
 47 

IDŐJÁRÁS 
Quarterly Journal of the Hungarian Meteorological Service 

Vol. 117, No. 1, January–March 2013, pp. 47-67 

HOMER : a homogenization software  

– methods and applications 

Olivier Mestre
1
*, Peter Domonkos

2
, Franck Picard

3
, Ingeborg Auer

4
, 

Stéphane Robin
5,6

, Emilie Lebarbier
5,6

, Reinhard Böhm
4
, Enric Aguilar

7
, 

Jose Guijarro
8
, Gregor Vertachnik

9
, Matija Klancar

9
,  

Brigitte Dubuisson
1
, and Petr Stepanek

10
 

 
1
Meteo-France, Direction de la Production, 

 42 avenue Coriolis, 31057 Toulouse cedex, France 

2
Center for Climate Change, Univ. Rovira i Virgili,  

Av. Remolins, 13-15, 43500-Tortosa, Spain 

3
UCB Lyon 1, UMR 5558, Villeurbanne, France 

4
Zentralanstalt für Meteorologie und Geodynamik, Wien, Austria 

5
AgroParisTech, UMR 518, Paris, France 

6
INRA, UMR 518, Paris, France

 

7
Center for Climate Change, Univ. Rovira i Virgili, Tarragona, Spain 

8
Agencia Estatal de Meteorologia, Palma de Mallorca, Spain 

9
Environmental Agency of the Republic of Slovenia,  

Meteorology, Ljubljana, Slovenia; 

10
Czech Hydrometeorological Institute, Brno, Czech Republic 

 

*Corresponding author E-mail: Olivier.Mestre@meteo.fr  

 

(Manuscript received in final form October 24, 2012) 

 

 

 
Abstract–Between 2007–2011, the European COST Action ES0601 called HOME 

project was devoted to evaluate the performance of homogenization methods used in 

climatology and produce a software that would be a synthesis of the best aspects of some 

of the most efficient methods. HOMER (HOMogenizaton softwarE in R) is a software for 

homogenizing essential climate variables at monthly and annual time scales. HOMER has 

been constructed exploiting the best characteristics of some other state-of-the-art 
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homogenization methods, i.e., PRODIGE, ACMANT, CLIMATOL, and the recently 

developed joint-segmentation method (cghseg). HOMER is based on the methodology of 

optimal segmentation with dynamic programing, the application of a network-wide two-

factor model both for detection and correction, and some new techniques in the 

coordination of detection processes from multiannual to monthly scales. HOMER also 

includes a tool to assess trend biases in urban temperature series (UBRIS). HOMER’s 

approach to the final homogenization results is iterative. HOMER is an interactive 

method, that takes advantage of metadata. A practical application of HOMER is 

presented on temperature series of Wien, Austria and its surroundings. 

 

Key-words: Homogenization, optimal segmentation, joint segmentation, ANOVA, 

temperature, precipitation, urban trend bias 

1. Introduction 

The accuracy of climatic observations is often affected by inhomogeneities due 

to changes in the technical or environmental conditions of the measurements 

(station relocations, changes of the type, height or sheltering of the instruments, 

etc., Aguilar et al., 2003, Auer et al., 2005). Most of such changes cause sudden 

shifts (change-points) in the series of local climatic data, while some others 

(particularly urban development) result in gradually increasing biases from the 

real macroclimatic characteristics. Correction of inhomogeneities before any 

climate variability analyses is highly desirable, and for this purpose, a large 

number of homogenization methods have been developed in the recent decades 

(Peterson et al., 1998; Ducre-Robitaille et al., 2003; Beaulieu et al., 2008; 

among others). 

