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Abstract—Climate change is expected to exert considerable influence on natural 
ecosystems all over the world, though not all ecosystems are equally vulnerable to the 
changes. In this paper, an assessment framework of vulnerability of natural habitats to 
future climate change is presented, examining Hungary, Central Eastern Europe as a case 
study. A climate change impact, adaptation and vulnerability (CCIAV) assessment 
following IPCC traditions was applied, which operationalizes the concepts of exposure, 
sensitivity, potential impact, adaptive capacity, and vulnerability for natural ecosystems. 
Potential impact was quantified for the periods 2021–2050 and 2071–2100 based on 
regional climate models ALADIN-Climate and RegCM. Although the potential impact of 
future climate change was predominantly negative on the most climate sensitive forested 
habitat types of Hungary, for some of the grassland types we experienced positive 
predicted responses. Loess steppes and annual saline vegetation may thus partially benefit 
from climate change. The most climate vulnerable Hungarian regions are the 
Transdanubia (West Hungary) and the Northern Mountains (North Hungary) in terms of 
natural vegetation. 
 
Key-words: climate vulnerability assessment, potential natural vegetation, habitat 

distribution model, global climate change, potential impact, habitat, 
prediction 

  



 

394 

1. Introduction 

Vegetation is highly vulnerable to the predicted climate change both globally 
(Berry et al., 2014) and in the Carpathian Basin (Kovács-Láng et al., 2008, 
Czúcz, 2010; Mátyás et al., 2010; Czúcz et al., 2011b; Móricz et al., 2013). By 
2080, half of the 1350 European plant species studied by Thuiller et al. (2005) 
will become endangered by climate change. According to Hickler et al. (2012), 
the impact will be so great that also forestry and nature conservation will be 
significantly affected. It has also been proven that climate change detected 
during the last decades affected the distribution of species and survival of 
populations (Parmesan, 1996; Walther et al., 2002; Moore, 2003; Parmesan and 
Yohe, 2003; Edwards and Richardson, 2004). 

Based on the classification of Hughes (2000), Walther et al. (2002), 
Rosenzweig et al. (2007), the impacts of, and responses to, climate change are: 
1) physiological and morphological changes; 2) phenological changes; 3) 
changes in the distribution; 4) changes in the composition and internal 
interactions of communities (including the food network), ecosystem structure 
and dynamics (including succession), ecosystem stability, ecosystem services; 5) 
genetic adaptation; 6) extinction. In this paper, we study changes in the potential 
distribution (3) of natural habitats, which expresses potential impact of climate 
change. 

For assessing vulnerability to climate change, several methodological 
/conceptual frameworks have been developed (Füssel and Klein, 2006; Polsky et 
al., 2007; Cheng, 2013; Fritzsche et al., 2014), including the climate change 
impact, adaptation and vulnerability (CCIAV) assessment framework based on 
the terminology and concept of the Intergovernmental Panel on Climate Change 
(IPCC) as defined for the 3rd and 4th assessment reports (Parry and Carter, 
1998; Carter et al., 2007). The framework is sometimes called climate impact 
and vulnerability assessment scheme (CIVAS, e.g., Csete et al., 2013). The 
CCIAV assessment adapted in this paper for natural habitats is a 2nd generation 
vulnerability assessment according to the classification by Füssel and Klein 
(2006), and is applied in several fields and regions (e.g., Allen Consulting 
Group, 2005). The implemented vulnerability concept is compatible with the 
risk concept of the 5th assessment report of IPCC (Hoffmann et al., 2017). 
Although based on the three main components of the CCIAV (exposure, 
sensitivity, and adaptive capacity), the concept of vulnerability scoping diagram 
(VSD) of Polsky et al. (2007) and vulnerability framework of Turner et al. 
(2003) differ, since they suggest more permissive combination logic of the three 
components than the CCIAV concept implemented in this paper. 

