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Abstract —A spatial interpolation method for the construction of operational climate 

maps for the WMO RA VI Region (Europe and Middle East) is presented on the example 

of monthly mean temperature. The method is suitable for an in situ data base with 

relatively low data coverage in a relatively large and climatically heterogeneous area, and 

considers the classical geographical parameters latitude, longitude, and altitude by multi-

dimensional linear regression, but improved by continentality, using a new continentality 

index. A comparison of several interpolation methods reveals that radial basis functions 

(subtype multiquadratic) seems to be the most appropriate approach. Separate regressions 

for land and sea areas further improve the results.  

 

Key-words: spatial interpolation, multi-dimensional linear regression, climate maps, 
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1. Introduction 

Climate monitoring requires an operational analysis of the variability of climatic 

quantities in space and time. For this purpose, operational maps, generated for 

regular time intervals (days, months, seasons, years) are very useful to see at a 

glance the spatial variability of climate elements and its change with time. Such 

maps are often used by national meteorological and hydrological services as a 

basis for climate reviews and interpretation of outstanding features of climate 

variability. Maps are available for various spatial areas from the catchment scale 

to the whole globe.  
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For some recent years, the German Meteorological Service (Deutscher 

Wetterdienst, DWD) develops methods for generating such operational maps. 

These methods are not exactly the same for all climate elements due to 

various databases, their special nature of variability, and the data availability. 

Some are based on satellite data (e.g., cloud and radiation parameters), others 

are based only on in situ data, because in that cases the in situ data have a 

relatively good quality compared to satellite data (e.g., temperature, 

precipitation, sunshine duration, snow depth). Examples of these maps can be 

seen on the DWD website (www.dwd.de/rcc-cm, www.dwd.de/snowclim, 

www.dwd.de/satklim). 

On the other hand, it is desirable to use consistently the same method for 

each climate element to achieve consistent maps, at least the same basic 

principle of a method. Our present strategy is to develop a basic approach which 

is at least applicable for most of the in situ data. The process of map generation 

is still under further development.  

Usually, maps are a result of gridding or spatial interpolation of point data 

into the area. Nowadays, a large variety of mathematical and geostatistical 

methods for spatial interpolation is available. However, in practice, it has turned 

out that pure mathematics and geostatistics are necessary, but not sufficient for 

construction of climate monitoring maps; instead it has been found that the 

consideration of geographical conditions and climate processes can much 

improve the results. Nevertheless, the impact of such additional parameters and 

processes depends highly on the extent and topography of the area of interest, 

and also on data density. Therefore, the choice of the gridding method depends 

on the selected area, and the selected climate element as well. 

This paper refers specifically to spatial interpolation of monthly mean 

temperature and its anomalies from the reference period 1961–1990 in a 

relatively large area, the WMO (World Meteorological Organization) Region VI 

(covering nearly the whole Europe and the Middle East). The next chapter 

describes this area and the motivation for the choice of this area. After a short 

review of previous literature, the data and the succeeding steps of the method 

applied in this paper are described and compared with a number of alternatives. 

Results of the comparison and the mapping are presented in Section 6, followed 

by some conclusions in Section 7.  

The main goal of this paper is to propose a method of spatial 

interpolation of monthly temperature data in WMO Region VI which is 

suitable for an operational generation of monthly climate monitoring maps. 

However, it is intended that this approach is applicable to other climate elements 

as well to receive maps of various elements which are consistent to each other as 

far as possible, at least for in situ data. Other data sources, like satellite data 

which already have a large spatial coverage certainly require a different 

approach. 

 

http://www.dwd.de/rcc-cm
http://www.dwd.de/snowclim
http://www.dwd.de/satklim
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2. The WMO Region VI and the Regional Climate Centre (RCC) network 

Recently, a new network of so-called Regional Climate Centres (RCCs) has 

been established under the auspices of the World Meteorological Organization 

(WMO) (http://www.wmo.int/pages/prog/dra/eur/RAVI_RCC_Network.php). 

The term “regional” refers to the six WMO Regions which cover roughly (but 

not exactly) the various continents and the surrounding sea areas on the globe.  