HOMER is a recently developed method for homogenizing monthly and 

annual temperature and precipitation data. It includes the best features of some 

other state-of-the-art methods, namely PRODIGE (Caussinus and Mestre, 

2004), ACMANT (Domonkos, 2011), and cghseg a joint segmentation method 

that was developed originally by bio-statisticians in the context of DNA 

segmentation (Picard et al., 2011). PRODIGE and ACMANT have the same 

theoretical base regarding the optimal segmentation with dynamic programming 

DP (Hawkins, 2001), an information theory based formula for determining the 

number of segments in time series (hereafter: C&L criterion, Caussinus and 

Lyazrhi, 1997), and a network-wide unified correction model (ANOVA, 

Caussinus and Mestre, 2004). The results of blind test experiments conducted 

during COST Action ES0601 (Venema et al., 2012) validates these approaches, 

since PRODIGE and ACMANT rank among the best methods for homogenizing 

monthly and annual climate data (cghseg and HOMER were not tested during 

the HOME action). The joint segmentation is an extension of the optimal 

segmentation for finding network-wide optima by means of an iterative 

procedure, a modified BIC criterion being used for determining the number of 

changes (Zhang and Siegmund, 2007; Picard et al., 2011). 
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HOMER is an interactive semi-automatic method. In applying HOMER, 

users may choose between the cghseg detection results whose generation is fully 

automatic on the one hand, and a partly subjective pairwise comparison 

technique that is adapted from PRODIGE on the other hand. This freedom 

allows users to add subjective decisions based on metadata or research 

experiences. HOMER includes also some innovations of ACMANT in the 

coordination of working on different time scales. Basic quality control and 

network analysis are adapted from CLIMATOL (Guijarro, 2011). 

Our paper is organized as follows: first, Section 2 describes the main 

models and procedures of HOMER. The methodology of characterizing urban 

trends (UBRIS) and the main properties of ACMANT are also presented there, 

together with a discussion. An application of HOMER on Wien temperature 

series is then shown in Section 3. 

2. HOMER main procedures 

In this section, we will focus on functions used during the homogenization 

process: statistical tools for pairwise detection (2.1), two factor model for joint 

detection and correction (2.2), UBRIS model for urban trend bias assessment 

(2.3), ACMANT functions (2.4). Usefulness of each task is discussed in 2.5, and 

a workflow of tasks is provided. 

2.1. Detection of changes in pairwise series (univariate detection) 

2.1.1. Model 

Let Y be the annual or seasonal difference between two series. We model 

Yi,i=1,…,n as a series of Gaussian variables of constant variance ², but with 

varying mean µ from sub-period to subperiod. The number and positions of 

change-points are unknown. 

Let k the number of changes and 1,2,…,k their positions. We denote 

K={1,…,k} the set of changes in the series. At most cases old data are adjusted 

relative to the modern data, and for simplicity o=0 is fixed at k+1=n. Further 

notations are: 
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Changes in the mean are               for                

Maximum likelihood estimates of the  j’s are straightforwardly given by 

      . For a given number k, we wish to maximize the likelihood, which is 

equivalent to minimize deviance D: 
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2.1.2. Dynamic programming 

The naive way to minimize deviance D is to consider every combination of the 

position of the change-points. But the number of hypotheses rises very fast with 

n, the length of the series, and k, the number change-points. When detection is 

performed for change-points in a normal sample, a DP algorithm can be used 

(Lavielle, 1998; Hawkins, 1972, 2001; etc.). Computation time then becomes 

only linear in k and quadratic in n. It is based on a recursion between optimal k 

and k–1 solutions. DP allows us to find an optimal solution without computing 

all possibilities. For k changes, the problem is to minimize:  
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The solution is given by the following recursion: 
 

            for         ,  

 

 for each           , let us compute  

                               for        , 

 for each      value, let us keep in table        the h value that corresponds 

to the minimum of       , 

 the change-point estimates are given by:       , and for 

            we get              
  . 

 

2.1.3. Selecting the number of changes. 

The fit of the change-point model increases monotonously with k (     for 

   ). The model selection is guided finding the most parsimonious model that 

gives a “good” explanation of data vector Y. Several penalized likelihood criteria 

can be found in the literature. In the latest version of HOMER, we take the 

advantage of the uniseg procedure from the R package which uses the modified 

BIC criterion of cghseg. As in Schwarz’s BIC (1978), Zhang and Siegmund 

approach this problem by deriving an asymptotic approximation of the Bayes 

factor, using a uniform prior on change-points location (among other 

hypotheses). 

