Special Thanks To My Colleagues and Co-authors:

Lulin Xue, Wojciech W. Grabowski, Zachary J. Lebo, Hugh Morrison, Bethan White, Jiwen Fan, Jimy Dudhia & István Geresdi

Separating dynamical and microphysical impacts on cloud processes

NOÉMI SARKADI UNIVERSITY OF PÉCS, FACULTY OF SCIENCES DEZSŐ DÉVÉNYI MEMORIAL AWARD, 2022

Outline

- Motivation
- Piggybacking method
- Results and findings
- ► Further plans

Motivation

Aerosol direct and indirect effects

- "Convective invigoration": increasing CCN concentration result higher amount of precipitation (Cold-phase invigoration)
- Low CCN → larger water drops (less ice, supercooled water). High CCN → smaller water drops (reach below 0°C in larger concentration) → freezing (latent heat release) + melting (cooling) → temperature difference → strengthen updrafts, formation new clouds. (Rosenfeld et al., 2008)
- "Convective enervation": latent heat release during freezing slow down condensation, either can initiate evaporation. In polluted air it can cause that the buoyancy not increase as intense as can bounce this release. As a result the convection enervate (especially with warm cloud base). (Igel & van den Heever, 2021).

Source: Rosenfeld et al., Science, 2008.

Piggybacking method

Piggybacking – master-slave technique

- 1 set of dynamics
- 2 sets of thermodynamics/microphysics
- 2 simulations (switch thermodynamics/ microphysics)
- Difference between driver and piggybacker caused by microphysics (the dynamical parameters are the same in the simulation)
- Difference between the drivers caused microhysical-dynamical interactions.

Example: Thompson vs. WSM6 piggybacking in idealized squall line case with WRF, domain averaged values.

Height [km]

- 6

-2.5

-2

-1.5

-1

(c) Mean cloud water mixing ratio difference [kg kg $^{-1}$], DRIVER - PIGGYBACKER

(d) Mean rain water mixing ratio difference [kg kg⁻¹], DRIVER - PIGGYBACKER

(f) Mean snowflakes mixing ratio difference [kg kg⁻¹], DRIVER - PIGGYBACKER

(g) Mean pristine ice mixing ratio difference [kg kg⁻¹], DRIVER - PIGGYBACKER

2

d_{qice} [kg kg⁻¹]

3

4

- 5

x 10⁻⁵

Height [km]

6

-2

-1

0

(h) Mean pristine ice number concentration difference [# kg⁻¹], DRIVER - PIGGYBACKER

-0.5

d_{nice} [#kg⁻¹]

0

0.5

1

1.5

x 10⁵

Results I – Squall line

 MC3E (Mid-latitude Continental Convective Clouds Experiment; Jensen et al., 2016)

Microphysical piggybacking

Horizontal domain size/horizontal grid length	400 gridpoints × 70 gridpoints/1 km
Vertical domain size/vertical grid length	101 levels /semi-uniform grid (up to 25 km)
Dynamical time step	2 sec.
CCN concentration	~250 cm ⁻³
Simulated time period (integration time)	2011. 05. 20. 12:00 – 18:00 (6 h)
nitial conditions/case study	Initialization with random temperature
	perturbation (pairs of ensemble members
	shared the same perturbation) and u-
	convergence in the middle of the domain.
Microphysics	Two ensembles (3 members) of simulations
	were completed and analyzed: (1) bulk
	scheme (Thompson, namelist option: 8)
	drives and bin scheme (UPNB) piggybacks;
	(2) bin drives and bulk piggybacks.
Planetary boundary layer	no boundary-layer (namelist option: 0)
Cumulus parameterization	no cumulus (namelist option: 0)
Radiation physics	no shortwave and longwave radiation
	(namelist option: 0)
Surface layer physics	no surface-layer (namelist option: 0)
Land-surface physics	no surface temperature prediction (namelist
	option: ()

Source: Sarkadi et al., JAMES, 2022.

Results I – Squall line

Results I – Squall line

Source: Sarkadi et al., JAMES, 2022.

Results I – Squall line

Source: Sarkadi et al., JAMES, 2022.

- Daytime convection: shallow to – deep
- Large-Scale Biosphere– Atmosphere (LBA) field project in Amazonia (Rondonia, Brazil)
- Same microphysics, with different initial CCN concentrations:
 - effect of CCN conc. on surface precipitation and cloud evolution

Horizontal domain size/horizontal grid length	125 gridpoints ×125 gridpoints / 400 m
Vertical domain size/vertical grid	20 km /81 levels with stretched grid
Dynamical time step	3 sec.
CCN concentration	Pristine (PRI; ~ 100 cm ⁻³); Polluted (POL; ~
	1000 cm ⁻³)
Simulated time period (integration time)	12 hours
Initial conditions/case study	As in Grabowski et al. (2006)
Microphysics	Two ensembles (5 members) of simulations
	were completed and analyzed with UPNB
	microphysics: (1) PRI drives and POL
	piggybacks; (2) POL drives and PRI
	piggybacks.
Planetary boundary layer	no boundary-layer (namelist option: 0)
Cumulus parameterization	no cumulus (namelist option: 0)
Radiation physics	no shortwave and longwave radiation
	(namelist option: 0)
Surface layer physics	Old MM5 scheme (namelist option: 91),
	prescribed surface temperature and
	moisture fluxes (as in Grabowski et al., 2006)
Land-surface physics	no surface temperature prediction (namelist
	option: ()

Source: Sarkadi et al., JAMES, 2022.

3.5

3

2.5

2

1.5

0.5

0 0

3.5

3

2

1.5

0.5

0

precipitation (mm)

precipitation (mm)

D-PRI

D_{ENS SPREAD}

PENS SPREAD

4

--- P-POL

2

D-POL

D_{ENS SPREAD}

PENS SPREAD

4

- - - - P-PRI

2

Source: Sarkadi et al., JAMES, 2022.

Source: Sarkadi et al., JAMES, 2022.

0.7

0.8

0.6

0.15

0.2

Source: Sarkadi et al., JAMES, 2022.

0.2

0.1

0.25

0.3

0.15

Take home message...

- Understanding the behavior and effects of aerosol particles is essential when modeling atmospheric processes (aerosol – cloud – atmosphere interactions):
 - \blacktriangleright latent heat release \rightarrow dynamic effects
 - weather forecast, as well as climatological impacts
- Presented results were accepted (and published online) in Journal of Advances in Modeling Earth Systems – Sarkadi et al., JAMES (2022): Microphysical Piggybacking in the Weather Research and Forecasting Model, doi: 10.1029/2021MS002890
- Real case piggybacking (including radiation, pbl, etc. processes) will be present at

10'3rd AMS, 15th Symposium on Aerosol-Cloud-Climate Interactions

09. 01. 2023. Session 4b.3: "Application of the Piggybacking Methodology to Real Convective Cases"

I agree it works in practice. But how can be certain that it will work in theory?

FROM PLAQUE OF DÉVÉNYI DEZSŐ AWARD

Thank you for your attention!