Nearly the whole of Europe (except the easternmost parts of European 

Russia from 50°E to the Ural) belongs to the WMO Region VI (often referenced 

as “RA VI”, indicating the Regional Association of the WMO in Region VI). 

Beside Europe, this region also covers parts of the Middle East which belong 

geographically to Asia, and also large sea areas, namely large parts of the 

northern and central North Atlantic, the Norwegian Sea, the European part of the 

Arctic, and the whole Mediterranean. The RA VI area is displayed in Fig. 1.  

The border of the Region VI (Europe and Middle East) is not rectangular, 

because it is defined by the borders of single countries, which means largely by 

political conditions. Over European Russia, the eastern border runs along the 

50°E meridian. In the south and west, the border crosses the Mediterranean Sea 

and the Atlantic Ocean to the Davis Strait and the Baffin Bay between 

Greenland and Canada. 

Thus, that Region covers quite a large and climatically very heterogeneous 

area, spanning a wide range of latitude, longitude, and altitude and strong 

contrasts between land and sea climates.  

 

 

Fig. 1. Map of the Region VI with the height above sea level. The kilometer bar refers to 

Central Europe.  

http://www.wmo.int/pages/prog/dra/eur/RAVI_RCC_Network.php
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In RA VI, presently three RCCs (so-called nodes of the RCC network) are 

already preliminarily established and are operating in a pilot phase since June 

2009: one RCC node on climate data, one on climate monitoring, and one on 

long-range forecasting. The DWD has taken over the lead function of the RCC 

node on climate monitoring in RA VI, within a consortium consisting of some 

more members (national meteorological and hydrological services) of RA VI. 

To fulfill this function, the generation of climate maps for various climate 

elements in RA VI is a very important task.  

3. Previous approaches 

A large number of papers dealing with spatial interpolation of climate data have 

already been published. Basic information about spatial interpolation methods 

can be found in various books, especially for the widely used kriging technique, 

which was very popular already in the 1990s (e.g., Lang, 1995; Stein, 1999). In 

the 2000s, geographical information systems (GIS) came more and more into 

operation for climate mapping. Commercial GIS software has made it 

technically very easy to apply spatial interpolation methods on any geographically 

defined data points. In 2001, the COST Action 719 was launched (COST= 

European Cooperation on Science and Technology, an intergovernmental 

framework for research coordination in Europe, supported by the European 

Union). The goal of COST 719 was to review and assess the use of GIS for 

spatial interpolation in meteorology and climatology. The Action had been 

finished in 2006, resulting in an overview of spatial interpolation methods and 

their application in climatology by GIS software (Thornes, 2005; Tveito et al., 

2008) and many related papers (e.g., Ustrnul and Czekierda, 2005; Dobesch et 

al., 2007).  

Until now, there are several more recent papers. Various methods are 

applied to national data, some also to larger areas, e.g., the Alps, some to global 

data, but in coarse resolutions. Many investigators used ordinary or residual 

kriging techniques for monthly, seasonal, or annual data, e.g., Bjornsson et al. 

(2007) for temperature in Iceland, Ustrnul and Czekierda (2005) for temperature 

in Poland, Dolinar (2006) for sunshine duration in Slovenia, Perčec Tadić 

(2010) for climate normal values of various elements (including temperature) for 

Croatia, Alsamamra et al. (2009) for solar radiation in southern Spain. Others 

just used multiple regression techniques, but in a dense station network and with 

many geographical predictors, e.g., Hiebl et al. (2009) for monthly temperature 

in the Alps or Claps et al. (2008) for monthly temperature in Italy. Non-linear 

instead of linear statistical relationships between terrain variables as predictors 

and climate variables lead to an improvement at least for special variables like, 

e.g., fog frequency as shown by Vicente-Serrano et al. (2010) for northeast 

Spain. In some cases, circulation types were used as predictor, e.g., the well-
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known “Grosswetterlagen” catalogue from Hess and Brezowsky (1952) for the 

temperature in Poland (Ustrnul, 2006). Other authors included remote sensing 

data for statistical temperature modeling (e.g., Cristóbal et al., 2008 for 

northeast Spain).  

