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Abstract—Changes in instrumentation and relocations of climate stations may insert 

inhomogeneities into meteorological time series, dividing them into homogeneous 

subperiods interrupted by sudden breaks. Such inhomogeneities can be distinguished 

from true variability by considering the differences compared to neighboring stations. 

The most probable positions for a given number of break points are optimally determined 

by using a multiple-break point approach. In this study the maximum external variance 

between the segment averages is used as decision criterion and dynamic programming as 

optimization method. Even in time series without breaks, the external variance is growing 

with any additionally assumed break, so that a stop criterion is needed. This is studied by 

using the characteristics of a random time series. The external variance is shown to be 

beta-distributed, so that the maximum is found by solving the incomplete beta function. 

In this way, an analytical function for the maximum external variance is derived. In its 

differential form our solution shows much formal similarities to the penalty function used 

in Caussinus and Mestre (2004), but differs numerically and exhibits more details. 

 

Key words:Climate records, homogenization, multiple break point detection, stop 
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1. Introduction 

Multiple-century long instrumental datasets of meteorological variables exist for 

Europe (Brunetti et al., 2006; Bergström and Moberg, 2002; Slonosky et al., 

2001). Such series provide invaluable information on the evolution of the 

climate. However, between the Dutch Golden Age, the French and the industrial 
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revolution, the rise and the fall of communism, and the start of the internet age, 

inevitably many changes have occurred in climate monitoring practices (Aguilar 

et al., 2003; Trewin, 2010). The typical size of temperature jumps due to these 

changes is similar to the global warming in the 20th century, and the average 

length of the periods between breaks in the climate records is 15 to 20 years 

(Auer et al., 2007; Menne and Williams, 2009). Clearly, such changes interfere 

with the study of natural variability and secular trends (Rust et al., 2008; 

Venema et al., 2012). 

Technological progress and a better understanding of the measurement 

process have led to the introduction of new instruments, screens, and 

measurement procedures (MeteoSchweiz, 2000). In the early instrumental 

period, temperature measurements were often performed under open shelters or 

in metal window screens on a North facing wall (Brunetti et al., 2006), which 

were replaced by Montsouri (Brunet et al., 2011), Wild, and various Stevenson 

screens (Nordli et al., 1997; Knowles Middleton, 1966), and nowadays more and 

more by labor-saving automatic weather stations (Begert et al., 2005). Every 

screen differs in their protection against radiation, wetting, as well as their 

quality of ventilation (Van der Meulen and Brandsma, 2008). Initially many 

precipitation observations were performed on roofs. As it was realized that many 

hydrometeors do not enter the gauge due to wind and turbulence, especially in 

case of snow, the observations were taken nearer the ground, and various types 

of wind shields were tested leading to deliberate inhomogeneities (Auer et al., 

2005). Due to the same effect, any change in the geometry of a rain gauge can 

lead to unintended inhomogeneities. 

Inhomogeneities are frequently caused by relocations, either because the 

voluntary observer changed, because the observer had to move or because the 

surrounding was no longer suited for meteorological observations. Changes in 

the surrounding can lead to gradual or abrupt changes, for example gradual 

increases in urbanization or growing vegetation or fast changes due to cutting of 

vegetation, buildings that disrupt the flow or land-use change. 

Changes in the observations should be documented in the station history. It 

is recommended to perform several years of parallel measurements in case of 

changes (Aguilar et al., 2003). However, it is not guaranteed that metadata is 

complete, thus statistical homogenization should always be performed 

additionally. The dominant approach to homogenize climate networks is the 

relative homogenization method. This principle states that nearby stations are 

exposed to almost the same climate signal, and thus, the differences between 

nearby stations can be utilized to detect inhomogeneities (Conrad and Pollack, 

1950). By computing the difference time series, the interannual weather noise, 

decadal variability, and secular trends are strongly reduced. Consequently, a 

jump in single station becomes much more salient. 

The two fundamental problems of homogenization are that the nearby 

stations are also inhomogeneous and that typically more than one break is 
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present. Recent intercomparison studies by Domonkos (2011a) and Venema et 

al. (2012) showed that the best performing algorithms are the ones that attack 

these two problems directly. This study will focus on the multiple-breakpoint 

problem. 

Traditionally the multiple-breakpoint problem is solved by applying single-

breakpoint algorithms multiple times. Either a cutting algorithm is applied: the 

dataset is cut at the most significant break and the subsections are investigated 

individually until no more breaks are found or the section become too short; see, 

e.g., Easterling and Peterson (1995). A variation on this theme is a semi-

hierarchical algorithm, in which potential breakpoints are found using the 

cutting algorithm, but before correcting a potential break its significance is 

tested anew (Alexanderson and Moberg, 1997). According to Domonkos (2011a), 

this improvement has a neutral effect on the efficiency of homogenization. 

The first algorithms solving the multiple-breakpoint problem directly are 

MASH (Szentimrey, 1996, 1999) and PRODIGE (Caussinus and Mestre, 1996, 

2004). MASH solves the problem with a computationally expensive exhaustive 

search (Szentimrey, 2007). PRODIGE solves the problem in two steps. First, the 

optimal position of the breaks for a given number of breaks is found using a 

computationally fast optimization approach called dynamic programming 

(Bellman, 1954; Hawkins, 1972). Second, the number of breaks is determined by 

minimizing the internal variance within the subperiods between two consecutive 

breaks plus a penalty for every additional break (Caussinus and Lyazrhi, 1997). 

The penalty term aims to avoid adding insignificant breaks. 

Recently, Domonkos (2011b) expanded ACMANT, which is based on the 

generic PRODIGE algorithm, by searching for common breaks in the annual 

mean and the size of the annual cycle. Picard et al. (2011) developed an 

alternative version, in which not only pairs, but all data in the network are 

jointly taken into account for optimization. ACMANT, PRODIGE, and the joint 

detection method of Picard et al. (2011) are implemented in the software 

package HOMER (Mestre et al., 2012). Nemec et al. (2012) used PRODIGE 

with three different criteria for the assessment of the number of breaks. Beyond 

dynamic programming, genetic algorithms (e.g., Li and Lund, 2012; Davis et al., 

2012) and simulated annealing (Lavielle, 1998) are alternatively used for 

reducing the computational demand.  

