and meteorology, while 

the variogram is preferred in geostatistics. Here is a quotation from the chapter 

“Geostatistics” of the mentioned book of Noel A.C. Cressie (Cressie, 1991, p. 

30.). “The cornerstone is the variogram, a parameter that in the past has been 

either unknown or unfashionable among statisticians.” In our opinion, the main 

reason of this reluctance is that the covariance is a more general statistical 
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parameter than the variogram. The variogram values, can be written as 

functions of the covariance values and it is not true inversely. 

 

2.2. Linear meteorological model for expected values  

At the statistical modeling of the meteorological elements we have to assume, 

that the expected values of the variables are changing in space and time alike. 

The spatial change means that the climate is different in the regions. The 

temporal change is the result of the possible global climate change. Consequently, 

in case of linear modeling of expected values, we assume that 

 

)()()),(E( ii EttZ ss   ),,...,0( Mi                           (2) 

 

where )(t  is the temporal trend or the climate change signal and )(sE  is the 

spatial trend. We emphasize, that this spatiotemporal model for expected values 

is different from the classic models used in geostatistics or by the multivariate 

statistical methods. As regards the geostatistics, there are purely spatial data 

assumed in general. 

 

2.3. Linear regression formula  

In essence, the multiple linear regression formula is the theoretical basis of the 

various linear interpolation methods. The multiple linear regression formula 

between predictand ),( 0 tZ s  and predictors )(tZ  can be written as  

 

)))((E)(()),E(Z(),( 1T
00 ttttZ LR ZZCcss  



                  (3) 
 

and ),( 0 tZ LR s


 is the best linear estimation that minimizes the mean-square 

prediction error. Consequently, the linear regression formula would be the 

optimal linear interpolation formula concerning the mean-square prediction 

error. In respect of application, however, problems arise from the unknown 

statistical parameters ),...,0()),E(Z( 0 Mit s  and c , C . Assuming the mete-

orological model, Eq. (2), for the expected values, Eq. (3) can be written as 
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where )](),.....,([ 1
T

MEE ssE   and vector 1  is identically one. As it can be 

seen, the main problem is the estimation of the unknown climate change signal 

)(t , if we want to apply the optimal linear regression interpolation formula. 
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3. Geostatistical interpolation methods 

The various geostatistical interpolation formulas can be obtained from the linear 

regression formula, Eq. (3), by the application of the generalized-least-squares 

estimation for the expected values. The type of kriging formulas depends on the 

model assumed for the expected values. 

 

3.1. Ordinary kriging formula  

The ordinary kriging formula is a special case of the universal kriging formula.  

The assumed model for the expected values is ),...,0()()),(E( MittZ i s , 

thus, there is no spatial trend. The generalized-least-squares estimation for 

)(t  by using only the predictors )(tZ  may be expressed in the form 

  )()(ˆ 1T11T ttgls ZC11C1  . Substituting the estimate )(ˆ tgls  into the 

linear regression formula, Eq. (3), we obtain the ordinary kriging formula as 
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The vector of weighting factors ],..,[ 1
T

Mλ  can be written in covariance 

form 
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or equivalently in variogram form  
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The unknown variogram values γ , Γ  preferred in geostatistics are modeled 

according to the Section 3.3. 

 

3.2. Universal kriging formula 

The universal kriging formula is the generalized case of the ordinary kriging 

formula. The model assumption is that the expected values may be expressed as  
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k
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)()()),E(Z( ss   ),...,0( Mi , that is in vector form  
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)()),(E( T
0 ttZ βxs  , )())(E( tt βXZ  , where Xx,  are given supplementary 

deterministic model variables. 

The generalized-least-squares estimation for coefficient vector )(tβ , by 

using only the predictors )(tZ , can be written in the form 

  )()(ˆ 1T11T ttgls ZCXXCXβ  . It is to be remarked, that in this way the 

spatial trend )(sE  according to Eq. (2) is modeled also by using only the 

predictors )(tZ . Substituting the estimates )(ˆT tglsβx , )(ˆ tglsβX  into the 

linear regression formula, Eq. (3), we obtain the universal kriging formula as 
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where TT xXλ  . 
 

