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ABSTRACT–The detection and correction of inhomogeneities in the climate series is of 

paramount importance for avoiding misleading conclusions in the study of climate 

variations. One simple way to address the problem of multiple shifts in the same series is 

to apply the tests on windows running along the series of anomalies. But it is not clear 

which of the available tests works better. 500 Monte Carlo simulations have been done 

for the ideal case of a 600 normally distributed terms (a 50 years series of monthly 

differences), with a single shift in the middle and magnitudes of 0 to 2 standard 

deviations (s) in steps of 0.2 s. The compared tests have been: 1) classical t-test; 2) 

standard normal homogeneity test; 3) two-phase regression; 4) Wilcoxon-Mann-Whitney 

test; 5) Durbin-Watson test (lag-1 serial correlation), and 6) squared relative mean 

difference (simpler than t-test and hence faster to compute). The criterion for qualifying 

the performance of each test was the ability to detect shifts without false alarms and to 

locate them at the correct point. Results indicate that, under these precise simulated 

conditions, the best test are the classical t-test, Alexandersson’s SNHT and SRMD, with 

almost identical results, followed by the Wilcoxon-Mann-Whitney test, while two phase 

regression and Durbin-Watson performances are very poor. 
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1. Introduction 

Climatological series are very important for studying climate variability at all 

scales, but the climate signal is too often merged with unwanted variations due 

to changes in the type or exposure of the instruments, methods of observation, 

relocations of the stations, or changes in their surroundings. 
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Many methodologies have been proposed so far to detect and correct these 

inhomogeneities, which commonly appear as either sudden shifts or smooth 

trends in relative series. These relative series are usually computed as difference 

or ratio series between the problem series and a reference, that can be an 

observed trusted homogeneous series or a synthetic one compiled from a 

selection of the nearest or more correlated stations. Reviews of the different 

methods can be seen in Easterling and Peterson (1992), Peterson et al. (1998), 

Aguilar et al. (2003), and Beaulieu et al. (2008). 

Several comparisons of shift detection methods have been undertaken so 

far (Easterling and Peterson, 1995; Bosshard and Baudenbacher, 1997; Ducre-

Robitaille et al., 2003; Beaulieu et al., 2008), their results being influenced by 

the type (shifts and/or local trends), number and position of the simulated 

inhomogeneities, differences in station variance and between-station correlation 

structure, series length, autocorrelation, and nonstationarity. 

The frequent concurrence of several jumps in the same series makes their 

detection problematic. One simple way to address this problem is to apply the 

test on time moving windows. During the development of an automated 

homogenization function for the CLIMATOL R contributed package (Guijarro, 

2011a), the chosen approach for the detection of multiple change points was the 

application of a two-sample t-test for equal means to windows running along the 

series of anomalies (differences between the tested series and a synthetic 

reference series computed from neighboring stations). At this point, the question 

whether there were better detection tests emerged, but the available reviews are 

not fully conclusive, since the performance of the tests depends on the particular 

settings of the simulations and the significance threshold values chosen in each 

case, as it happens in the differing results of Ducre-Robitaille et al. (2003) and 

Beaulieu et al. (2008). 

Therefore, new Monte Carlo experiments were designed to test the sensitivity 

and correctness of several algorithms in detecting and locating a shift in repeated 

series of white noise that simulate the ideal case of series of differences between a 

tested series with a single abrupt change in the mean and a homogeneous well 

correlated reference series. In this way we avoid the problems of simulating 

networks of observation or pairs of tested and reference stations as in the 

aforementioned evaluation exercises. Moreover, no a priori level of significance 

will be imposed, and location errors of the break point will be studied with no 

established thresholds of good/bad location. Next sections will explain this 

methodology, and the results of the tested algorithms will be discussed. 

2. Methodology 

500 series of 600 normally distributed terms (equivalent to tested minus 

reference monthly series of 50 years) were generated with the help of the R 
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function rnorm (R Development Core Team, 2010). Single shifts were added to 

all of them just in the middle (from term 301) with magnitudes from 0 to 2 

standard deviations (s) in steps of 0.2 s, yielding a total of 5500 testing series. 

Six shift detection algorithms were applied on them, but not over the whole 

series, but on fixed width windows running along them. Different sample sizes 

were tried, from n =1 to 5 years (12 to 60 terms in steps of 12), and since two 

samples were involved in the shift tests, window widths of 2, 4, 6, 8, and 10 

years were used. In this way, for n years sample size, every algorithm was tested 

600–24·n +1 times in each of the 5500 series (from 577 times with 1 year 

samples to 481 for samples of 5 years). Fig. 1 shows an example series with a 

0.8 s shift. 
 