Not all inhomogeneities are abrupt changes, some changes are more 

gradual (Lindau, 2006). Such trends are explicitly considered by some 

homogenization algorithms (Vincent, 1998; Menne and Williams, 2009). Using 

the HOME benchmark dataset in which 10% of the stations contained a local 

trend inhomogeneity, a blind experiment with two versions of PRODIGE has 

been performed (Venema et al., 2012). In the main version only breaks have 

been used for homogenization, and in the alternative version multiple breaks in 

one direction are combined into a slope correction. These two versions have a 

very similar performance. One of the reasons may be that not many local trends 
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had to be introduced. Still this suggests that trend inhomogeneities can be 

reasonably well modeled by multiple breaks. Consequently, this paper will only 

consider break inhomogeneities. 

To characterize breaks within a time series, it is helpful to decompose the 

total variance of the time series into two terms: the internal and the external 

variance. Consider a time series with k breaks dividing it into k + 1 subperiods 

(Fig. 1). In this concept, the variance within the subperiods is referred to as the 

internal variance, whereas the variance between the means of different 

subperiods is the external variance. The decomposition with the maximum 

external variance defines the optimum positions of breaks for a given number of 

breaks. 

 

 

 

Fig. 1. Sketch to illustrate the occurrence of breaks in climate records and the related 

expressions, internal and external variance. 

 

 

As we use internal and external variance as the basic concept to 

characterize breaks, an exact quantitative formulation is necessary. Lindau 

(2003) discussed the decomposition of variance and showed that the total 

variance of a time series can be divided into three parts: 
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In Eq. (1), the variance of a time series of length n is considered. It 

contains N subperiods, each comprising ni members. Individual members are 

denoted by xij, where i specifies the subperiod and j the temporal order within 

the respective subperiod. The mean of the ith subperiod is denoted by     and 

the overall mean of the entire time series by   , without any index. The total 

variance on the left hand side is decomposed into the three parts on the right 

hand side of Eq. (1). These are equal to the external and the internal variance 

plus, as third term, the error of the total mean. As the last term is constant for 

a given time series, the sum of internal and external variance is constant, too. 

Consequently, we can formulate an alternative criterion for the optimum 

decomposition of a time series into subsegments being a minimum internal 

variance. 

However, two problems arise. The first is of practical nature. The 

number of possible decompositions is normally too large for a simple test of 

all permutations. The second is rather fundamental. For a fixed number of 

breaks, the maximum external variance is actually a reasonable criterion for 

the optimum decomposition. However, it is obvious that for zero breaks, the 

entire variance is internal, whereas it is fully external for n–1 breaks. During 

the transition from 0 to n–1 breaks, more and more variance  is converted 

from internal to external, so that the internal variance is a monotonously 

falling function of the break number k. Consequently, we need a second 

criterion for the optimum number of breaks. As this is the critical problem for 

any multiple-breakpoint detection algorithm, the discussion and proposed 

solution of this problem built the major part of this paper. However, initially 

also the first minor problem and its solution are shortly described in the 

following. 

There exists a large number of possibilities to decompose a time series of 

length n into a fixed number of N subsegments: it is equal to  
   

 – 
 . Even for a 

moderate length of n = 100 and ten subsegments, there are already more than 

10
12

 combinations, so that the testing of all permutations is mostly not feasible. 

This problem is already solved by the so-called dynamic programming method, 

firstly inspired by Bellman (1954). Originally designed for economic problems, 

this method is by now established in many different disciplines, in climate 

research (Caussinus and Mestre, 2004) as well as in biogenetics (Picard et al., 

2005). As we will also use dynamic programming later on, we describe shortly 

how we applied this technique. 
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2. Dynamic programming 

We begin with the optimum solution for a single break point. In this case, simple 

testing of all possibilities is still feasible as only n–1 permutations exist. 

Afterwards, the best break position together with its respective internal variance 

is known. The basic idea is now to find an optimum decomposition not only for 

the entire time series, but also for all truncated variants of any length l. There 

exist n–1 variants, all beginning with the first time point. The first variant ends 

at the second time point, the second at the third time point, and the last variant is 

equal to the entire time series. For each of these variants an optimum position of 

a single breakpoint is searched and stored together with the criterion on which 

the decision is made, i.e., its internal variance. In the next step we consider what 

happens if the truncated variants are filled up to the original length n. In this 

case the internal variance consists of two contributions: that of the truncated 

variant, plus that of the added rest. For this step, it is, of course, necessary that 

the used criterion is additive, which is fulfilled for variances. Consequently, we 

can test a number of n–1 filled-up variants. That variant, where the combined 

internal variance is minimal, is then the optimum solution for two break points. 

The first break is situated within the truncated time series; the second is equal to 

the length l of the truncated series itself, because here is the break between the 

two combined time series. 

To expand the method from two to three and more breaks, some more 

work is necessary already at the beginning. So far the truncated variants are 

always filled up to the entire length n. But the starting point for the proceeding 

from one to two breaks are, as described above, known previous solutions for 

all lengths. Consequently, to proceed from two to three breaks, we need not 

only the best two-break solution for the entire length n, but the solutions for 

every length. Thus, also all shorter fillings are performed so that we obtain the 

optimum two-break solution not only for the final time series length n, but also 

for every shorter length between 2 and n. This set of solutions is then used 

accordingly as basis to find the three-break solution. Filling up the time series 

to the full length would be sufficient if we want to stop at three breaks. 

However, if the method should be continued to higher break numbers, again a 

full set of three-break solutions is needed. 