The vector of weighting factors ],..,[ 1
T

Mλ  can be written in covariance 

form 

     1
T

1T11TT   CcCXxXCXXcλ , 

or equivalently in variogram form 

     1
T

1T11TT   ΓγΓXxXΓXXγλ . 

The unknown variogram values γ , Γ  preferred in geostatistics are modeled 

according to Section 3.3.  

 

3.3. Modeling of unknown statistical parameters in geostatistics 

In geostatistics, only the predictors ),...,1(),( MitZ i s  constitute the usable 

information or the sample for modeling of variogram values γ , Γ . It means we 

have only a single realization in time for modeling of the statistical parameters 

in question. In order to solve the problem of absence of temporal data, some 

assumptions about the statistical structure are made that is some simplification 

of the problem. For example, such assumptions are the intrinsic stationarity or 

second-order (weak) stationarity, semivariogram )())(),(( jiji ZZ ssss  , etc. 

4. Meteorological interpolation 

Similarly to the geostatistical interpolation formulas, an appropriate 

meteorological interpolation formula can be obtained from the linear regression 
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formula, Eq. (3), by the application of the generalized-least-squares estimation 

for the expected values. The key-question is the model assumption for the 

expected values. 

4.1. Meteorological interpolation formula 

The meteorological model, Eq. (2), is assumed namely 

)()()),E(Z( ii Ett ss  ),...,0( Mi , where )(t  is the temporal trend and 

)(sE  is the spatial trend. Supposing that the spatial trend )(sE  is known, we 

apply the generalized-least-squares estimation for temporal trend )(t  by using 

the predictors )(tZ  and the spatial trend )](),.....,([ 1
T

MEE ssE  . In this 

case, the generalized-least-squares estimate can be written in the form as 

  ))(()(ˆ 1T11T EZC11C1   ttE
gls

 . Substituting the estimate )(ˆ tE
gls

  

into the linear regression formula, Eq. (4), rewritten from Eq. (3) according to 

Eq. (2), we obtain the following interpolation formula:  
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The vector of weighting factors ],..,[ 1
T

Mλ  can be written equivalently in 

covariance and variogram form according to Eqs. (6) and (7). The obtained 

interpolation formula is a detrended or residual interpolation formula that 

includes the spatial trend and the theoretical ordinary kriging weighting factors. 

However, it is not identical with the detrended or residual interpolation method, 

because the interpolation formula as well as the modeling methodology of the 

necessary statistical parameters together defines an interpolation method. For 

example, at the detrended interpolation methods applied in the practice, the 

modeling procedure for the statistical parameters is based on only the predictors 

),...,1(),( MitZ i s .  

4.2. Possibility for modeling of unknown statistical parameters in meteorology 

According to Eq. (9), where the sum of weighting factors is equal to one, we 

have the following appropriate meteorological interpolation formula 
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where  


M

i
i

1

1  and the covariance form of weighting factors is defined by 

Eq. (6). Consequently, the unknown statistical parameters are the spatial trend 

differences ),...,1)(()( 0 MiEE i  ss and covariances Cc, . In essence, these 

parameters are climate parameters which in fact means that we could interpolate 

optimally if we knew the climate. The special possibility in meteorology is to 

use the long meteorological data series for modeling of the climate statistical 

parameters in question. The data series make possible to know the climate in 

accordance with the fundamentals of statistical climatology! 