 
 

Fig. 1. Example of white noise difference series of 600 terms with a shift of 0.8 standard 

deviations in term 301. 

 

 

 

The six algorithms tested were the following: 

 

1. t-test: the classical test of mean differences of two samples. 

2. SNHT: Alexandersson‘s (1986) algorithm, but modified to test the middle 

point of the window only. 
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3. TPR: two-phase regression, as formulated by Easterling and Peterson 

(1995). 

4. WMW: Wilcoxon-Mann-Whitney test, which is similar to the Wilcoxon 

rank sums applied by Karl and Williams (1987) but as formulated by 

Gérard-Marchant and Stooksbury (2008), and divided by the number of 

terms to make it less dependent on the sample size. 

5. DW: lag-1 Durbin-Watson test for serial correlation. 

6. SRMD (squared relative mean difference): z = [ (m1-m2)·s
–1]

2
, where m1 and 

m2 are the sample means and s is the standard deviation of the whole 

window. 

The reference values of DW and t-test were their returned p-values, but 

log10 transformed and sign reversed to allow more friendly figures (they are 

called pV, by analogy with the alkalinity index pH used in chemistry). Fig. 2 

displays the values returned by the six algorithms after being applied to a series 

similar to that in Fig. 1 on running windows of 10 years (sample sizes of 

5 years, i.e., 60 terms). Only the maximum value reached along the series, and 

its location (the middle point of the window giving that value) were retained for 

the statistical analysis of the results. 

3. Results and discussion 

The frequencies of the maximum values returned by the tests on each series and 

the errors of their corresponding locations (diagnosed break term minus 301) 

were analyzed statistically, and the results are shown graphically in form of 

boxplots, where each box summarizes 500 results. Fig. 3 shows the influence of 

window size on the results yielded by the t-Test. It is clear that sample sizes of 

12 terms are too small to allow the detection of shifts. If we take the value of the 

top whisker of the first box (homogeneous series) as a reasonable threshold to 

avoid false break detection, only roughly half of the 2 s shifts would be 

identified. With wider windows the power of detection improves: the half of the 

breaks detection reference is achieved with 0.8 and 0.6 s shifts for samples of 3 

and 5 years respectively. (The intermediate 4 year sample graph can be seen in 

Figure 4). These results are in accordance with those of Beaulieu et al. (2008), 

who found that shifts under 1 s were difficult to identify, while all techniques 

tested by them worked well for breaks greater than 2 s. 

The performance of the six tests with samples of 4 years can be seen in 

Fig. 4. As every test has its own metric, the units displayed in the vertical axis 

are all different, but it is easy to see that some tests reach higher values quicker 

than others as the shift magnitude increases, showing their greater power of 

detection. 



39 

 

 
 

Fig. 2. Graphs of the values returned by the tests when applied to a series similar to that 

in Fig 1 on running windows of 120 terms (two samples of 5 years). The vertical bar in 

the middle of the series indicates the true possition of the shift. 
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Fig. 3. Influence of window size on the results yielded by the t-test. 

 

Table 1 presents the percentage of shift detection of every algorithm for 

each shift, for the 5 years samples, when the threshold detection is placed: a) at 

the maximum value obtained with the homogeneous series (no false detection is 

allowed); b) at the 99 percentile of the homogeneous values (permitting 1% of 

false detection). The best performances correspond to t-test, SNHT and SRMD, 

that give almost identical results, showing that they belong to the same family of 

tests. WMW follows, with good results form 1 s shift onwards, while DW and 

TPR both yield similar discouraging scores. Note that the thresholds of any test 

applied hundreds of times on every series through such a running window 

procedure, must be higher than their corresponding significant levels when 

applied only once on each series. E.g., the 14.23 of SNHT allowing 1% of false 

detection is higher than the 13.813 published by Khaliq and Ouarda (2007) for a 

99% confidence level and sample size of 600 values (the whole simulated 

series). 
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Fig. 4. Values of the six algorithms for shifts ranging from 0 to 2 standard deviations. 
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Table 1. Threshold values and percentage of shift detection in the cases of no false 

detection and allowing 1% of false detections, for a 5 years sample size (running 

windows of 10 years, i.e., 120 terms) 

 

 

Shift (standard deviations) 