According to the framework, vulnerability to climate change is measured as 
the degree to which geophysical, biological, and socio-economic systems are 
susceptible to, and unable to cope with the adverse impacts of climate change 
(Schneider et al., 2001). The vulnerability of an object is determined by the 
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potential impact of climate change and by the capacity of the object to adapt to 
the changing conditions. Potential impact is further determined by the exposure 
of the object to climate change, as well as by its sensitivity (Fig. 1). This 
framework can be applied to any object exposed to climate change. In our case, 
the objects include both natural and semi-natural ecosystems (habitat types). 
They have several relevant physical and biological properties determining their 
sensitivity, as well as adaptive capacity, which dependencies enable us to 
explore the climatic vulnerability of ecosystems using a modeling approach 
(Czúcz et al., 2009, 2011a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Methodological flowchart of our research. Elements of climate change impact, 
adaptation and vulnerability (CCIAV) concept are shadowed, initial letters used 
hereinafter as abbreviations are typed bold, and equations/sources of calculation of 
sensitivity, potential impact, adaptive capacity, and vulnerability are also marked. For 
equation numbered with an initial L, please refer to Lepesi et al. (2017, in this issue, 
Section 2.2 and 2.3). 
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With respect to natural habitats, we define exposure (E) as the projected 
degree of change in the bioclimatic variables at a given location for a specific 
time horizon (Table 1). A separate study in this journal issue deals with the 
determination of climate sensitivity (S) for our calculations (Lepesi et al., 2017, 
in this issue, Section 2.2), where we defined S of a habitat type as the degree to 
which climate-related factors influence the natural distribution of the habitat. In 
our study, exposure and sensitivity were directly determined from climate data 
and habitat distribution models, respectively (Fig. 1). Although the sensitivity of 
a habitat is best represented by the multivariate habitat distribution model itself, 
sensitivity to a certain exposure dimension, i.e., to climate in our case, can be 
characterized by its partial derivatives for communication purposes. 
Nonetheless, potential impact (P) measurement should be based on the original 
multivariate models. P is expressed by the difference of predicted probabilities 
of presence given the climate of the reference period and under climate change 
scenarios in a given location (logically, within the occurrence locations of the 
habitat). Adaptive capacity (A) is a relatively independent element of the 
modeled system, which should always be treated and communicated separately 
from the main impacts (Hoffmann et al., 2017). We defined A as the capacity of 
the site and its landscape context to support successful adaptive processes for the 
studied habitat, which we describe in detail in a separate study in this issue 
(Lepesi et al., 2017, in this issue, Section 2.3). While exposure is related to 
changes in climatic system, sensitivity and adaptive capacity is attributed to the 
natural/physical environment (Fritzsche et al., 2014) and the inherent 
characteristics of the habitat. Vulnerability (V) is defined as the combination of 
potential impact and adaptive capacity. In this paper, we focused on the 
detrimental effects of climate change only and interpreted vulnerability in case 
of a negative impact only. The term 'vulnerability' can be resolved in several 
ways (O’Brien et al., 2007). It is context-specific, and the factors that make a 
system vulnerable depend on the nature of the system and the type of effect in 
question (Brooks et al., 2005; Fellmann, 2012). 

In this paper we aimed at 1) implementing the CCIAV scheme of IPCC to 
natural habitats; 2) predicting the potential impact of future climate change on 
the distribution of the most climate sensitive climax and subclimax natural 
habitats of Hungary; 3) assessing the vulnerability of the habitats to future 
climate change according to two prediction periods and two climate models. 
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Table 1. The key elements of the CCIAV assessment framework and the definition and 
practical implementation of them followed in this study 

Key element Abbreviation Definition Dependence 

Exposure E degree of change in the bioclimatic 
variables at a given location for a 
specific time horizon 

timeline, climate 
model, location 

Sensitivity S degree to which climate-related 
factors influence the natural 
distribution of the habitat 

habitat type 

Potential impact  P difference of predicted probabilities 
of presence given the climate of the 
reference period and under climate 
change scenarios in a given location 

habitat type, 
timeline, climate 
model, location 

Adaptive capacity A capacity of the site and its landscape 
context to support successful 
adaptive processes for the studied 
habitat 

habitat type, location 

Vulnerability V combination of potential impact and 
adaptive capacity (only negative 
impact considered in this study) 

habitat type, 
timeline, climate 
model, location 

Overall 
vulnerability of 
natural vegetation 

  maximum of the V of the most 
climate sensitive habitats at each 
location  

timeline, climate 
model, location 

 
 
 
 
 
 
 
 