Thus, the solution for k breaks is found by testing only n–1 truncated and 

refilled optima, where the truncated part contains already the optimum 

distribution of k–1 breaks. To perpetuate the method for k +1 breaks, each 

truncated optimum has to be refilled to all possible length so that a number of 

cases in the order of n
2
 has to be calculated. This reduces the number of cases 

from the order of  
 
 
  to n

2
, which facilitates a much faster processing. 
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3. Outline of the paper 

In the above described way, the optimum positions for a given number of breaks 

can be calculated. Minimum internal variance is serving as criterion, and 

dynamic programming avoids a time consuming exhaustive search. However, as 

mentioned above, there is still a problem left. The absolute minimum of internal 

variance being equal to zero would be attained by inserting n–1 breaks into the 

time series, which is obviously not the optimum solution. Instead, we need to 

define which number of breaks is appropriate. 

A state-of-the-art method for detecting breaks is PRODIGE (Caussinus and 

Mestre, 2004). Although using a log-likelihood method, it is based on the 

minimization of the internal variance and does not differ essentially from the 

procedure described here so far. PRODIGE uses a penalty term to ensure that 

the search stops at a reasonable number of breaks. This penalty term is adopted 

from Caussinus and Lyazrhi (1997). Similar to PRODIGE, Picard et al. (2005) 

applied a log-likelihood method to minimize the internal variance, but 

developed a specific penalty term. Before, they discussed different commonly 

used penalty terms, such as the Information Criteria AIC and BIC, based on 

Akaike (1973), and found that these penalty terms suffer from different 

weaknesses. 

In the remaining part of this study, we derive an alternative stop criterion 

based on the idea that the external variance is the key parameter, which defines 

the optimum solutions. We will use the characteristics of a random standard 

normal distributed time series as reference. Only if the optimum solution for an 

additionally inserted break gains significantly more external variance than the 

expected amount for a random time series, an increased break number is 

justified. Thus, it is necessary to describe mathematically how the external 

variance of random data increases with increasing number of breaks, so that it 

can be used as reference for real data. 

In a first step, we derive the statistical distribution that can be expected for 

the external variance v. In Section 4, we show theoretically that the 
2
 

distribution would be a good candidate. In Section 5, we show by empirical tests 

that the related Beta distribution is even better suited to describe the external 

variance. To identify the optimum solution for the decomposition, we use, as 

mentioned, the maximum external variance. Consequently, we have to find the 

maximum value within a Beta distribution, identical to its exceeding probability, 

which is performed in Section 6. For that purpose, the definite integral of the 

Beta distribution, known as the incomplete Beta function, has to be solved. 

From this formulation, the rate of change of the external variance v for growing 

break numbers k is derived in Section 7. This derivative dv/dk is then integrated 

and a formulation for v(k) is presented. 

In its differential form our solution shows much formal similarities to the 

penalty function used in Caussius and Mestre (2004), but it differs numerically 
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and exhibits more details. In Section 8 we discuss these differences and propose 

finally a revision. 

4. Theoretical characteristics of random data 

Consider a random standard normal distributed time series N(0,1) with k breaks 

inserted, so that the number of segments N is: 

 

                                                                
 

According to Eq. (1) the external variance v is:  

 

    
 

 
           

 

 

   

                                               

 

As standard normal distributed data is considered,    = 0 and x
 = 1. 

Furthermore, we are interested here in the statistics of external variance for 

many realizations as produced by  
   
 

  permutations of break positions for a 

fixed number of breaks. Averages over these permutations are denoted by 

brackets, whereas averages over individual data points within a time segment are 

overlined. 

  

       
 

 
   

 

   

   
                                                      

 

Consider now the segment averages    , which are the critical constituents 

of [v] in Eq. (4). Their expected mean is equal to zero, since random data with    
= 0 is assumed. Only the finite number of segment members causes the segment 

means to scatter randomly around zero. As the members of a segment are 

standard normal distributed, the standard deviation of any segment mean is 

equal to 1/   . 

  

             
 

  
                                                           

 

If the segment means are multiplied by the square root of the number of 

segment members (Eq. (6)), the distribution is broadened in such a way that a 

standard normal distribution is obtained. These modified means can be defined 

as to yi. 



9 

 

                                                                           

 

Inserting this definition into Eq. (4) leads to: 

 

       
 

 
   

 

 

   

    
   

 
   

 

 
                                       

 

The second equal sign in Eq. (7) follows, because the squared sum over 

standard normal distributed data is N–1, which is directly evident from the 

definition of standard deviation. Furthermore, the brackets can be omitted as 

both the total length of the time series n and the number of segments N are 

constants for all permutations subsumed under the brackets. The last equal sign 

follows from Eq. (2), which just states that there is always one segment more 

than breaks. 

From Eq. (7), we can conclude the following. The average external 

variance increases linearly with the number of inserted breaks k. Such a linear 

increase of v could be expected if one of the  
   
 

  segmentation possibilities 

for a given number of breaks is chosen randomly. However, actually we select 

always the optimum segmentation as given by the above described dynamic 

programming. Consequently, we are less interested in the expected mean, but in 

the best of several attempts. In order to conclude such an extreme, the 

distribution has to be known. 

For this purpose, let us go back to Eq. (3) where we insert again Eq. (6). It 

follows the same relationship as given in Eq. (7), but without averaging 

brackets, according to: 

 

    
 

 
   

 

 

   

                                                          

 

It is striking that Eq. (8) is nearly identical to the definition of a 
2
 

distribution, which is as follows: N values are randomly taken out of a standard 

normal distribution, which are then squared and added up. By repeating this 

procedure several times, these square sums form a 
2
 distribution with N being 

the number of degrees of freedom. Remembering that yi is standard normal 

distributed, it becomes obvious that Eq. (8) reproduces this definition. The 

difference is that we divide finally by n. But, hereby, no substantial change is 

performed, as n is a constant equal to the length of the considered time series. 
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Consequently, we can conclude that v (actually nv), must be 
2
 distributed with k 

being the degree of freedom, according to: 

 

       
 
   
    

 
 

 
 
    

 
  

                                                        

 

However, there is an important restriction of this rule. As v is normalized, it is 

confined between 0 and 1, whereas normal distributed data have no upper limit. 