 

4.3. Difference between geostatistics and meteorology in respect of spatial 

interpolation 

 

The main difference can be found in the amount of information used for 

modeling the statistical parameters. In geostatistics, the usable information or 

the sample for modeling is only the predictors ),...,1(),( MitZ i s  which belong 

to a fixed instant of time, that is a single realization in time. „Statistically 

speaking, some further assumptions about Z have to be made. Otherwise, the 

data represent an incomplete sampling of a single realization, making inference 

impossible.” (Cressie, 1991, p. 53.). The assumptions are, e.g., intrinsic stationarity 

or second-order (weak) stationarity, semivariogram )())(),(( jiji ZZ ssss  , 

covariogram )()()())(),((cov jijiji CZZ ss0ssCss   , which are some 

simplifications in order to solve the problem of absence of temporal data. While 

in meteorology, we have spatiotemporal data, namely long data series which 

form a sample in time and space as well make the modeling of the climate 

statistical parameters in question possible. If the meteorological stations 

),..,1( Kkk S  )( DS  have long data series, then spatial trend differences 

)()( lk EE SS   ),...,1,( Klk   as well as the covariances ))Z(),(Z(cov lk SS  

),...,1,( Klk   can be estimated statistically. Consequently, these parameters are 

essentially known and provide much more information for modeling than the 

predictors ),...,1(),( MitZ i s  only.  

5. Software and connection of topics  

Our method MISH (Meteorological Interpolation based on Surface 

Homogenized Data Basis) for the spatial interpolation of surface meteorological 

elements was developed (Szentimrey and Bihari, 2007a,b) according to the 
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mathematical background that is outlined in Section 4. This is a meteorological 

system not only in respect of the aim but in respect of the tools as well. It means 

that using all the valuable meteorological information – e.g., climate and 

possible background information – is required. 

The new software version MISHv1.02 consists of two units that are the 

modeling and the interpolation systems. The interpolation system can be 

operated on the results of the modeling system. In the following paragraphs we 

summarize briefly the most important facts about these two units of the 

developed software. 

Modeling system for climate statistical (deterministic and stochastic) 

parameters: 

 Based on long homogenized data series and supplementary 

deterministic model variables. The model variables may be height, 

topography, distance from the sea, etc.. Neighborhood modeling, 

correlation model for each grid point. 

 Benchmark study, cross-validation test for interpolation error or 

representativity.  

 Modeling procedure must be executed only once before the 

interpolation applications! 

Interpolation system:  

 Additive (e.g., temperature) or multiplicative (e.g., precipitation) model 

and interpolation formula can be used depending on the climate 

elements. 

 Daily, monthly values and many years’ means can be interpolated. 

 Few predictors are also sufficient for the interpolation and there is no 

problem if the greater part of daily precipitation predictors is equal to 0. 

 The interpolation error or representativity is modeled too.  

 Capability for application of supplementary background information 

(stochastic variables), e.g., satellite, radar, forecast data. 

 Data series complementing that is missing value interpolation, 

completion for monthly or daily station data series.  

 Interpolation, gridding of monthly or daily station data series for given 

predictand locations. In case of gridding, the predictand locations are 

the nodes of a relatively dense grid.  

 

As it can be seen, modeling of the climate statistical parameters is a key 

issue to the interpolation of meteorological elements, and that modeling can be 

based on the long homogenized data series. The necessary homogenized data 

series can be obtained by our homogenization software MASHv3.02 (Multiple 



 10  

Analysis of Series for Homogenization; Szentimrey, 1999, 2007). Similarly to 

the connection of interpolation and homogenization, in our conception the 

meteorological questions can not be treated separately. We present a block 

diagram (Fig. 1) to illustrate the possible connection between various important 

meteorological topics. 

 
 

                                                                                                                                                              

                                                                                 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LONG DATA SERIES 

data completion, quality control, 

homogenization (MASH) 

representativity examination of  

a station network with data series 

(inside the network; statistical way) 

CLIMATE EXAMINATIONS  

e.g.,  climate change detection 

SPATIAL MODELING OF 

CLIMATE PARAMETERS (MISH) 
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SHORT DATA SERIES  
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for arbitrary location (MISH) 

background information: e.g., 

satellite, radar, forecast data 
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EXAMINATION OF  

ARBITRARY STATION NETWORK 
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(network planning) 

e.g.,  automatic stations  

 

FORECAST 

e.g.,  data assimilation, 
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         : only method or/and result 

         : only data  

 
 

Fig. 1. Block diagram for the possible connections between various basic meteorological 

topics and systems. 
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