In contrast, there have been very few attempts to look for a method which 

is specifically appropriate for an area like RA VI. Recently, Haylock et al. 

(2008) presented a new European high-resolution gridded data set of daily 

precipitation and surface temperature for the period 1950 –2006 on four spatial 

resolutions (the so-called E-OBS data set). Although this data set is widely 

known and used, the authors themselves pointed to limitations of their gridded 

data due to inhomogeneities and interpolation uncertainties (Hofstra et al., 

2009). Hofstra et al. (2008) also compared several interpolation methods for 

various variables in some parts of Europe and found that the main controlling 

factor on the skill of interpolation is rather the density of the station network 

than the interpolation method. Only recently, another investigation used the 

spatial variability from past observations of a denser network to improve the 

interpolation skill, in this case applied to precipitation in the complex terrain of 

Switzerland (Schiemann et al., 2010).  

Monthly, seasonal, and annual maps are frequently used for operational 

climate monitoring activities. The monitoring of the WMO RA VI Regional 

Climate Centre on Climate Monitoring (WMO RAVI RCC-CM) can be found 

on the web: http://www.dwd.de/rcc-cm, including links to national maps of 

many national meteorological and hydrological services. For global climate 

monitoring, monthly temperature maps are displayed, e.g., on the website of the 

National Oceanic and Atmospheric Administration (NOAA) in the USA:  

http://www.ncdc.noaa.gov/climate-monitoring/index.php#global-icon . 

4. Data and data quality 

Since the goal is to generate monthly maps for RA VI in the operational 

environment of DWD, it is essential to use monthly in situ data which are 

available at DWD soon after the end of month, but, nevertheless, of good 

quality. National data sets exist for each country in RA VI. Mainly they are 

under the responsibility of the public national and hydrological services. Due to 

this national responsibility of the data, each country has its own data policy, and 

in most cases there are restrictions in data distribution beyond the national 

services. For this reason, only a limited number of all existing data can be used 

in the DWD environment. However, there are some data which are distributed 

internationally and regularly via the Global Telecommunication System (GTS) 

of the WMO. Two important data sets in this case are the SYNOP and CLIMAT 

data. SYNOP data are data from synoptical stations, distributed several times a 

day (often hourly), containing also the air temperature at two meters height over 

http://www.dwd.de/rcc-cm
http://www.ncdc.noaa.gov/climate-monitoring/index.php#global-icon
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ground. They are mainly intended for usage in weather forecasting. CLIMAT 

data are distributed only monthly and the number of stations is much smaller 

than for SYNOP, but the selection of CLIMAT stations was done for usage of 

climate analyses. Monthly mean temperature is one of the climate elements 

which are reported in the CLIMAT bulletin. DWD has taken over the task to 

check the quality of the CLIMAT data each month in various steps. The quality 

check consists of two steps: a quick automatical check soon after data arrival 

and a more thoroughly manual check later. More details about the CLIMAT data 

archive and quality control method can be found on the DWD website 

(www.dwd.de – click on Climate and Environment – Climate Data Centers – 

ACD). The first step of quality check is normally done within 10 days after the 

end of each month. The check of SYNOP data would be more time consuming, 

and a complete routine quality control for SYNOP temperature data at DWD is 

only performed for German data, but not for the whole of the RA VI area.  For 

this reason it was decided to use the CLIMAT data of monthly mean 

temperature for spatial interpolation, which means a data basis which is timely 

available in good data quality, but relatively poor data coverage (Fig. 2a). 

Around 800 CLIMAT stations are currently available for RA VI each month, 

and the area has an extension of several 1000 km in both zonal and meridional 

directions. This decision means to invest into an appropriate and reasonable 

interpolation procedure, which also takes the diverse topography of RA VI into 

account.  

CLIMAT stations are available only for the land areas, but not for the sea. 