The number of breaks k is inversely proportional to the number of segment 

members ni. Therefore, the standard deviation of segment averages (Eq. (5)), is 

small compared to 1 for low break numbers. In this case the normal distribution is a 

good approximation for      . However, with increasing break number, ni decreases 

so that the standard deviation is approaching 1. Assume, e.g., a time series of length 

100 with 25 breaks. ni is then in the order of 4, so that the standard deviation of the 

      becomes 0.5 (Eq. (5)). Assuming still a normal distribution is no longer 

appropriate, as the true frequency for      =1 is zero by definition, whereas the 

normal distribution at 2 standard deviations is not exactly zero. For the distribution 

of v it means that we have to expect a kind of confined 
2
 distribution, which is 

defined exclusively between zero and one. In the next chapter, we will show 

empirically that this is a Beta distribution. For this purpose, we verify in the 

following our theoretical considerations by practical tests with random data. 

5. Empirical tests with random data 

Typical climate time series contain at least 100 data points, which is preventing 

in general the explicit calculation of the entire distribution as discussed above. 

However, for n =20, this is still possible and carried out in the following to 

check our theoretical conclusions. Fig. 2 shows the development of the external 

variance v as a function of the number of inserted breaks k.  

To obtain statistical quantities, 100 repetitions have been performed. The 

mean amount of v increases linearly with k, as stated in Eq. (7). Additionally, the 

minimum and maximum are given for each number of breaks. In realistic cases, 

i.e., for larger n, the maximum can only be determined by dynamic 

programming; here the entire distribution could be explicitly calculated. In the 

following, it is our aim to find a mathematical function determining how the 

maximum external variance is growing with increasing number of breaks. A first 

approximation of this solution is already visible in Fig. 2. Three estimates are 

given for the maximum external variance. The central one, where an exponent of 

4 is assumed, is in good agreement with the data. Obviously, the external 

variance v is connected to the break number k by the approximate function: 
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Fig. 2. Mean (0), maximum (+), and minimum (–) external variance as a function of 

inserted breaks for an n = 21 year random time series. For the maximum, three estimates 

are given: 1–v = (1– k
*
)

i
, for i = 3, 4, 5, where k

*
= k/(n–1) is the normalized break number. 

For 20 breaks, v reaches not 1, but 0.95, because a fraction of 1/(n–1) is covered by the 

error of the total mean, as given in Eq. (1). 

 

 

For each break number, Fig. 2 gives minimum and maximum of the 

external variance for 100 repetitions. Between these extremes we expect a kind 

of confined 
2
 distribution. As the shown result is based on numerical 

calculations, we are able to check our theory. Fig. 3 shows exemplarily the 

distribution as obtained from a Monte Carlo experiment for 7 breaks. 

Differences to the corresponding 
2
 distribution are not large, but noticeable, 

especially at the tail of the distribution, where the maximum value, we are 

interested in, occurs. In contrast, the Beta distribution with 7 degrees of freedom 

is in good agreement with the data. Confirmed by tests with further break 

numbers, we assume in the following that the external variance is generally Beta 

distributed. The Beta distribution is formally given by: 
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with p denoting the probability density, v the external variance, and B the Beta 

function defined as: 

 

         
         

      
                                             

 

with  denoting the Gamma function. 

 

 

 

 

 
 

Fig. 3. Probability density for the 
2
 distribution, as given in Eq. (9) for k =7 (thick line). 

Furthermore, the 20 Beta distributions (thin), and the distribution of random data 

(crosses) are given. As expected, the data deviates slightly from the 
2
–7 and fits well to 

the Beta–7 curve. The lower abscissa and the left ordinate is valid for the 
2
 distribution. 

The upper v-abscissa and the right ordinate are valid for the Beta distribution and the 

normalized random data. 
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6. The incomplete Beta function 

By Eq. (11) we are so far able to describe the distribution of the external 

variance v depending on length n and break number k. However, it is the 

maximum of v, which defines the optimum decomposition. Therefore, we need 

to find the maximum value of Eq. (11), or in other words, the exceeding 

probability of the Beta distribution, as given by: 

 

             

 

 

                                                           

 

where the definite integral over a Beta distribution has to be solved, which is 

referred to as the incomplete Beta function B(a,b,v). With this substitution 

Eq. (13) reads: 

   

           
   

 
 
  
     

 
    

   
 
 
  
     

 
  

                                           

 

 

For whole numbers the incomplete Beta function is obviously solvable by 

integration by parts, and the solution is: 

 

              

          
   

 
 
           

 

   

                            

 

 

By comparing the arguments of the Beta function in Eq. (14) with those in 

Eq. (15), it follows: 

 

  
 

 
                                                              

 

and 

 
     

 
                                                      

 

 

Inserting Eq. (16) in Eq. (17) we have: 
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Since the variables i and m are defined as integers, Eq. (14) is solvable for even 

k and odd n. Replacing n and k in Eq. (14) by i and m, it follows: 

 

           
               

             
                                     

 

Using Eq. (15), the solution is: 

 

             
 
 
           

 

   

                                    

 

Now we are aiming to replace the 1 in Eq. (20) by using the binomial definition, 

which is as follows: 

 

  
 
 
       

 

   

                                                   

 

With a being v and b being 1- v it follows: 

 

  
 
 
           

 

   

          
 
                              

 

so that it is actually possible to replace the 1 in Eq. (20) by a sum from zero to m: 

 

       
 
 
           

 

   

   
 
 
           

 

   

                      

 

Calculating the sum from zero to m minus the sum from i to m, the sum from 

zero to i–1 is remaining: 

 

           
 
 
           

   

   

                                         

 

Eq. (24) gives the exceeding probability as a function of external variance 

for any even break number k =2i. Let us again check the obtained equation 
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numerically by a Monte Carlo computation. For this purpose we create a random 

time series of the length n =21 and search for the combination of 4 breaks that 

produces the maximum external variance. Fig. 4 shows the result as obtained by 

1000 repetitions. As each individual time series contains  
   
 

  =  
  

 
  = 4845 

possibilities of decomposition, we are dealing with a sample size of 4,845,000. 