The procedure is as follows: for each value of k, DP allows us to select the 

optimal position for the k change-points                     . For each k value, 

MBIC(Y; k) is computed: 
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where  denotes the Gamma function. The model selection consists in 

selecting the number of change-points k that minimizes MBIC: 
 

 select k
*
 such that k

*
=Argmink(MBICk(Y;k)). (4) 

 

This criterion is more complex than the classical BIC or C&L criteria used 

in PRODIGE, but does not require any user-chosen shrinkage parameters like in 

Tibshirani (1996), Birgé and Massart (2001) or Gu and Wang (2003). The first 

term in Eq. (3) corresponds to a likelihood ratio term, the subsequent ones are 

the penalty. One has to note that the penalty depends on n, k, but also on the 

closeness of the changes via the sum of log(nj) term: close change-points are 

more penalized. Simulations (not shown here) show that MBIC criterion is 

slightly less powerful than the C&L, but less sensitive to small autocorrelation 

that still might be present in the pairwise comparisons. 

Standard deviation of the residuals is then estimated by: 

 

     
 

    
          

 
  

         

    

   

  
 

    
          

    

   

                 

 

We will see in practice that this estimation of noise is very useful, since 

detection power is directly related to the signal (i.e., amplitude of changes) to 

noise ratio. Smaller values of noise ensure more accurate detection. 

2.2.  ANOVA: a two-factor model for joint-detection and correction 

2.2.1. Model 

Let us consider p series belonging to the same climate area in such a way that all 

the series are affected by the same climatic conditions at the same time. This 

assumption is realistic when considering monthly or annual observations of the 

same geographical region. We assume that each series of observations is the 

sum of a climatic effect, a station effect, and random white noise. This is a 

simple two-factor analysis of variance model without interaction, and we will 

denote it by ANOVA in the following. 

Let X be a matrix of n observations Xij on p series where i =1,...,n is the 

time index and j =1,...,p is the station index. Let kj be the number of change-

points, let 1,j,2,j,…,       be the positions of these kj change-points. Let 

Kj =(1,j,…,      ) be the set of change-points for series j. To simplify the 
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notation, we set again o,j=0, and          , so that Kj becomes  

                       . 

The station effect is constant if the series is homogeneous. If not, the 

station effect is constant between two shifts. In the following, level denotes a 

homogeneous sub-period between two discontinuities of a given series. For a 

series j with kj breaks, let Ljh be the hth level (h =1,...,kj+1), thus Ljh is the 

interval:                     Note that the level h for the observation Xij depends 

both on time i and station j: when necessary it will be written h(i,j). 

Let i be the climate effect at time i and  jh the station effect of station j for 

level Ljh. If there are no outliers, the data are described by the linear model: 

 

                                                                         

 

One parameter of the model can be freely chosen and it is done with 

introducing the condition   
 
     , so that µi are defined as climate 

anomalies. 

The number of independent parameters of the model without 

discontinuities is n+p –1. 

Examples: 

 

 No break in series 1:                     
 

 One break at io for series 2:  
                              
                              

      

 

 

Some further characteristics of the model:  
 

a) Estimation can be performed with missing data with the following 

conditions: there should be at least one non-missing value per year on 

the whole network (estimation of the µ’s) and one non-missing value 

between two breaks for each subperiod on each series.  

b) Climate signal is treated as a fixed parameter so that no assumption is 

made about the shape of this signal. 

c) Conditionally to the climate signal, the disturbances are considered 

independent. 

d) Local variabilities are very similar, which leads to the expression of 

Var(X). 
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Note that conditions c) and d) are approximately true within the same 

climatic region. Small spatial autocorrelation may be observed in the 

residuals. 

So far, this model has been used in PRODIGE and ACMANT mainly for 

correction purposes – although Caussinus and Mestre (2004) propose some clue 

to use it for detection. It has been shown that the inclusion of ANOVA 

correction improves significantly the results of other methods participated in 

HOME blind test experiments (Domonkos et al., 2012b). Using HOME 

benchmark and the set of break-points detected using for example standard 

normal homogeneity test (SNHT), correcting the inhomogeneities by ANOVA 

allowed a much better homogenization than the standard SNHT correction 

method. We will see below that this model can be used for detection as well, 

allowing for joint detection of a whole set of series. 