However, there exist weather reports from ships which are summarized into a 

2.5°  2.5° latitude-longitude grid and are archived at DWD. Altogether, around 

130 sea grid points are used for each month. Although the grid points are 

uniformly distributed over the area, the underlying ship reports are not equally 

distributed. The best data coverage can be found along the main shipping routes 

such as between Europe and the eastern coast of the USA or Brasilia, and the 

main route to the Mediterranean Sea, but in other areas ship data are quite rare 

(Fig. 2b). Thus, the quality of ship data is strongly dependent on ship 

observation coverage. They are most reliable along the main shipping routes 

where a large number of ship observations during the whole month are 

considered for gridding, but quite poor in those regions where only very few 

ship observations are available, e.g., over the Arctic Sea. Long-term averages for 

the 1961–1990 reference data (CLIMAT and ship data, as far as data available) 

are also quality controlled and included in the DWD archive, and anomalies 

(monthly means minus long-term averages) are computed each month as well.  

For using the topography in the interpolation procedure, grid data for 

altitude are needed. Data for the height above sea level are taken from the 

GTOPO30 altitude raster from the U.S. Geological Survey (www.usgs.gov). The 

data are available in a spatial resolution of 30 seconds of degree in latitude and 

longitude (it means about 1 km for middle latitudes). For the operational maps, a 

http://www.dwd.de/
http://www.usgs.gov/
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spatial resolution of 0.1° was taken; thus, the GTOPO30 data were averaged into 

a 0.1° grid.  
 
 

 

Fig. 2a. Spatial distribution of CLIMAT stations and ship data points available at DWD 

for September 2010 as an example. Ship data of the whole month are arithmetically 

averaged into a 2.5°  2.5° grid. 

 

 

 
Fig. 2b. Ship data coverage, data from DWD (white = land area, light grey to dark grey 

= more travel on sea, if the color is darker, more ships travel on this route). 

5. Methods 

In principle, the spatial interpolation method for monthly averages used here 

consists of three steps. The first step is a multi-dimensional linear reduction of 

the station data, which means a multiple linear regression of latitude, longitude, 

altitude, and other parameters to zero level. The linear regression model is 
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subtracted from the original data; the results of the subtraction are often called 

“residuals”.  

The second step is the interpolation of residuals with the method radial basis 

functions, using the version of the software ESRI Arc GIS 9.2 within the tool 

geostatistical analyst. The last step is recomputing the interpolated residuals to 

the original values of latitude, longitude, altitude, and other parameters. This 

computing is achieved by using the raster calculator of Arc GIS 9.2 within the tool 

spatial analyst. The three steps are described in more detail in Sections 5.1–5.6.  

For the anomalies there is no reduction, just a spatial interpolation is 

necessary, assuming that they do not depend very strongly on geographical 

parameters. Spatial resolution is 0.1°; this corresponds to about 10 km over 

Central Europe. The number of grid points in the RA VI area roughly amounts 

to nearly one million. 

At the borders of Region VI, the problem of extrapolation appears. For this 

reason, the interpolation is computed for an extended area (from 85°W to 70°E 

and from 20°N to 90°N), but only the Region VI itself is displayed. For this 

purpose, some more climate stations beyond Region VI are added to the data 

pool. The additional climate stations are located in the east part of the USA and 

Canada, the North African states, and in the part of the Middle East, which 

belongs to the Region II Asia. 

5.1. General approach of multiple regression in latitude, longitude, altitude 

The assumption of the multi-dimensional reduction is that the spatial variability 

of monthly averaged climate is dominated by a very limited number of impact 

factors.  

The general approach is 

 

kxxxfbxxxfaY nn   ),,,(),,,( 212211 ,                    (1) 

 

where Y is a climate state variable like temperature, x1, x2, … are impact factors 

like latitude etc., f1(), f2(), … are functions of impact factors, which are not 

necessarily linear, and a,b, …, k are constant values. 

This approach is used to find the dominating impacts, x1, x2, and the 

functions of impacts, f1(), f2(), for each Y. The functions of the impact factors 

must be linearly independent from each other. Then, a linear regression can be 

computed.  