Two conclusions can be drawn. First, the data is in good agreement with 

Eq. (24). Second, the effective number of combinations is much smaller than the 

nominal. 

To the first conclusion: In Fig. 4, vertical lines from ln(0)=1 are drawn 

down to the exceeding probability that is found in the numerical test data. Thus, 

the edge of the shaded area gives the probability function for a certain maximum 

external variance. The according theoretical function as derived from Eq. (24) is 

given alternatively as a curve. The chosen numbers of n =21 and k = 4 can be 

transformed by Eqs. (16) and (18) to m = 9 and i =2. Inserted into Eq. (24) it 

follows for the depicted example: 

 

                                                                
 

 

 
 

Fig. 4. Logarithmic exceeding probability as a function of external variance for 4 breaks 

within a 21-year time series. Vertical lines are drawn down from ln(0)=1 to the 

probability found for random data. The theoretical probability as generally given in 

Eq. (24) and specified in Eq. (25) is given by a curve. Two special data pairs are 

indicated, which are discussed in the text. 
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Fig. 4 shows that the data fits well to Eq. (25) if the probability is not 

too extreme. For such low probability it is not surprising that the limited 

Monte Carlo dataset shows more scatter and randomly deviates from the 

theory. 

To the second conclusion: Two reading examples are given in Fig. 4. One 

starts from the exceeding probability of 2.064×10
–4

 (ln (0.0002) = –8.5). This 

value is equal to    
 
 
  

, the reciprocal of the nominal number of combinations 

for n = 21 and k = 4. If all combinations were independent, we could expect a 

maximum external variance of 0.7350. However, this is not the actually true 

value, which is already determined as 0.5876 (Fig. 2). But we can draw the 

reverse conclusion: What must be the effective number of combinations for the 

known external variance? We obtain a value of 4.777×10
-3

, which is 23 times 

larger than the starting point. The conclusion is that the effective number of 

combinations for this special case (n = 21, k = 4) is 23 times smaller than the 

nominal one, which is equal to    
 
 . The dependency of different solutions is 

reasonable. Shifting only one break position by one time step creates already a 

new break combination. However, its external variance will not deviate much 

from the original. 

7. The relative change of variance as a function of increased break number 

After confirming Eq. (24) by test data, we can assume its general validity and 

turn towards more realistic lengths. Fig. 5 shows the graphs of Eq. (24) for 

n = 101 and all even k from 2 to 20. As in Fig. 4, the number of independent 

combinations is estimated by a reversal conclusion from the known results of the 

maximum external variance. (In this case the results stem from a dynamic 

programming search as the length of n = 101 is too large for an explicit all-

permutations-search of the maximum as it was possible for n = 21.) 

The following question arises: What is the rate of change of the variance, if 

the number of breaks is increased? Obviously, there are two contributions. First, 

we skip from the graph in Fig. 5 valid for k breaks to the next one valid for k + 2. 

This causes a certain increase in the external variance, even if the number of 

combinations would remain constant. Second, there is certainly an increased 

number of permutations, although we showed that the effective number is 

always smaller than the nominal one. 

Fig. 6 gives a sketch of the situation to illustrate how the mathematical 

formulations for the two components are derived in detail. The exceeding 

probability P for two arbitrary even break numbers is depicted. To determine the 

first contribution, we need to know the distance between two neighboring curves 

in v-direction for a fixed P (v1– v0 in Fig. 6). 
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Fig. 5. As Fig. 4, but for a 101-year time series and for the ten different break numbers 

from 2, 4, 6, … , 20. The known external variances for each break number are retranslated 

into the observed effective exceeding probabilities given as the column at the right edge. 

 

 

As Eq. (24) is difficult to solve for v, we estimate the v -distance by the P-

distance, which is divided by the slope s: 

 

 
  

  
 
 
              

             

 
                                   

 

Using the respective i-indices for P1 and P0 (see Fig. 6) we can rewrite: 

 

 
  

  
 
 
 
                       

       

 
                                

 

This first part of dv/di arises because different functions of P(v) has to be used. 

We introduce Cf and refer to it the following as the function contribution: 

 

                          
       

                             

 

so that Eq. (27) can be rewritten: 
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The second contribution is the increase of v due to the total decrease of P (v2 – v1 

in Fig. 6). Geometrically, this can be perceived as a walk down the respective 

curve. 

 

 
  

  
 
 
              

             

 
                                  

 

Using i-indices for P2 and P1, it follows: 

 

 
  

  
 
 
    

                     

 
                                   

 

This second part of dv/di depends on the increased number of decomposing 

permutations with growing i. Consequently, we refer to the numerator as 

number contribution Cn, according to: 

 

                                                                    

 

and it follows: 

 

 
  

  
 
 
  
  
 
                                                                

 

In both cases, changes in P are translated into v by the slope of the curves. This 

is appropriate if the curvatures are small and the slopes remain nearly constant. 

For the relevant parts of the curves this is a good approximation (Fig. 5).  

Finally, we can summarize Eq. (29) and Eq. (33) to: 

 
  

  
      

  

  
 
 
   

  

  
 
 
     

     
 

                                     

 

To determine dv/di, we obviously need three terms, the slope s, the function 

contribution Cf, and the number contribution Cn. These three terms are derived 

in the following subsections. 
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Fig. 6. Sketch to illustrate the total gain of external variance from v0 to v2, when the 

number of breaks k is increased by 2, i.e., from i to i+1. The first contribution (v1– v0) 

depends on the horizontal distance of the two curves. This contribution is derived in the text 

by the vertical distance Cf and the slope of the curve. The second contribution (v2–v1) 

occurs due to the increase of possible combinations when the break number is increased. As 

for the first contribution, it is translated from Cn by using the slope of the depicted curves. 