Test Thresh. 0.2 0.4    0.6    0.8    1.0    1.2    1.4    1.6    1.8    2.0 

No false detection: 

t-test 5.22 0.0 2.4 16.6 54.4 88.8 98.8 100.0 100.0 100.0 100.0 

SNHT 19.06 0.0 2.4 16.8 54.6 88.8 98.8 100.0 100.0 100.0 100.0 

TPR    8.69 0.0 0.6    1.6    2.8    7.8 16.6    34.4    55.0    74.8    88.4 

WMW 13.78 0.0 2.0 12.6 47.4 82.8 98.4 100.0 100.0 100.0 100.0 

DW    4.98 0.0 0.0    0.0    0.6    3.6 14.8    37.8    65.2    86.0    95.8 

SRMD 0.635 0.0 2.4 16.6 54.4 88.8 98.8 100.0 100.0 100.0 100.0 

1% false detection: 

t-test    3.96 2.2 13.2 44.6 81.4 97.8 100.0 100.0 100.0 100.0 100.0 

SNHT 14.23 2.4 13.2 44.4 81.4 97.8 100.0 100.0 100.0 100.0 100.0 

TPR    6.87 1.6    3.0    4.6 11.6 20.4    41.0    62.2    79.4    91.0    97.4 

WMW 12.04 0.8    8.6 35.0 73.4 95.2    99.8 100.0 100.0 100.0 100.0 

DW    3.59 1.0    1.2    1.8    5.4 17.4    41.2    66.4    87.0    96.4    99.6 

SRMD 0.474 2.4 13.2 44.4 81.4 97.8 100.0 100.0 100.0 100.0 100.0 

 

 

 

With respect to the location errors, Fig. 5 shows the corresponding box 

plots for the 4 years sample size (running windows of 2·4·12=96 terms). Again, 

the t-test family (including SNHT and SRMD) reaches the best results, with 

small location errors for shifts greater than 0.6 standard deviations. Location 

errors of WMW are only slightly higher, but those of DW and specifically TPR 

are very big. 

As CLIMATOL must apply the chosen test many times in iterative runs 

during the homogenization of a climatological network, computing efficiency is 

also important, and therefore, the time used by each of the tests was accounted 

for. Those adjusting regression models (TPR and DW) were the most time 

consuming using the R lm function. The R implementation of the t-test is much 

faster, but at the same time much slower than SNHT, probably due to its higher 

complexity and the inherent computation of p-values and other statistical 

parameters. This is why SRMD was introduced, achieving identical results as 

SNHT (in this two sample version), but at 20% higher speed. If TPR or DW had 

given better results, rewriting the regression algorithm to shorten their 

computing time would have been explored. 
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Fig. 5. Location errors of the six algorithms for shifts ranging from 0 to 2 standard 

deviations. 
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The combination of several of these tests was also tried, but when the best 

algorithm is used, there is no advantage in adding the results of any others. 

Therefore, CLIMATOL 2.0 implemented SRMD on running windows (4 years 

samples by default). Nevertheless, practical applications of that version showed 

that clear inhomogeneities spanning less than 3 years are common in real 

climatological series, and they were difficult to correct automatically due to the 

constraint of the minimum 3 years sample size required by the algorithm. Hence, 

the following 2.1 version dropped SRMD in favor of the popular and well tested 

SNTH which, freed from the window size restriction, is able to resolve close 

shifts. To avoid possible masking effects when multiple shifts are present in the 

same series, this test was implemented in two stages. In the first stages SNHT is 

applied on shifted windows of user defined width, and when significant shifts 

detected in this way have been corrected, SNHT is applied to the whole series in 

the second stage (Guijarro, 2011b). 

4. Conclusions 

The results of the simulations performed in this work indicate that, under these 

precise conditions of detection of a single shift in the middle of the series by 

means of fixed width windows running along the series, the best tests are the 

classical t-test and SNHT. SMRD is a simple derivative of the t-test with the 

same performance. The Wilcoxon-Mann-Whitney test yields acceptable results, 

but the two-phase regression and Durbin-Watson performances are very poor 

(although they can be better in other situations, e.g., in detecting local trends). 

Nonetheless, windows need to have a minimum width of 6 years (two 

samples of 3 years), and that restrains the time resolution at which two close shifts 

can be identified. As a result, the t-test procedure of comparing the means of two 

samples was abandoned in favor of the standard formulation of SNHT, applied on 

stepped windows to avoid misleading results in the presence of multiple breaks in 

a first stage, then followed by an application on the whole series. 
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