5.2. Multiple linear regression in latitude, longitude, altitude 

We start with latitude, longitude, and altitude as predictors. These factors are 

reasonable because of the following reasons: latitude characterizes the climate 

due to the solar angle, which is, by far, the most dominating factor for Region 
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VI. The longitude is the alternative for land-sea contrasts or continentality, 

which explains much of the seasonal variations. Finally, the altitude is included, 

because all climate state variables increase or decrease more or less with height 

above sea level. For monthly mean temperature, this factor is generally weak 

within Region VI compared to latitude and longitude but not negligible, 

especially in mountainous areas. The amount of variation of temperature as 

function of altitude varies largely from month to month, depending on season 

and the prevailing weather type during the month. In most cases, monthly mean 

temperature decreases with altitude, but in winter months, when inversion 

weather types are prevailing, a slight increase with altitude can also happen. For 

this reason, the regression model is fitted for each month separately.  

The linear approach in this special case yields:  

 

kaltitudeclongitudeblatitudeaY  .                          (2) 

 

This is a specialization of the general approach Eq. (1). The three 

predictors (latitude, longitude, and altitude) represent the three spatial 

dimensions which are obviously orthogonal and, therefore, independent from 

each other. The coordinates are mostly well known for each station, thus, these 

predictors are mostly easily available. The fitting of the multi-linear regression 

has been done using the method of least squares (see, e.g., Mosteller and Tukey, 

1977).  

5.3. Continentality impact 

For improving the approach, the longitude is replaced by a suitable 

continentality index. The continentality is a function of latitude and the annual 

temperature amplitude, which is calculated by the difference of the long-term 

means (1961–1990) of the maximum temperature in summer (June to August) 

and that of the minimum temperature in winter (from December to February). 

That calculation of the annual temperature amplitude is only an approximation 

for simplifying the computation, but does not reflect exactly the real annual 

amplitude. For example, March, which belongs to spring, is sometimes the 

coldest month in the year because of the drifting ice in bays near Finland in the 

Baltic Sea. In the literature, there are various versions of continentality indices 

(see, e.g., Blüthgen, 1980). Many equations show that the continentality for 

Europe can be described by a function of latitude and the annual temperature 

amplitude. One example is the approach by Iwanow (1959). Hogewind 

(Hogewind, 2010) modified this index to obtain a better suitability for the 

Region VI:  

 

,260
latitude

amplitudeannual
k                 Iwanow (1959)  and 
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This modification results in four classes in the range of the index: between 

0 and 25 (highly maritime), from 26 to 50 (maritime), from 51 to 75 (continental), 

and from 76 to 100 (highly continental) over Region VI and its surroundings, and 

a threshold of around 50 between prevailing maritime and prevailing continental 

areas (Fig. 3).  

Taking the continentality into account, the modified regression approach 

reads: 

 

klitycontinentadamplitudeannualcaltitudeblatitudeaY  .     (3) 

 

 
 

Fig. 3. Continentality (Hogewind, 2010). 

 

This is now a non-linear approach in the explanatory variables, because 

continentality is a non-linear function of latitude, but the multiple regression is 

still linear, because a non-linear data transformation has been done (Wilks, 

2006).  

To get the residuals (Tred, the part of variability which is not explained by 

the regression model), the linear regression is subtracted from the original 

monthly mean temperature value for each station:  

 

.)(
)()()(

klitycontinentad
amplitudeannualcaltitudeblatitudeaTT mred




            
(4) 
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The considered parameters are now latitude, altitude, annual amplitude, and 

the newly created continentality index. 

5.4. Interpolation of residuals 

The reduced climate state variable, also known as residual (here Tred) is given 

for each measurement station and has to be interpolated into the area. The main 

question is now: which is the best suitable interpolation method? 

The used software ArcGIS 9.2 Geostatistical Analyst offers a number of 

methods: inverse distance weighted, global polynomial interpolation, local 

polynomial interpolation, radial basis function, kriging, cokriging, and subtypes 

for each. From these methods a number of alternative approaches, which seem 

reasonable, are taken and applied to the computed residuals. 