 

7.1. The slope 

The slope s of the logarithm of Eq. (24) as it is depicted in Figs. 5 and 6 is equal 

to: 

 

      
 

  
               

 

    
 
     

  
                                      

 

With Eq. (13) it follows: 

 

     
    

    
                                                                

 

Replacing n and k by m and i and using the result of Appendix A we can rewrite 

Eq. (11) to: 



20 

                              
 
   

                              

 

Inserting Eq. (24) and Eq. (37) into Eq. (36), it follows: 

 

      
                       

 
   

 

   
 
 
               

   

                                

 

In Appendix B we show that the last summand is a good approximation for the 

sum occurring in the denominator and it follows: 

 

      
                       

 
   

 

 
 
   

                 
                               

 

which can be reduced to: 

 

      
     

   
                                                 

 

After replacing again m and i by n and k it follows: 

 

      
     

       
                                               

 

7.2. The function contribution 

With Eq. (24) the vertical distance between two neighboring curves as given in 

Fig. 6 is: 

 

                          
  

 
 
            

   

  
 
 
              

   

                    

 

We use again Appendix B and approximate the sums by their last summand: 
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which can be reduced to: 

 

        
 
 
 
   

 
 
   

       
                                          

 

The ratio of consecutive binomial coefficients is equal to (m-i+1)/i: 

 

        
         

       
                                          

 

Replacing m and i again by n and k, it follows: 

 

        
         

       
                                             

 

 

7.3. The number contribution 

The nominal number of combinations grows with growing k from  
   
 

  to 

 
   
   

 . This corresponds to a factor of (n–1–k)/k. However, in Fig. 4 we show 

exemplarily for k = 4 that the effective number of combinations is lower. In 

Fig. 5 the decrease of ln(P(v)) due to the increase of the effective number of 

combinations is given in a column at right edge for the even k from 2 to 20. 

From these numbers we derived the actual decreasing factor Cn = ln(P(v)) and 

compared it with the nominal (Table 1). The nominal decreasing factor for 

k = 1 is equal to the reciprocal of the growth of combinations  
 
   
 
 

 
   
   

 
 

 

     
 . 

Here we need its logarithm; and as the effective decreasing factor is only 

available for every second k, nom = –2ln((n–1–k)/k) is the proper reference.  

From Table 1 we can extract that the ratio between the effective and 

nominal factor is rather constant with r ≈ 0.4, but slightly growing with 

increasing break number. The growth will be discussed in detail in Appendix C, 

for the time being we can summarize: 
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Table 1. From Fig. 5, Cn, the effective decrease of ln(P(v)) for the transition from k to k+2 

is taken. It is compared to the nominal decrease equal to –2 ln((n–1–k)/k). Finally, the 

ratio r between the effective and nominal factor is given 

 

k1 k2 k eff =  ln (P(v)) nom = –2 ln((n–1–k)/k) r = eff/nom 

2 4 3 –2.552 –6.952 0.367 

4 6 5 –2.186 –5.889 0.371 

6 8 7 –1.963 –5.173 0.379 

8 10 9 –1.765 –4.627 0.381 

10 12 11 –1.645 –4.181 0.393 

12 14 13 –1.514 –3.802 0.398 

14 16 15 –1.435 –3.469 0.414 

16 18 17 –1.363 –3.171 0.430 

18 20 19 –1.292 –2.900 0.446 

 

 

 

7.4. The differential equation and its solution 

The rate of change of v with regard to k is only half of that with regard to i 

(compare Eq. (16)): 

 
  

  
     

  

  
 
  

  
     

 

 
 
  

  
                                              

 

Using Eq. (34) it follows: 

 
  

  
   

 

 
 
     
 

                                                    

 

Inserting our findings for the slope s (Eq. (41)) and for the two contributions Cf 

and Cn (Eqs. (46) and (47)), the growth of v with growing k is given by: 

 

  

  
     

   

     
        

     

 
       

         

       
               

 

Reducing the fractions under the logarithms by n–1 leads to the normalized 

break number k
*
, defined as: 
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At the same time, the differential dk has to be replaced by: 

 

                                                                 
 

so that Eq. (50) may be rewritten in normalized form: 

 

  

   
     

   

    
        

    

  
       

        

        
                         

 

The final main question is now: What is the solution of Eq. (53)? Let us make a 

first approach to the solution by a very rough estimate for small k
*
. 

 

    

   
 
  

   
           

    

  
       

        

        
                        

 

The first logarithm constituting , i.e., –Cn, is for small k
*
 in the order of 

ln(n) and it decreases with increasing k
*
. The second, Cf, is in the order of 

ln(v/k
*
). Because we know already the approximate solution being 1– v ≈ (1–

k
*
)

4
, we can estimate the second term to about ln(4) (compare Eq. (78) in 

Appendix B). In contrast to the first term, this term increases with increasing k
*
 

(see Appendix C), because 1–v is decreasing faster than 1–k
*
. Assuming n = 

101, an estimate for  is: 

 

                                                              
 

If  were actually constant, the integration of Eq. (54) would be easy: 

 
 

   
        

 

    
                                                   

 

                                                                

 

                                                                  
 

which is rather similar to the already known approximate solution (Eq. (10)), 

except that the exponent found in Eq. (55) is higher. This already shows that the 

assumptions made to estimate s, Cf , and Cn were reasonable. 

For a more accurate solution let us go back to the performance of the 

random data that we already used above to verify our theory. By these data we 

can check how well the rough estimate of a constant  is fulfilled in reality. 

Fig. 7 shows that such an estimate is actually not too bad, which is the reason 
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for Eq. (58) being rather close to the true solution. For a more precise solution, 

we fit a function to (k
*
) and obtain: 

 
    

   
 
  

   
     

    

 
    

    

  
                                      

 

Eq. (59) may be rewritten as: 

 

 

   
         

 

 
    

    

  
  

       

    
                                  

 

which is easy to integrate. Its solution is: 

 

               
    

  
 
   

                                           

 

with a = 2 ln(5) + 1/2 and b = –1/2. 

