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Motivation

Aerosol direct and indirect effects

~Convective invigoration”: increasing CCN
concenftration result higher amount of precipitation
(Cold-phase invigoration)

Low CCN — larger water drops (less ice,
supercooled water). High CCN — smaller water
drops (reach below 0°C in larger concentration) —
freezing (latent heat release) + melting (cooling) —
temperature difference — strengthen updrafts, e
formation new clouds. (Rosenfeld et al., 2008)  lce and snow crystals

Pristine

< Graupel or small hail

,Convective enervation”: latent heat release during [

Larger cloud droplet

freezing slow down condensation, either can inifiate
evaporation. In polluted air it can cause that the % erosol partices
buoyancy not increase as intense as can bounce
this release. As a result the convection enervate
(especially with warm cloud base). (Igel & van den

Heever, 2021).

Growing

Mature

Source: Rosenfeld et al., Science, 2008.




P i g g y b O C |<i n g m e -|- h O d Source: W.W.Grabowski, Adv. Geosci., 2019.

» Piggybacking — master-slave technique
» 1 set of dynamics
» 2 sets of thermodynamics/microphysics

> 2 §|mUIO’r|o.ns (switch thermodynamics/ St 1 as diiver Set 2 as pigeybacker
microphysics)

» Difference between driver
and piggybacker caused by microphysics
(the dynamical parameters are the same in
the simulation)

» Difference between the drivers caused
microhysical-dynamical interactions.

Set 1 as piggybacker Set 2 as driver




Example: Thompson vs. WSMé piggybacking in idealized squall line case with WRF,

domain averaged values.
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(b) Mean water vapor mixing ratio difference [ kg kg'1 . DRIVER - PIGGYBACKER
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Results | — Squall line

Horizontal domain size/horizontal grid length

400 gridpoints x 70 gridpoints/1 km

Vertical domain size/vertical grid length 101 levels /semi-uniform grid (up to 25 km)
Dynamical time step 2 sec.
» MC3E (MId-lOTITUde CCN concentration ~250 cm?3
Continental Convective Simulated fime period (integration time) 2011. 05. 20. 12:00 — 18:00 (6 h)
Clouds Experimenf; Jensen Initial conditions/case study Initialization  with  random temperature
61' O'., 20‘| 6) perturbation (pairs of ensemble members

shared the same perturbation) and u-

Microphysical piggybacking

convergence in the middle of the domain.

Microphysics Two ensembles (3 members) of simulations

were completed and analyzed: (1) bulk

scheme (Thompson, namelist option: 8)

drives and bin scheme (UPNB) piggybacks;
(2) bin drives and bulk piggybacks.

Planetary boundary layer no boundary-layer (namelist option: 0)

Cumulus parameterization no cumulus (hamelist option: 0)

Radiation physics no shortwave and longwave radiation

(hamelist option: 0)

Surface layer physics no surface-layer (hamelist option: O)

Land-surface physics no surface temperature prediction (namelist
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b1) Observed radar reflectivity [ dBZ ], h ~ 2 km
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Results | — Squall line

UPNB,; 2" h sim Thompson,; 2" h sim Thompson; 2" h sim UPNB,; 2" h sim
B | 3 | 3 | "' . X -

\

-150 -100

Source: Sarkadi et al., JAMES, 2022.

15

®

) 23]
g
' g,l, ol

0 0
-150 -100 -50 -150 -100

15 5

6th 6th

h sim h sim

4

| — v ‘
L U ' T\’
& 8 . {
L ‘ ‘
0 0 0 0
-150 -100 -50 -150 -100 -150 -100 -50 -150 -100 -50
Distance relative to storm leading edge (km) Distance relative to storm leading edge (km) Distance relative to storm leading edge (km) Distance relative to storm leading edge (km)




Results | — Squall line
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Results || —

Daytime convection: shallow —
to — deep

Large-Scale Biosphere—
Atmosphere (LBA) field project
in Amazonia (Rondonia, Brazil)

Same microphysics, with
different
inifial CCN concentrations:

» effect of CCN conc. on surface
precipitation and cloud
evolution

Daytime convection

Horizontal domain size/horizontal grid length

Vertical domain size/vertical grid

Dynamical time step

CCN concentration

Simulated time period (integration time)

Initial conditions/case study

Microphysics

Planetary boundary layer

Cumulus parameterization

Radiation physics

Surface layer physics

Land-surface physics

125 gridpoints x125 gridpoints / 400 m
20 km /81 levels with stretched grid

3 sec.

Pristine (PRI; ~ 100 cm3); Polluted (POL; ~
1000 cm3)

12 hours

As in Grabowski et al. (2006)

Two ensembles (5 members) of simulations

were completed and analyzed with UPNB
and POL
and PRI

microphysics: (1) PRI drives

piggybacks; (2) POL drives

piggybacks.

no boundary-layer (namelist option: 0)

no cumulus (hamelist option: 0)

radiation

no shortwave and longwave

(hamelist option: 0)

Old MM5 scheme (namelist option: 91),

prescribed surface  temperature and

moisture fluxes (as in Grabowski et al., 2006)

no surface temperature prediction (namelist



Results I — Daytime convection

Source: Sarkadi et al., JAMES, 2022.
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Results I — Daytime convection
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c) Precipitation difference
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Results I — Daytime convection

a) D-POL/P-PRI b) D-PRI/P-POL
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Source: Sarkadi et al.,, JAMES, 2022.




Results I — Daytime convection
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Source: Sarkadi et al.,, JAMES, 2022.



Results I — Daytime convection

Source: Sarkadi et al.,, JAMES, 2022.
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Take home message...

» Understanding the behavior and effects of aerosol particles is
essential when modeling atmospheric processes (aerosol — cloud —
atmosphere interactions):

» latent heat release — dynamic effects
» weather forecast, as well as climatological impacts

» Presented results were accepted (and published online) in Journal
of Advances in Modeling Earth Systems — Sarkadi et al., JAMES
(2022): Microphysical Piggybacking in the Weather Research and
Forecasting Model, doi: 10.1029/2021MS002890

» Readl case piggybacking (including radiation, pbl, etc. processes)
will be present at
1039 AMS, 15" Symposium on Aerosol-Cloud-Climate
Interactions
09. 01. 2023. Session 4b.3: ,,Application of the
Piggybacking Methodology to Real Convective Cases”




ke, agree it works in practice. Buf
how can be cerfain thaft it will
work in theorye '},

Thank you for your attention!