2. Materials and methods 

2.1. Potential impact 

Our case study is based on our previous findings on potential distribution of 
climax and subclimax habitats of Hungary in the reference period (1977–2006) 
and two prediction periods (2021–2050, 2071–2100), according to two regional 
climate models (ALADIN-Climate 4.5; Csima and Horányi, 2008; RegCM 3.1; 
Torma, 2011; Torma et al., 2011). Please refer to Somodi et al. (2017) and Bede-
Fazekas (2017) for details of the data used and the habitat distribution models 
applied. Based on expert decision, a minimum threshold of relative importance 
of climate predictors was chosen to select the most climate sensitive habitats. 
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Further analyses were conducted for only on these 12 selected habitats. Please 
refer to Lepesi et al. (2017, in this issue, Section 3.1) for further details of the 
most climate sensitive habitats. The presented vulnerability assessment 
framework can, however, be applied to any habitat/species whose potential 
distribution can be predicted to a reference and a future period, based on any 
kind of environmental predictor data and any kind of modeling approach. 

The first step to assess vulnerability is to quantify the potential impact (P) 
of climate change on the distribution of the climate sensitive habitats. P was 
defined as the difference between the probability of potential presence of the 
habitat in the future and that in the reference period (Eq. (1)), where f is the 
model function that returns predicted probability based on hydrological (H), 
topographical (T), edaphic (E), and climatic (C) predictors. To assess P, habitat 
distribution models (Somodi et al., 2017) were applied to the reference and 
future environmental settings given both time periods and climate models 
separately. Thus, P is available in four combinations for each of the habitats 
investigated (2 periods × 2 climate models). 

 

 = , , , − , , ,  (1) 

 
Since the codomain of f is the interval of [0; 1], P ranges from –1 to 1 with 

–1–0 representing positive impact of climate change on the habitat, while 0–1 
represents adverse impact. This representation was chosen so that the target of 
this study, the negative climate impact receives large values. 

2.2. Vulnerability 

Vulnerability (V) depends both on P and adaptive capacity (A). The larger 
the P, the more vulnerable the habitat. This is in accordance with the core of the 
CCIAV concept: systems that are highly exposed, sensitive, and less able to 
adapt are vulnerable (Allen Consulting Group, 2005). High V can be mitigated 
with high A. The operationalization of the adaptive capacity concept is detailed 
in Lepesi et al. (2017, Section 2.3) in this issue. Codomain of A is the set of {0; 
1; 2; 3; 4}, where 4 indicates the highest capacity to adapt to changing climate. 
Hence, the lack of adaptive capacity is defined as 5–A. During our vulnerability 
analysis, we concentrated on the detrimental effects of climate change only, 
therefore only positive Ps (unfavorable climate impact) were considered 
(Eq. (2)). 

 

 = 0,																								 			 ≤ 0,∗ 5 − ,				 			 > 0.  (2) 
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This formula ensured that lower A and higher negative impact (higher P) 
lead to higher V. Range of V is the interval of [0; 5]. Values were calculated 
separately for climate models and periods in the future, since potential impact 
and vulnerability can vary over time (i.e., they are dynamic) by climatic stimuli 
(Smit and Wandel, 2006; Adger et al., 2007; Fellmann, 2012). High level 
aggregated indicators for the two studied time periods and the two climate 
models, i.e., the overall vulnerabilities ( ) of natural vegetation were estimated 
as the maximum of the V of the most climate sensitive habitats (Lepesi et al. 
2017; in this issue, Section 3.1). This applied to each location where one or 
more of such habitats are present according to the MÉTA habitat database 
(Molnár et al., 2007; Horváth et al., 2008) in the reference period. To be 
consistent with the input data, all the layers of the vulnerability assessment, 
including the maps of P, were aggregated (upscaled) to the horizontal resolution 
of the climate models (0.1°) by calculation of the maximum values within the 
coarse cells. All calculations were performed in the R statistical programming 
environment (R Core Team, 2017). 