2.2.2. Joint-detection 

The change-point model Eq. (6) can theoretically be used for joint detection of 

the changes on the whole set of series. However, due to the introduction of 

factor µ, the classical DP algorithm cannot be applied (Caussinus and Mestre, 

2004) and until recently, joint segmentation was considered computationally 

intractable. Adapted algorithms allow us to solve this problem in a reasonable 

computing time. Picard et al. (2011) rely on two “computational tricks”. The 

first one solves the problems caused by segmentation of multiple series. Let us 

set all i = 0. Since DP complexity is quadratic with the size of the data, just 

considering segmentation of the   factor may become problematic when 

considering multiple series. Picard et al. (2011) propose a “two-stage” DP 

algorithm that significantly reduces the computation time. Briefly, the first stage 

consists in finding all optimal solutions for each  j factor separately, from k = 1 

to kmaxj. The second stage uses outputs from the first stage to optimally allocate 

the number of segments to each factor  1,..., p, in order to maximize the overall 

fit. The model selection is provided by a multivariate version of Zhang and 

Siegmund criterion derived in Picard et al. (2011). 

The second strategy consists in iteratively estimating µi and the 

segmentation of factor  : at step (s+1), µi is estimated by: 

 

   
     

 
 

 
    

 

   

          
   

                                                  

 

where the segmentation of factor   is updated using two-stage DP on 
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2.2.3. Correction and reconstitution of missing data 

Once segmentation has been achieved, correction can be computed. Estimates 

          are used in the following way: let     
 be the last level of series j, and 

     
 the corresponding estimation of the station effect. Then, for every         

          , corrected Xij (denoted by Xij
*
) is given by: 

 

   
                                                                                     

 

Note that the model allows the imputation of missing data and the 

correction of outliers. For any missing data or outlier (i,j), the imputation is 

naturally given by                    . Since the two-factor model takes into 

account the change-points in the series, this allows an unbiased reconstitution of 

missing values, contrary to classical regression or interpolation methods.  

2.3. Characterization of urban trends: UBRIS 

UBRIS (urban bias remaining in series) procedure allows us to characterize 

artificial trends – in most cases related to urbanization, which are sometimes 

present in the climate series. UBRIS works jointly analyzing time series with 

potential artificial trends (“urban”) and without potential artificial trends 

(“rural”). This is an improvement compared to traditional urban trend 

characterization, where rural and urban series are homogenized separately, 

before being compared (Peterson, 2003 for example). This requires a large set of 

both rural and urban series, which may be problematic on earlier periods for 

example. 

UBRIS relies on an extension of model Eq. (6). Let us assume that the 

      series are free of urban trends, and that for      , an additional 

trend may affect the series. 
 

                                                       
 

                                                                         
 

                   

 

Practically, UBRIS model is slightly more complicated than Eq. (9), since 

trend may not affect the whole period of the series. For computation, at least one 

series has to be free of trend, otherwise there is no unique solution when 

estimating climate factor µ and trend term . Estimation is performed via 

ordinary least squares. Standard student t-test allows us to test significance of 

the trends (j). UBRIS ensures a posterior estimation of those additional trends. 
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Prior to UBRIS analysis, HOMER has to be run in order to detect abrupt 

changes. 

UBRIS relies on the knowledge of climatologists who decide a priori 

which series may or may not be affected by urban trends. This human expertise 

is important. If series corrupted by artificial trends enter the “rural” group, they 

will bias the estimates of climate factor µ and trend term .  

 

2.4. ACMANT 

ACMANT (adapted caussinus mestre algorithm for homogenizing networks of 

monthly temperature data, Domonkos, 2011) was developed from PRODIGE 

during the HOME period. However, in contrast with PRODIGE and HOMER, 

ACMANT is fully automatic and it applies reference series built from 

composites for time series comparisons. The other main novelties of ACMANT 

are  i) it applies pre-homogenization in a way that the double use of the same 

spatial connection is excluded, ii) it coordinates the operations on different time 

scales (from multiannual to monthly) in a unique way.  

2.4.1. ACMANT bivariate detection 

Observed temperature data often have inhomogeneities with significant seasonal 

cycles in the resulted bias (Drogue et al., 2005; Brunet et al., 2011; etc.). 