 

 

 
 

 

Fig. 7. Exponent  as given in Eq. (54) as a function of the normalized break number k
* 

for random data (crosses). These data consists of 1000 random 101-year time series. The 

vertical bars connect the 90 and 95 percentiles. The thin line is giving the function 

according to Eq. (59). 
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In Fig. 7, the function for the exponent  as given in Eq. (59) fits well to 

the results derived from random data. However, the relative gain of external 

variance is larger for even values compared to their uneven neighbors, 

especially for low values. This feature is reasonable, as it needs always a pair 

of breaks to isolate a subsegment. To produce the data, we performed 1000 

repetitions, mainly to reduce the scatter. However, the repetitions can also be 

exploited to derive the variability of the solution. Consequently, not only the 

mean, but also the 90 and 95 percentiles are given. The average exponent starts 

for low normalized break numbers at about 5. This means that the external 

variance grows at the beginning 5 times faster than the normalized break 

number. This behavior is found for random data. When such a variance growth 

will occur in real data, we can be rather sure that no true break is present as it 

is normal for random data which has by definition no real break. The 95 

percentile is for the first breaks as large as nearly 10. Thus, in only 5% of the 

cases, the external variance grows by a factor of more than 10 times faster than 

k
*
. Hence, this value can be used as limit to distinguish true from spurious 

breaks. For the first break numbers it reaches nearly 10, decreasing rapidly to 

about 5 for k
*
 = 0.1. 

8. Discussion of the penalty term 

Within the homogenization algorithm PRODIGE (Caussinus and Mestre, 2004), 

the following expression is minimized to estimate the number of predicted 

breaks. 

 

              
           

    
   

        
  

   

    
       

   
                        

 

The numeric value of Ck(Y) depends on the data Y and the number of breaks k 

and consists of two opposite contributions. Firstly, the logarithm of the 

normalized internal variance, and secondly, a penalty term, originally proposed 

by Caussinus and Lyazrhi (1997). Whereas the first is decreasing with larger k, 

the second is increasing. Using our notations for the same terms, Eq. (62) can be 

rewritten as: 

 

             
  

   
                                            

 

In Eq. (63), we combined k and l, the number of breaks and the number of 

outliers to a single number. Splitting off an outlier is identical to the separation 

of a subperiod of length 1. Consequently, it is not necessary to treat outliers 
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separately. If we further use the normalized break number k
*
 according to 

Eq. (51) instead of k, we can rewrite: 

 

                                                             
 

To find the break number k
* 

for which the expression is minimal, the first 

derivative with respect to k
*
 is set to zero: 

 

  
 

   
 
  

   
                                                       

 

which can be rewritten to: 

 

 
 

   
 
  

   
                                                      

 

For a given time series, the length n is constant. Consequently, we can conclude 

from Eq. (66), that PRODIGE uses a fixed number, equal to 2 ln(n), as stop 

criterion. If the relative gain of the external variance falls below that constant, 

no further breaks are added and the final break number is reached. However, 

from Eq. (59) we know the function for the relative gain of external variance in 

detail; it just has to be divided by 1 – k
*
. 

 
 

   
 
  

   
     

 

 
    

    

  
    

       

    
                             

 

Fig. 8 shows this function for a time series of length 101. Additionally, six 

exceeding values for probabilities from 1/4 to 1/128 are given, based on 5000 

repetitions. These curves are approximately equidistant. For comparison, the 

constant as proposed by Caussinus and Mestre (2004) and rewritten in Eq. (66) 

is given, which is about 9 (exactly 2 ln(101)) for n = 101. 

As the exceeding values are computed for random data, they can be 

interpreted as error probability. The 1% error line (exactly 1/128) at the upper 

end of the family of curves in Fig. 8 starts at a variance gain of about 15, and 

reaches, for k
*
 = 0.1, a value of about 8. 

In the climatologically interesting range of small k
*
, the numeric value of 

the mean variance gain (lowest line in Fig. 8) is equal to about 5 and can be 

interpreted as following. For random data, which contains no break by 

definition, the relative external variance grows on average with each 

additionally inserted break 5 times faster than expected by a simple linear 

approach. Such a linear approach just supposes that each break adds the same 

amount of external variance. For n = 101 this would be one percent per break. In 

reality, the data contains larger jumps just by chance, comprising not only 1%, 
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but 5% of the remaining variance. In seldom cases, these highest jumps contain 

even 15% of the remaining variance, but the probability for that is only about 

1% (uppermost line in Fig. 8). As the number of tentatively inserted breaks is 

growing, the highest jumps are already used before, so that the amount of the 

remaining decreases. Increasing the break number from 9 to 10 (k
*
 = 0.1) gains 

in average still 5%, as for the lowest break numbers, but the maximum value, 

exceeded in 1% of the cases, drops from 15% to 8%. 

 

 
 

Fig. 8. Relative gain of external variance as a function of normalized breaks k
* 
for a time 

series length of n = 101. The dashed fat curve denotes the theoretical value as given by 

Eq. (67). The solid thin curves are showing the data results as obtained by 5000 

repetitions. The lowest indicates the mean, which is largely congruent with the theory. 

The upper ones give the exceeding value for probabilities from   2
–2

, 2
–3

, … , 2
–7

. For 

comparison, the constant 2 ln(n) proposed as stop criterion by Caussinus and Lyazrhi 

(1997) is given by the horizontal line. 

 

 

The Lyazrhi constant of 2 ln(n) as proposed by Caussinus and Mestre 

(2004) is equal to about 9 for n = 101. At the beginning, i.e. for one break, this 

value lies in the middle of the family of error curves in Fig. 8. Thus, it 

corresponds here to an error of about 5%. At k
*
 = 0.08, i.e. for 8 breaks, the 

horizontal line is leaving the area covered by error curves. Thus, the error level 

decreases below 1%. Assuming continued equidistance, the horizontal line will 

reach areas with errors of less than 0.1% at k
*
 = 0.15. Thus, for low break 

numbers, PRODIGE accepts breaks, even if the error is relatively high (about 
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5%). In contrast, higher break numbers are effectively suppressed. Only breaks 

are accepted that add an amount of variance, which would occur randomly with 

a probability of less than 1%. 

The choice of the Lyazrhi constant appears to be rather artful. For the first 

breaks, it allows errors of about 5%, which is a widely accepted error margin. 