3. Results 

3.1. Potential impact of climate change 

As expected, the potential impact of future climate change is predominantly 
negative on the twelve most climate sensitive habitats (Table 2). Sensitive 
forests are likely to be negatively affected (Fig. 2). The exception is L5 (closed 
lowland steppe oak woodlands), where climate models highly disagree regarding 
the outcome. A similar pattern emerged for forest steppe meadows (H4). Results 
for these two habitats have to be handled with care therefore. The two wetland 
types are likely to benefit at least partially from climate change. The most likely 
reason for this is an increased winter precipitation with climate change. Loess 
steppes (H5a) also have the potential to benefit from climate change. A benefit 
is especially striking for annual saline vegetation (F5), which is in good 
accordance with its adaptation to soil salinity, typical for arid climates (Fig. 3). 
Potential impact maps are available at NATéR (2017). 
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Table 2. Potential impact (P) of climate change on the twelve most climate sensitive habitats 
(Lepesi et al. 2017; in this issue, Section 3.1) ordered according to their sensitivity. The table 
summarizes the spatial pattern of potential impact within the country (–: negative, 0: neutral, 
+: positive). We also indicate if any conflict between predictions of climate models has been 
identified, and if a change in trends was discernible between the two periods. Habitats are 
encoded according to Bölöni et al. (2011). For actual distribution of the habitats, please refer 
to Bölöni et al. (2008, 2011) and Molnár et al. (2008). 
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Fig. 2. Potential impact (P) of climate change to existing stands of beech forests 
(K5_K7a). Subfigure titles refer to the climate model and the future period in relation to 
which P was examined. Unfavourability of P increases from green to red. 

 

Fig. 3. Potential impact (P) of climate change to existing stands of annual salt pioneer swards 
of steppes and lakes (F5). Subfigure titles refer to the climate model and the future period in 
relation to which P was examined. Unfavourability of P increases from green to red. 
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3.2. Vulnerability of habitats 

The estimated vulnerability to future climate change has high variance across the 
habitats, periods, regional models and regions (Table 3). An agreement between the 
two models indicates robust results. Some habitats seems to be consequently 
vulnerable (N13) or vulnerable in most of the periods/models/regions (L2a_L2b, 
K5_K7a, K1a_K2_K7b; Fig. 4), while others may not be remarkably vulnerable 
(F5, B1b, H5a, H4, Fig. 5). Although RegCM shows higher V in general, long-term 
(2071–2100) vulnerability of natural habitats is consistent given the two climate 
models. Natural vegetation appears most vulnerable in Western and Northern 
Hungary, as well as in the easternmost corner of Hungary. This is probably in 
connection with forests being the dominant natural vegetation there. Models 
disagree, however, in the degree of short-term (2021–2050) V. 

 
 
 
Table 3. Vulnerability (V) to climate change of the twelve most climate sensitive habitats 
ordered according to their sensitivity. The table summarizes the spatial pattern of 
vulnerability within the country (0: low, --: medium, –: high; relative to the highest 
value). Habitats are encoded according to Bölöni et al. (2011). For the name of habitats 
please consult to Table 2. 

Habitat code 2021–2050, Aladin 2021–2050, 
RegCM 

2071–2100, 
Aladin 

2071–2100, 
RegCM 

N13 – – – – 

LY2 variable, mainly 0 
and --, – in the 
South 

variable, mainly 0 
and --, – in the 
South 

variable, mainly 0 
and --, – in the 
South 

variable, mainly 0 
and --, – in the 
South 

F5 0 Variable 0 0 

K5_K7a -- 0 -- -- 

B1b 0, -- and – in the 
West 

0, -- and – in the 
West 

0, -- and – near 
Lake Balaton 

0, -- and – in the 
West 

L5 0 Variable 0 0, -- and – in the 
East 

H5a 0 variable, mainly 0 
and -- 

0 0, -- in the West 

L2x_M2 0, sporadically -- Variable 0, sporadically -- variable 

L2a_L2b –, 0 and – in the 
Southwest 

– in the North, 0 in 
the Southwest 

–, 0 and – in the 
Southwest 

–, 0 and – in the 
Southwest 

H4 variable, mainly 0 
and -- 

0 0 variable, mainly 0 
and -- 

J1a 0, -- and – in the 
East and Southwest 

0 0, -- and – in the 
East and Southwest 

0 

K1a_K2_K7b --, sporadically – 0 and --, – in the 
Northwest 

--, sporadically – --, sporadically – 
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Fig. 4. Vulnerability (V) of the existing stands of beech forests (K5_K7a). Subfigure titles 
refer to the climate model and the future period in relation to which V was examined. V 
increases from green to red. 