Therefore, change-points are searched by fitting step-functions to two annual 

characteristics, i.e., to annual means (Y) and to the range of the seasonal cycle 

(R) in relative time series, that is, candidate series minus reference series. In 

HOMER, the reference series are the climate signals (µ coefficients in ANOVA 

model) or, with other words, the reference series for ACMANT detection are 

always pre-homogenized. Adapting notations of Section 2.1. to R series, 

ACMANT detection procedure aims at minimizing: 
 

              
 

  

        

   

   

 
 

 
        

 
                                  

 

The ½ factor in Eq. (10) was chosen empirically. Solutions with common 

timings of change-points on Y and R are considered only, so that the standard 

DP algorithm applies the cost function QYR. In order to set the number of 

changes, the C&L criterion is used both in original ACMANT and in its 

adaptation to HOMER: 
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The selection rule is: select k
*
 such that k

*
=Argmink(Ck(Y)). In many cases, 

this procedure will allow us to detect changes hardly noticeable in annual 

means. 

2.4.2. Month of change specification 

Another feature of ACMANT that has been included in HOMER is its procedure 

for finding the most likely month of a change-point. If the precise month of the 

change is not known, since detection is mainly performed on annual indices, the 

default is to validate the break at the end of the year. At the end of the 

homogenization procedure, a more precise detection is made, using the monthly 

series serially (that is, the sequence of January, February, March, etc, for each 

year). Both candidate monthly series and reference series (computed from 

monthly µ factors) are deseasonalized; when analyzing change j, standard DP 

algorithm is run on series of differences on interval [j-1,j+1]. Algorithm allows 

us to change the position of the change in a range of +/–2 years (in the original 

ACMANT the range is +/–12 months). Alternatively, the monthly precision can 

be determined by metadata. In HOMER, a flag marks whether a detected break 

is validated by metadata or not. 

2.5. Discussion 

The different methods contributing to the operation of HOMER have their own 

strengths and weaknesses. PRODIGE relies on a pairwise strategy for detection 

of the changes.  A candidate series is compared to its neighbors in the same 

climatic area by computing series of differences. These difference series are then 

tested for discontinuities. On such a difference series without metadata, the 

detected changes may have been caused by the candidate or the neighbor. But, if 

a detected change-point remains constant throughout the set of comparisons of a 

candidate station with its neighbors, it can be attributed to this candidate station: 

this is called “attribution phase”. There are two advantages in this approach. 

First, we avoid creating composite reference series averaging non-homogeneous 

series. Second, detection relies on an efficient univariate detection procedure 

whose level and power are well controlled. But, because of the randomness of 

the difference series, the change-points of weak amplitude will lead to less 



 58 

accurate detection and sometimes no detection at all for some comparisons (in 

particular in the case of simultaneous breaks). At most cases, however, the 

induced ambiguity can be removed by considering the whole set of comparisons 

and using the metadata archives of the climate stations when available, as well 

as the knowledge of climatologists. This break-points detection phase has been 

considered the main drawback of PRODIGE, since it has to be performed 

manually, a process which may be tedious and time consuming, thus very 

difficult to apply to a large dataset and requiring a high level of regional climate 

knowledge and homogenization expertise. 

To overcome the detection problem, an alternative approach is obtained by 

using the overall two-factor model, that allows the analysis and correction of a 

whole set of series (Section 2.2.). The multiseg (cghseg package) function 

determines the proper number of change-points using the MBIC criterion. This 

detection process with DP is quick and automatic. However model selection in a 

multivariate framework is a complex task, and the power of this procedure is 

sometimes lower than expected. In HOMER, function multiseg allows the 

automate attribution of the changes to a large extent, and in some cases the 

pairwise detection allows us to put into evidence changes that were not detected 

by multiseg. 

ACMANT helps finding changes with a strong seasonal behavior in 

temperature series. In many cases, changes in observation conditions 

(location, sheltering, etc.) may have effects of opposing signs regarding the 

seasons, for example a positive effect in summer and a negative effect in 

winter. Such inhomogeneities are often hardly detectable on annual means, 

but clearly detectable with the ACMANT bivariate detection. A useful 

additional feature of ACMANT is the detection with monthly preciseness. 