All these methods are described in the literature. An overview can be found 

in Tveito et al. (2008) including the mathematical background, the implementation 

in GIS software, and further references. The method “radial basis functions”, 

which has been used for the final construction of maps in this paper, is described 

in the next section.  

5.5.  Radial basis functions 

A radial basis function (RBF) is a real-valued function whose value depends 

only on the distance from the origin, so that Φ(x) = Φ(||x||), or, alternatively, on 

the distance from some other point c, called a center, so that Φ(x,c) = Φ(||x – c||). 

Any function φ that satisfies the property Φ(x) = Φ(||x||) is a radial function. The 

norm is usually the Euclidean distance, although other distance functions are 

also possible. For example, by using the Lukaszyk-Karmowski metric, for some 

radial functions it is possible to avoid problems with ill conditioning of the 

matrix solved to determine coefficients i  (see below), since the ||x|| is always 

greater than zero. 

Sums of radial basis functions are typically used to approximate given 

functions. This approximation process can also be interpreted as a simple kind 

of neural network. 

The radial basis functions type used in this paper is multiquadratic 

(r = || x – ci
 
||): 

²²)(   rr  for some β > 0.                                    (5) 

 

Radial basis functions are typically used to build up function 

approximations of the form: 

 

 


N

i
ii cxxy

1

||),(||Φ)(                                                    (6) 

http://en.wikipedia.org/wiki/Origin_(mathematics)
http://en.wikipedia.org/wiki/Radial_function
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Distance_function
http://en.wikipedia.org/wiki/Condition_number
http://en.wikipedia.org/wiki/Function_approximation
http://en.wikipedia.org/wiki/Function_approximation
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Function_approximation
http://en.wikipedia.org/wiki/Function_approximation
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where the approximating function )( xy  is represented as a sum of N radial basis 

functions, each associated with a different center ic , and weighted by an 

appropriate coefficient i . The weights i  can be estimated using the matrix 

methods of linear least squares, because the approximating function is linear in 

the weights. 

Approximation schemes of this kind have been particularly used in time 

series prediction and control of non-linear systems exhibiting sufficiently simple 

chaotic behavior, and 3D reconstruction in computer graphics (Lukaszyk, 2004; 

Buhmann, 2003). 

Eq. (6) can also be interpreted as a rather simple single-layer type of an 

artificial neural network, called a radial basis function network, with the radial 

basis functions taking the role of the activation functions of the network. It can 

be shown that any continuous functions on a compact interval can in principle 

be interpolated with arbitrary accuracy by a sum of this form, if a sufficiently 

large number of radial basis functions is used. 

The approximant )( xy  is differentiable with respect to the weights i . 

The weights could thus be learned using any of the standard iterative methods 

for neural networks. 

There is a lot of literature about radial basis functions for further reading 

(e.g., Baxter, 1992; Beatson et al., 2000; Bors, 2001; Buhmann, 2003; Wei, 1998).  

5.6. Recomputing interpolated residuals 

For recomputing the interpolated residuals to original data, the same regression 

equation, Eq. (4), as for reduction is used (Section 5.3). The difference is that 

this time the computing is not carried out for stations, but for the interpolated 

grid for the Region VI  

 

.)(
)()()(

klitycontinentad
amplitudeannualcaltitudeblatitudeaTT red




             
(7)

 

 

Therefore, gridded data for latitude, altitude, annual temperature amplitude, 

and continentality are needed. Latitude is just a linear interpolation in meridional 

direction. For altitude, the grid GTOPO30 from U.S. Geological Survey is used 

with a recalculated resolution in 0.1°. The annual amplitude is interpolated by 

the interpolation method radial basis functions from station data, and finally, the 

continentality is computed from latitude and annual amplitude for each grid 

point (see Section 5.3). 