 

Fig. 5. Vulnerability (V) of the existing stands of annual salt pioneer swards of steppes 
and lakes (F5). Subfigure titles refer to the climate model and the future period in relation 
to which V was examined. V increases from green to red. 
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Overall vulnerability of the twelve most sensitive habitats is only 
sporadically striking (Fig. 6). Except for the 2021–2050 period according to 
RegCM model, in which case the vulnerable spots are not arranged 
systematically, Western and Northern part of Hungary is more vulnerable than 
the Southeastern one. While Aladin shows a similar overall pattern in case of the 
two prediction period, RegCM shows considerable differences. According to the 
short-term estimations using RegCM, V is lower in Central Transdanubia and 
higher in the Southeast part of the Great Hungarian Plain than at the long term. 
Additionally, to the broader pattern we see an increased V South to Lake Balaton 
and in the North-western areae. South to Lake Balaton, there are closed forests 
at the edge of their environmental tolerance, therefore they are particularly 
vulnerable to climate change. 

 

 

 

 

 

 

 

Fig. 6. Overall climatic vulnerability of the most climate sensitive habitats of Hungary 
( ). Subfigure titles refer to the climate model and the future period in relation to which 

 was examined.  increases from green to red. 
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4. Discussion 

4.1. Discussion of the framework 

The analysis presented shows that the elements of the CCIAV framework can be 
effectively interpreted in, and adapted to, specific sectorial contexts, such as 
natural habitats. The specific solutions (components of A, aggregation schemes 
etc.) can be used as an orientation in further similar studies. Furthermore, the 
entire analysis can be reused as an embedded part of a large multi-sectoral 
CCIAV assessment. 

Potential impact (P) of climate change was estimated, in any location, as 
the difference of future and reference probability of presence (Eq. (1)). In 
methodological terms, calculation of the difference of habitat suitability indices 
(for species) results in the same approach (e.g., Vallecillo et al., 2009). The 
presented method is more detailed than the widespread gain/loss/turnover 
calculations (e.g., Hamann and Wang, 2006; Harrison et al., 2006; Benito 
Garzón et al., 2008; Ogawa-Onishi et al., 2010; Robiansyah, 2017) and their 
aggregated form, the change of climate envelope richness (e.g., McKenney et al., 
2007; Attorre et al., 2011), since it estimates P on a continuous scale instead of 
the binary output of gain/loss method (or the sum of the gains/losses in case of 
the change climate envelope richness. Furthermore, the latter ones can only be 
used in case of binary presence/absence output of distribution models that need a 
threshold often specified unfoundedly and subjectively (Jiménez-Valverde and 
Lobo, 2007; Lobo et al., 2008; Liu et al., 2015). Some researchers present P by 
simply displaying current and future potential distributions side by side (e.g., 
Kriticos et al., 2003; Guo et al., 2016), or partly (e.g., Trájer et al., 2014) or 
fully (e.g., Bede-Fazekas et al., 2014) overlapping each other, instead of 
calculating the difference. Since those methods pass the responsibility to the 
reader to draw conclusions, we suggest calculating and presenting P in a 
difference map, possibly next to the current and future distribution maps 
(similarly to maps presenting potential impacts on environmental factors, e.g., 
Blanka et al. (2013), Mezősi et al. (2014)). Calculation of P, and therefore V, is 
not inextricably linked to climate change (Glick et al., 2011); the proposed 
framework can be applied in, inter alia, land cover change assessments as well. 

The most central part of a CCIAV assessment is quantifying vulnerability 
(V). Although some researchers consider V simply as the inverse of resilience 
(De Wrachien et al., 2008), we argue that V is essentially a (set of) high-level 
aggregated indicator(s), which establish a balanced information over all of the 
individual CCIAV components. The main goal of V is to give a quick but 
insightful overview of the assessment outcomes for decision makers, policy uses 
and the general public. As there are many valid possible policy and decision-
making contexts, there is no single default aggregation formula or V indicator 
either. The construction of a V indicator and the resulting vulnerability map 
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highly depends on the decisions taken during its construction, which should 
ideally be customized for a specific policy context and designed in a 
participatory process involving key stakeholders. The overall vulnerability index 
of the twelve most sensitive habitats presented in this paper is only one option, 
created for a general nature conservation-planning context. This unweighted 
statistic can be used for framing general policy discussions, but we encourage all 
users of our data sets to use custom weightings of V of the selected habitats, or, 
even more, aggregating strategies for P and A components tailored to their 
specific needs and the problem in focus. For country-wide assessments we 
suggest to develop a structured aggregation model (e.g., multi-criteria decision 
analysis, MCDA) with the involvement of all relevant stakeholders. 