The structure of HOMER has built in a way that it intends to exploit 

optimally the positive characteristics of the contributing methods.  The tasks 

flow chart of HOMER is given in Fig. 1. 

Detection is an iterative process. The initial detection phase usually reveals 

the most obvious changes which are corrected. Analyzing the result of this 

correction allows us to create an updated set of detected changes on a network. 

The joint detection is accompanied by the pairwise detection for allowing the 

use of metadata and for checking the results. The ACMANT detection follows 

the first cycle of detection and correction, since ACMANT detection needs pre-

homogenized reference series. Note that correction is always performed on the 

initial data, simply by updating the set of the validated change-points before 

running ANOVA. 

The process ends, whenever pairwise, joint-detection, and ACMANT 

bivariate detection find no additional changes on corrected series. In practice, 

the user may tolerate some pairwise comparisons still exhibiting unattributed 

isolated breaks, probably due to 1st kind errors. 
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Fig. 1. Tasks flow chart of HOMER. 

 

3. Case study 

3.1. Homogenization using HOMER 

A set of 13 series from Wien, Austria and its surroundings is provided by 

Zentralanstalt für Meteorologie und Geodynamik (ZAMG). Stations marked 

with (r) are considered rural: Fuchsenbigl
(r)

, Gross-Enzersdorf
(r)

, 

Klosterneuburg, Langenlebern
(r)

, Schwechat, Wien-Innere-Stadt, Wien-

Laaerberg, Wien-Mariabrunn
(r)

, Rosenhügel, Rathauspark, Stadlau, Wien-

Unterlaa, Wien-Hohe-Warte (Fig. 2). 

Create data files 

Grab metadata 

CLIMATOL checks 

Fast quality control 

 

1. Pairwise detection + joint detection (raw data) 

sets the detected change-points on input data (use also metadata) 

2. Correction+automatic pairwise control of corrected series 

modify the set of detected change-points and run the correction again 

if necessary 

3. ACMANT bivariate detection 

update the set of detected change-points 

4. Correction+automatic pairwise control of corrected series + joint 

detection on corrected series 

5. Update the set of detected change-points + correction, etc. 

Repeat (3) (4) until corrected series seem “clean” (usually 2–3 cycles) 

 

 

Assess the month of 

change 

Final correction 
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Fig. 2. Map of Wien series 

 

 

 

 

Let us take Stadlau as an example: results of pairwise detection are given in 

Fig. 3. A quick examination of pairwise comparisons puts into evidence changes 

in 1969 or 1970, 1984, 2001 or 2002, and potential additional changes in 1953, 

and 1979. 

The second step consists in running cghseg joint-detection (multiseg 

function). Combining pairwise and joint detection allows a quick attribution of 

the changes: 1954, 1969, 1984, and 2002 (Fig. 4). Note also the good agreement 

in the amplitudes of the changes detected in pairwise comparisons (triangles are 

black for breaks detected on pairwise annual series, blue for winter, and red for 

summer) and joint detection (green  ). However, the automatic joint-detection 

is not perfect. On Wien series, multiseg tends to detect a change around 1985-

1987, which is not supported at all by pairwise comparisons, and thus, it is 

rejected manually by the user (large red cross in the same year). During 

estimation of µ and segmentation  , multiseg iterative algorithm has wrongly 

attributed a climatic feature to the   factor. Furthermore, the rather obvious 

change in 1979 (when considering pairwise comparisons) was not detected by 

multiseg. User has to validate it manually using the graphical user interface. 

When clicking on the window, the user adds red crosses to remove or validate 

breaks. The y axis is not important, only the date (x axis) is taken into account. 

Clicking on a date selected by multiseg (symbol  is present) removes the 

corresponding date, while clicking elsewhere validates a new change-point. 

Metadata allow us to validate changes in 1980 (relocation of the weather station) 

and 2002 (changes in instrumentation). There are also sufficient statistical clues 

to validate the other changes, even if metadata are lacking. 
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Fig. 3. Screen capture of HOMER outputs: Stadlau series compared to its neighbours. 