5.7. Cross validation and root mean square error (RMSE) 

To assess the quality of the spatial interpolation, a cross validation of the 

residuals has been carried out. This means that the spatial interpolation has been 

http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Time_series_prediction
http://en.wikipedia.org/wiki/Time_series_prediction
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Nonlinear_systems
http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Radial_basis_function_network
http://en.wikipedia.org/wiki/Compact_space
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repeated after omitting one of the residual station values, and this has been done 

for each station value. Then, for all station points the difference between the 

residual station value and the corresponding interpolated value at this point has 

been computed. Finally, the root mean square error (RMSE) has been computed 

over the differences for all points, and then for each month and each of various 

interpolation methods, among them radial basis functions, several kriging 

approaches, and inverse distance weighted interpolation. Therefore, the RMSE 

is a quantity for estimating the mean interpolation error. However, it has to be 

kept in mind that the RMSE only can represent the information at the station 

points, but not for the whole area, and therefore, it does not exactly give the real 

mean interpolation error. Nevertheless, the estimate should be near to reality if 

the stations are representative for the area. As most stations are located in 

Central Europe, where the interpolation error is expected to be lower than in 

other more data sparse regions, the real mean interpolation error should be 

greater than the RMSE, which means that the RMSE can only give a minimum 

estimation. However, as the data base is the same for each method and each 

month (except for a few stations missing from month to month), the RMSE is a 

comparable measure of skill for each interpolation method.  

6. Results 

6.1. Results of the multiple regression 

For the first approach (Eq. (2)), the three predictors (latitude, longitude, and 

altitude) explain a large part of the variance, generally over 70% for monthly 

mean temperature in Region VI for all months (Table 1).  

 
Table 1. Explained variance in % for each of the predictors in Eqs. (2) and (3), for all 

months of the 1991–2000 average. Other periods have similar results 

 

Month Latitude Longitude Altitude Annual 

amplitude 

Continen-

tality 

Lat+lon+alt 

(Eq. (2)) 

Lat+alt+amp+

cont (Eq. (3)) 

Jan 60.98 5.36 3.90 50.78 10.30 70.29 93.83 

Feb 66.21 4.85 2.52 43.93 6.13 73.74 93.44 

Mar 74.32 2.60 1.17 30.75 1.42 80.07 91.33 

Apr 83.92 0.68 0.23 13.73 0.76 89.08 90.72 

May 85.02 0.00 0.09 3.36 7.50 90.12 89.02 

Jun 80.85 0.54 0.42 0.00 18.63 88.04 88.93 

Jul 79.83 0.31 0.86 0.25 23.21 85.74 90.03 

Aug 83.78 0.01 0.55 0.12 17.56 88.56 91.33 

Sep 88.20 0.84 0.04 5.96 5.17 92.54 93.82 

Oct 86.28 2.39 0.64 16.47 0.33 91.73 94.94 

Nov 75.07 5.86 2.91 35.66 2.74 83.81 95.89 

Dec 65.77 6.95 3.98 47.29 8.08 75.72 95.07 
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The largest part is explained by latitude, especially in the warmer half year, 

due to the large variability of temperature as function of the solar angle. The 

explained part of variance in Eq. (3), using the predictors latitude, altitude, 

annual amplitude, and continentality, is considerably larger, especially during 

the colder months (from November to March) compared to Eq. (2), over 90%, 

due to the high impact of the annual amplitude particularly in winter, which has 

a high spatial variability within Europe. In the warmer half year, there is 

practically no or only a slight improvement concerning the explained variance 

by Eq. (3) compared to Eq. (2). However, the explained variance by Eq. (3) is 

within a range between 89 and 96% (rounded) for each month.  

6.2. Results of the spatial interpolation 

Results of the comparison between the various interpolation methods are shown 

in Fig. 4. For some of the interpolation methods and subtypes, unwanted 

interpolation islands appear (so-called bulls eyes), in particular for inverse 

distance weighting, global and local polynomial interpolation. Some kriging and 

cokriging subtypes are not exact at the station points and smooth too much. The 

interpolation method cokriging needs a second variable with the same resolution 

as the climate variable. This cannot be an impact variable, because this has 

already been removed by reduction. Some methods, especially cokriging, need 

quite a high computing time depending on spatial resolution, and thus, they are 

not convenient for operational use. 
 