Although some authors (e.g., Downing et al., 2001) have argued that 
vulnerability is a relative, rather than absolute, measure (Füssel and Klein, 
2006), we developed in this paper an easy to use vulnerability index for an 
interval scale within [0; 5]. Note, however, that the calculated adaptive capacity 
index is relative (Lepesi et al., 2017, in this issue, Section 4.2), hence, 
vulnerability is relative as well. 

Although only positive Ps (unfavorable climate impact) were considered 
during the calculation of V since we concentrated on the detrimental effects of 
climate change, if necessary, also negative Ps can be used. This may result in 
negative Vs, which is somewhat contradictory to the meaning of the word 
'vulnerability' but nevertheless can be easily interpreted. 

4.2. Interpretation of the results 

As most of the zonal habitats of Hungary can be found among the twelve most 
climate sensitive habitats (Lepesi et al., 2017, in this issue, Section 3.1), our 
results give a reliable overview about the expected ecological impacts of climate 
change. As a general rule, the modeled P was predominantly negative for 
forested habitat types, but for grassland types we experienced at least partially 
positive predicted responses in most of the cases. This result is congruent with 
the expectation that Hungary, lying roughly at the biogeographic boundary 
between forest and steppe zones (Zólyomi, 1989; Molnár et al., 2012), should 
experience a shift towards more open habitat types. Furthermore, the natural 
vegetation of mountainous areae, predominantly forests, appears to be more 
vulnerable than that of the lowlands. This foreshadows that maintaining forests 
in Hungary might become more difficult (Czúcz et al., 2011b) and that more 
open habitat types may become more sustainable. It is also important to note that 
the lower level of P and V in the lowland landscapes applies only to the natural 
landscape elements there (i.e., space covered by natural or seminatural 
vegetation). The V of agricultural fields or settlements can greatly differ from 
this pattern. 
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We can be most confident in estimations if the results regarding all climate 
periods and climate models consistently suggests reliable results. This kind of 
consistence was experienced for all zonal forests and two of the grasslands, for 
example. Estimations should be handled with care however, when climate 
models disagree in outcome or when trends change between the two future 
periods. We did experience such patterns, as well. In such cases, future research 
should cover more climate models and wider time periods to reduce uncertainty. 
On the other hand, it is important to view uncertainty as a necessary component 
of any climate projections, as well as the impact assessments relying on them 
(Heikkinen et al., 2006; Hanspach et al., 2011; Beale and Lennon, 2012; 
Thuiller, 2014). Uncertainty should not be considered as a shortcoming of the 
analysis, rather as an informative warning that the behavior of some objects or 
subsystems is less predictable and their prediction is therefore less reliable 
(Heuvelink et al., 2007; Gerharz et al., 2010). This can be caused by several 
factors, including uncertainties in the input data, a limited understanding of 
system functioning, but also can be an inherent characteristic of the object in 
question, which cannot and should not be eliminated. Low prevalence of a 
habitat (e.g., steppe oak woodlands on foothills and on loess – L2x_M2), 
therefore too few data records used for training of the habitat distribution model, 
can increase uncertainty of potential impact and vulnerability estimations. This 
may result in under or overprediction. Informed decisions need to be aware of 
the sources and magnitude of uncertainties. 

Future research needs to be directed towards assessing a wider range of 
climate scenarios, time periods and habitats as well as providing detailed 
analysis of the P and V results for questions in the field of ecology. 