Pairwise comparison are sorted according to the increasing values of the noise standard 

deviation (upper left corner of each plot), computed using Eq. (5). For clarity reasons, 

only 6 comparisons with the smallest noise are shown. 

 

 

 

After a correction step, ACMANT bivariate detection confirms the selected 

changes on Stadlau series (not shown). The raw and corrected Stadlau series 

after the final correction are shown in Fig. 5 (upper panel for the raw, lower 

panel for the corrected series). 
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Fig. 4. Screen capture of HOMER outputs: date (x axis) and amplitude (y axis) of change-

points detected on the whole set of pairwise comparisons: annual comparisons (black), 

winter (blue) and summer (red) triangles. Joint detection results are pointed as green  

symbols. Red crosses mark user’s interventions. 

 

 
  

Fig. 5. Raw (up) and corrected (down) series of Stadlau. 
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Pairwise comparison of corrected series is characteristic of a good 

homogenization (Fig. 6). 

 

 
 

 

Fig. 6. The same as Fig. 3, but for the corrected Stadlau series compared to its corrected 

neighbors. The list of pairwise comparisons changed a little bit, since estimates of noise 

standard deviation slightly varied. 

 

 

Another example of the effect of correction is shown for Rathauspark series 

(Fig. 7 upper panel for the raw, lower panel for the corrected series). 
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Fig. 7. Raw (up) and corrected (down) series of Rathauspark. 

 

3.2. UBRIS characterization of urban trends 

Running UBRIS allowed us to estimate jointly the effect of abrupt changes and 

the potentially significant urban trends on Wien series. UBRIS procedure is run 

in the following way: a first estimation allows us to put into evidence some 

urban series having no additional trend (large p values of the Student t-test for 

corresponding ). Those series are included into the rural set, and trends are re-

estimated. At the end of the process, central temperature series exhibit no 

significant urban trends at level 0.05. Only suburban series (Wien Laaerberg, 

+0.10°C/decade, Rosenhügel +0.08°C/decade) exhibit significant positive trends 

(with student t-test p values lower than 10e–4). Corrected series of Laaerberg, 

with and without urban trend, is shown in Fig. 8. 
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Fig. 8. Homogenized series of annual mean temperature of Laaerberg, with urban trend (series 

of  symbols) and removed urban trend(solid line).  

 

 

 

These results are consistent with those obtained by Böhm (1998), who used 

a more traditional homogenization technique, and analyzed the trends of the 

series of differences of central series minus mean of the rural series. Note that 

those conclusions may not apply to other cities, since Wien population is 

remarkably stable since 1950 for example. UBRIS model should be run on each 

case study. 

Additionally, Klosterneuburg series (not shown here) exhibits a 

remarkable feature, a highly significant decreasing trend for summer months 

(– 0.02°C/decade). This site should be investigated for a potential shadowing 

effect. 

4. Conclusion and perspectives 

This paper presents a set of homogenization procedures integrated in the new 

software package HOMER (available at www.homogenization.org). This 

package was built relying on the results of the 4-year long COST-HOME 

project, so it implements the most significant findings achieved by its different 

working groups. The evolution of PRODIGE, combined with ACMANT and 

CLIMATOL procedures and supported by the R-package cghseg into HOMER 

provides a state-of-the-art homogenization tool for monthly to annual data 

http://www.homogenisation.org/
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applicable to most essential climate variables. However, HOMER shall not be 

considered as an automatic method, since manual input is still required in order 

to control the homogenization process.  

HOMER is recommended by the COST Action ES0601, together with 

Craddock (1979), MASH (Szentimrey, 2007), USHCN (Menne and Williams, 

2005), ACMANT (2011) software that got valuable results during COST 

benchmark experiments (Venema et al., 2012). 

The addition of UBRIS procedures adds value to the package since 

artificial trends have remained a problematic issue in homogenization.  

Further development planned in this work is using a generalized least 

squares estimation for the correction model, in order to take into account the 

spatial dependency of the residuals. Although this technique is expected to have 

a weak effect on the correction estimates themselves, it may provide more 

accurate confidence intervals. A Bayesian criterion for automatic attribution of 

changes detected in pairwise comparison is also in development. 
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