However, for more than 8 breaks (within a time series of 101 data points), the 

method is much more rigid. Obviously, the preexisting knowledge is used that 

such high numbers of breaks are per se unlikely, so that a suppression is 

reasonable. 

In Fig. 9, the corresponding features for shorter time series (n = 21) are 

given. Compared to n = 101, the average variance gain remains unchanged, 

showing that Eq. (67) is universally valid. However, the exceeding values 

increase, and the distances between the error curves grow by a factor of 5. This 

indicates that the growing factor is inversely proportional to the time series 

length n. In contrast, the Lyazrhi constant even decrease, although only slightly 

due to its logarithmic form. The direction of change of the Lyazrhi constant for 

different time series length is contradicting our findings for random data and 

should be studied further. However, instrumental climate records comprise often 

about 100 data points, and for such lengths the constant is chosen rather well. 

 

 
 

Fig. 9. As Fig. 8, but for n = 21. The average variance gain remains unchanged compared 

to Fig. 8, because Eq. (67) is universally valid. However, the exceeding values increase 

inversely proportional to n. In contrast, the constant of Caussinus and Lyzrhi (1997) 

decreases with decreasing n. 



29 

9. Conclusions 

The external variance, defined as the variance of the subperiods' means, is 

shown to be the key parameter to detect breaks in climate records. Maximum 

external variance indicates the most probable combination of break positions. 

We analyzed the characteristics of the external variance occurring in random 

data and derived a mathematical formulation (Eq. (61)) for the growth of its 

maximum with increasing number of assumed breaks. As random data includes 

by definition no break, this knowledge can be used as null hypothesis to separate 

true breaks in real climate records more accurately from noise. In this way, it 

helps to enhance the valuable information from historical data. 
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Appendix A 

 

Consider the Beta function in Eq. (11): 

 

   
 

 
  
     

 
                                                    

  
              

          
     

             

  
                                        

 

Multiplication of both the numerator and denominator with m–i+1 leads to: 

 

 

   
 

 
  
     

 
      

               

          
                                 

 

 

Remembering the definition of binomial coefficients being  
 
 
  

  

         
,  

we can write: 
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Appendix B 

Consider the individual summands of the sum as defined in Eq. (24). The factor 

of change f between a certain summand and its successor is: 
 

    
 
 
  
   

 
 

    
      

                                                    

 

where li runs from zero to i. The ratio of consecutive binomial coefficients can 

be replaced, and it follows: 
 

    
          

       
                                                      

 

m and i can be replaced by n and k: 
 

    
          

       
                                                      

 

Inserting k instead of lk is a lower limit for f because (n–1–lk)/lk, the rate of 

change of the binomial coefficients, is decreasing monotonously with k: 
 

    
         

      
                                                        

 

Normalize k by 1/(n–1): 
 

    
        

       
                                                          

 

The approximate solution is known with 1–v = (1–k
*
)

4
, see Eq. (10). 

 

    
                   

         
                                              

 

    
          

         
                                                      

 

for k → 0: 
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for k → 1: 

 

    
                

  
   

   

 
                         

 

We can conclude that each element of the sum given in Eq. (24) is by a 

factor f larger than the prior element. For small k
*
 the factor f is greater than 

about 4 and grows to infinity for large k
*
. Consequently, we can approximate the 

sum by its last summand according to: 

 

           
 
 
           

   

   

       
 
   

                          

Appendix C 

Once the solution for v(k
*
) is available (Eq. (61)), a more accurate 

estimation of the function contribution Cf  is possible. So far, we approximated 

the sum given in Eq. (24) by its last summand, as discussed in Appendix B. Now 

we are able to check the impact of this approximation. Using the known 

solution, we calculated two versions of Cf. First, by taking into account only the 

last summand as in Eq. (43) and alternatively the complete term, as given in 

Eq. (42). Fig. 10 shows these two estimates of Cf as dashed lines. The upper one 

denotes the full solution, the lower the approximation. Their difference remains 

limited, which confirms our findings in Appendix B. As discussed in Eq. (55), 

Cf  starts for low k
*
 at about ln(4) and rises to infinity for high k

*
. 

Concerning the number contribution Cn, we applied so far only a rough 

estimate as given in Eq. (47), assuming a constant ratio between effective and 

nominal combination growths. Actual values for Cn are listed in Table 1 for low 

break numbers. However, they are numerically computable up to about k
* = 0.75. 

In Fig. 10, these values for Cn are given as crosses. They are multiplied by –1, as 

–Cn contributes to the exponent . We fitted a function of the form: 

 

           
    

  
                                                 

 

to the data, which is depicted by the lower full curve in Fig. 10, and obtained for 

the coefficients: 

 

a1 = 0.5, b1 = 0.55, c1 = 0.4   . 
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A similar fit to Cf is given by the upper full curve in Fig. 10. Here the 

coefficients are: 

 

a2 = –1.0, b2 = –0.15, c2 = 2.7     . 

 

 
 

Fig. 10. Contributions of Cf and –Cn to the exponent  
    

   
 
  

   
 . The two dashed lines 

are reconstructions of Cf from the known solution of v(k
*
), as given in Eq. (61). The solid 

line gives a fitted function for Cf. Crosses denote data for Cn connected likewise by a 

fitted curve. The sum of the two contributions is given by the fat line. 

 

 

The sum of two curves yields then an alternative estimation for the exponent . 

It is depicted as a fat line in Fig. 10 and characterized by the sum of the 

coefficients: 

 

a3 = –0.5, b3 = 0.4, c3 = 3.1    . 

 

This alternative estimate is in good agreement (please compare Fig. 7 lowest 

line with Fig. 10 uppermost fat line) with the solution derived directly from the 

data as given in Eq. (59), where the coefficients are: 

 

a4 = –0.5, b4 = 0.5, c4 = 2 ln(5) = 3.2    . 
 

We see that Eq. (59), so far directly based on a fit to the data, is as well 

understandable from the theory as the sum of the two contributions Cf and –Cn. 
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