4.3. Application of the results 

The maps produced allow a wide range of applications. There are several policy 
sectors where the final and intermediate results of a climatic vulnerability 
assessment on natural ecosystems can provide easily interpretable and relevant 
inputs (European Environment Agency, 2005; Glick et al., 2011). However, 
there is a great need for adaptation policy frameworks and effective result 
communication to incorporate the output of the assessments in adaptation 
strategies (European Environment Agency, 2005). Major applications of 
vulnerability assessments are expected in the field of nature conservation and 
restoration prioritization, as well as in landscape evaluations (Loidi and 
Fernández-González, 2012). Prioritizing requires the identification of vulnerable 
systems (Allen Consulting Group, 2005). Indeed, maps from a habitat-oriented 
vulnerability assessment can effectively support the prioritization of the 
different stands of a threatened habitat type for nature conservation (Glick et al., 
2011; McNeeley et al., 2017). Locations, which are least vulnerable to climate 
change, are likely the ones that can be most cost-effectively conserved in their 
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current state. Hence, vulnerability assessments enable efficient allocation of 
financial resources (Upgupta et al., 2015; McNeeley et al., 2017). On the other 
hand, high V does not mean that a stand should be given up by nature 
conservation (Glick et al., 2011), it rather shows that in those location a nature 
conservation action should take the form of promoting natural processes, i.e., the 
natural transformation of a stand to a less sensitive habitat or even to a habitat 
that endures the new climate better. Emphasis is put on natural processes here, 
which can also be a target of conservation and may thus serve biodiversity 
protection, as well as ecosystem service maximization (Prach and del Moral, 
2014; Prach et al., 2016). 

For restoration and forestry planning, it is also crucial to consider the future 
state of the location. Modern restoration theory and practice is moving away 
from restoring past vegetation and aims at creating self-sustainable stands 
(Somodi et al., 2012; Török et al., in press), which maintain themselves under 
the actual, as well as the future climatic conditions. To this end, it is important at 
each studied location to identify the list of habitats that find their requirements 
both now and in the future, and least vulnerable habitats should be selected as 
restoration targets. For example, according to our results and that of other 
studies (Mátyás et al., 2010; Czúcz et al., 2011b), beech forests (K5_K7a) seem 
to be relatively inappropriate to become such restoration targets, and forestry 
decisions may have to weight in their vulnerability at places. However, 
ecosystems with natural species composition and dynamics generally need less 
maintenance efforts and provide a more balanced portfolio of ecosystem 
services than artificial green spaces, thus natural habitat types should be 
preferred as restoration targets wherever possible. 

As our analysis was designed and restricted to existing stands, our results 
are not fully informative for local restoration periodization purposes. However, 
the messages that emerged from this vulnerability analysis are useful for 
restoration considerations as well. Grasslands (loess steppes and saline ones) 
that appeared to benefit from climate change in our analysis are among the 
potentially most promising (sustainable and cost-effective) restoration targets 
(c.f., the similar results of Czúcz, 2010). From forests, turkey oak woodlands 
(L2a_L2b) appear to be the best candidates, because their high A balance the 
negative direct P that even this forest type seems to face. 

Landscape evaluation and landscape planning can benefit from the use of 
our results (Loidi and Fernández-González, 2012; Bede-Fazekas, 2017). Any 
adjustment in the elements of ecological networks or green infrastructure has to 
consider whether the proposed change in the network will make it more or less 
vulnerable under climate change. Furthermore, restoration efforts may be 
efficiently directed to network elements with high vulnerability. 

Broad-scale landscape architecture, i.e., spatial and regional planning, and 
landscape rehabilitation may gain information from our result that enables them 
to be more scientifically sound and to be more prepared for potential land use 
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conflicts (Golobič and Žaucer, 2010; Crist et al., 2014). Those landscape 
architecture and rehabilitation projects that are informed by our results are able 
to reflect more on ecological processes and let the decision makers cost-
effectively avoid conflicts and disasters that are connected to natural patterns 
and processes to a certain degree, including infrastructure investments on 
vulnerable areae, policy-driven land use change (e.g., afforestation, European 
Environment Agency, 2005), top-down designation of nature reserve areae 
(Glick et al., 2011), etc. Recognizing the future perspectives on P, A, and V of 
(semi)natural habitats should significantly and essentially alter some widely 
used and non-informed landscape planning strategies (Bede-Fazekas, 2017). 

5. Conclusions 

Our results indicate that the CCIAV framework of IPCC can be effectively adapted 
to (semi)natural habitats. According to our simple and straightforward 
implementation of the framework, vulnerability of habitats and overall 
vulnerability of the vegetation can be assessed based on adaptive capacity and the 
potential impact of climate change calculated from predicted potential distribution 
maps. The results show that vulnerability highly vary across regions, climate 
models, prediction periods and habitats. Hence, detailed ensemble approach is 
always necessary when only one, easily interpretable vulnerability indicator of the 
vegetation is aimed to be developed and presented to decision makers. 
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