  

  
 

Fig. 4. Interpolated residuals (after subtracting the linear regression model) of annual 

temperature normal values of the period 1961–1990 using the following interpolation 

methods: inverse distance weighted (upper left), radial basis functions (upper right), 

ordinary kriging (lower left), simple kriging (lower right). RMS errors given for each 

method in K refer to the residuals. 
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Fig. 4 also shows the root mean square errors (RMSE) for various 

interpolation methods. The highest RMS errors of these show the interpolation 

methods simple kriging (Fig. 4, lower right) and inverse distance weighted 

(upper left). For inverse distance weighted, obvious interpolation islands can be 

clearly seen. Simple kriging amplifies point-to-point differences too much. The 

other two methods (ordinary kriging, Fig. 4, lower left, and radial basis 

functions, upper right), although basically different from each other, produce 

more or less the same results. The difference between these two interpolation 

methods is the longer computing time and the more difficult calibration of 

ordinary kriging because of every individual interpolation for the climate 

variable and period. As a result of this comparison of the different methods, the 

radial basis functions method with the subtype multiquadratic appears as the 

most suitable method for meeting our demands on operational map generation. 

The main advantages are exactness at data points (values at the data points are 

not changed after interpolation, except due to different altitudes and locations of 

the stations compared to the grid points), no smoothing, but no unrealistic 

interpolation islands either. The exactness at data points is also good to detect 

suspicious data on the map. The RMS error for the selected method is one of the 

lowest, the results are similar to ordinary kriging, but the computing is faster 

than kriging. Kriging, on the other hand, offers more possibilities of error 

assessment, but they are more difficult to interpret as they are not comparable 

with error assessments of other methods. Generally, the choice of the interpolation 

method matters only in data sparse areas. Otherwise, it is more important, when 

the regression error is higher or the data quality is worse. 

The results of the described process need a further development which is 

described by Hogewind (2010). The different thermal conditions between land 

and sea require a separate regression over land and sea with separate regression 

coefficients for land and sea, but each applied to the whole RA VI area (Fig. 5). 

To consider coastal effects, the climate stations near the coast are used for both 

computing processes for overlapping land-sea areas. Furthermore, the data pool 

is increased by including the stations from the European Climate Assessment 

Dataset (ECA&D, www.knmi.nl). To study the space-time variability, the 

procedure has also been carried out for 10-year subperiods of the period 1951–

2000. Examples of recomputed temperature fields for land and sea are shown in 

Figs. 6a and 6b (for recomputation, a land-sea mask was used). These fields are 

overlaid to one complete map for the whole Region VI like a puzzle (Fig. 7). 

The effect of the thermal contrast between land and sea can be seen in various 

places, e.g., for Turkey.  

 

 

 

 

 

http://www.knmi.nl/
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Fig. 5. Reduced temperature (residuals) over land (upper) and sea (lower) in September 

for the period of 1991–2000. Separate regression coefficients for land and sea are used, 

but applied to the whole RA VI area. 

 

 
 

Fig. 6a. Recomputed temperature over land in September for the period of 1991–2000 

White areas are excluded by using a land-sea mask.  
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Fig. 6b. Recomputed temperature over sea in September for the period of 1991–2000 

White areas are excluded by using a land-sea mask.  

 

 

 
 

Fig. 7. Recomputed temperature in September for the period of 1991–2000 for the whole 

RA VI Region (consisting of separate calculations over land and sea as in Fig. 6).  

7. Conclusions 

The newly created continentality index (Hogewind, 2010) improves the 

regression model in comparison to longitude. The separate land-sea regressions 

improve the regression model, too. Nevertheless, the most important parameter 

for Region VI is still the latitude because of the strong influence of the angle of 

solar radiation. Residuals up to 2 K (RMSE 0.9 K) do not change, due to small 

scale effects. Radial basis functions turned out to be the most suitable 
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interpolation method at the moment, at least for operational map production of 

monthly mean temperature in WMO Region VI. The method is exact, has a 

relatively low RMSE, can be realized very easily by using GIS software, and the 

interpolation can be computed in reasonable time. Probably the most promising 

effort to improve the results further is to enlarge and improve the data base and 

the regression model. Another challenge will be the application of this method 

to daily instead of monthly data.  
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