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Satellite Data to Propel a new Era in Agriculture?

Interest of agricultural decision makers in remote sensing data fuelled by
economic pressures, fears about a coming “food gap”, and visions on

autonomous farming
S The Food Gap

Das MonSter an dem ACker Taking into account a growing population and shifting diets, the world will need to

produce 69 percent more food calories in 2050 than we did in 2006.
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Food Production in the Desert

Saudi Arabia uses center pivot irrigation to
grow crops like wheat and alfalfa
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Agricultural Monitoring Requires a Holistic View
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Lawrence and Fisher (2013) The Community Land
Model Philosophy: model development and science
applications. ILEAPS Newsletter, 13, 16-19.
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Earth Observation

More satellites than ever and better than ever
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panchromatic, multispectral and/or SAR sensor onboard a
near-polar orbing, land imaging civilian satellite

Belward and Skgien (2015) Who launched what, when and why; trends in global land-
cover observation capacity from civilian earth observation satellites. ISPRS Journal of

Photogrammetry and Remote Sensing, 103, 115-128.
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Sentinel Satellites

Fleet of European i
Earth Observation Satellites OPCrNICUS

e European Earth Observation Programme

Data are
free & open!

sentinel-3
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Sentinel-1 — A Game Changer

C-band SAR satellite in Solar panel and SAR antenna of Sentinel-1

continuation of ERS-1/2 and launched 3 April 2014. Image was acquired by
the satellite's onboard camera. © ESA

ENVISAT

High spatio-temporal coverage
- Spatial resolution 20-80 m
- Temporal resolution < 3 days
over Europe and Canada
- with 2 satellites

Excellent data quality

Highly dynamic land surface
processes can be captured

- Impact on water management,
health and other applications
could be high if the challenges
in the ground segment can be
overcome




Sentinel-1 Time Series
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Sentinel-1 Cross-Pol (VH) Images

Red — June
Green — July
Blue — August

False-colour image of Sentinel-1

VH monthly image mosaics m SN
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Operational EO Data Services

About ‘ Contact us

g
Copernicus Global Land Service (opermicys

Europe’s eyes on Earth

Products News Product Access Viewing

Overview

Versioning
Development stages

= > Vegetation

Burnt Area
Dry Matter Productivity
Fraction of Absorbed Photosynthetically Active Radiation
Fraction of green Vegetation Cover
Leaf Area Index
Normalized Difference Vegetation Index
Vegetation Condition Index
Vegetation Productivity Index

> Energy
Land Surface Temperature
Surface Albedo
Top Of Canopy Reflectances

> Water
Soil Water Index
Water Bodies

Vegetation




Impact on Agrometeorological Applications

Remarkably, the proliferation of earth observation technology has had
only modest impacts on agrometeorological applications yet

Simple indices such as the Normalised Difference Vegetation Index
(NDVI) continue to be the main EO data type

- Quantitative applications (e.g. assimilation of biogeophysical variables in crop
yield models) still rare

When will EO-powered
Precision Agriculture
become a reality?

Rodericks Oisebe (2012)
Geospatial Technologies in
Precision Agriculture, GIS Lounge,
https://www.gislounge.com/
geospatial-technologies-in-
precision-agriculture/
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Hurdles to Using EO Data

Added value of using EO data in agrometeorological applications often
difficult to demonstrate

- What is the unique information provided by the EO data? For whom?
EO data services are often not fit for purpose

- Using EO data should be simple, not requiring expert knowledge

- Consistency between near-real-time and historic off-line data

- Parallel data streams for operations and testing

- Spatiotemporal uncertainty estimates and quality flags
Complexity of problem

- Relationship between EO data and crop yield not straight forward

- Existing agrometeorological models have not been built for using EO data

- Data assimilation schemes are complex and costly

- Lack of high quality reference data

- Understanding scaling and representation problems

eodc B (&
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Specific Concerns about Satellite Soil Moisture Data

CONCERNS WHY IT STILL WORKS
Coarse spatial resolution = Temporal Stability
25-50 km for current operational - Soil moisture dynamics can be
data services compared across spatial scale

Only thin surface layer is sensed = Dense temporal sampling

A few centimetres under growing - Allows to predict profile soll
conditions moisture content
Does not penetrate dense = Retrieval accuracy best over
vegetation agricultural areas and grasslands

eodr HE&



Temporal Stabllity

= Temporal stability means that spatial patterns persist in time
- Vachaud et al. (1985)
- Practical means of reducing in-situ soil moisture network to few representative sites

- Vinnikov and Robock (1996)
- Large-scale atmosphere-driven soil moisture field
- Small-scale land-surface soil moisture field

Mean (red) and
station (black) in
situ soil moisture
time series from
the REMEDHUS
network operated
by University of
Salamaca.

Vol. surface soil moisture




Time-Invariant Linear Relationship
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Estimation of Profile Soil Moisture

= Our method rests upon simple differential model for describing the exchange of
soil moisture between surface layer (®,) and the “reservoir” (®)

« T ... characteristic time

do 1 1t t—t’
—=—(0-06 —> == ’ ——— |dt’
-r(©-0,) )= Jo,t)ep <" o

S~

Root zone with @ : layer of interest for most applications

Soil profile

Wagner, W., G. Lemoine, H. Rott (1999) A Method for Estimating Soil Moisture from ERS @\
Scatterometer and Soil Data, Remote Sensing of Environment, 70, 191-207. \“44



"Red-Noise" Infiltration Model

=  Mathematically, this model corresponds to a first-order Markov process,
where

- O(t) is the process variable
«  O(t) is the external forcing
- T is the response time of the system

= The autocorrelation function of ®(t) is given by F(T) . e—t/T

- First suggested theoretically for soil moisture
by Delworth and Manabe (1988)

- Confirmed with observations by Robock, Vinnikov, and collaborators

= Effects of convolution integral
« Retarded and smoothed time series

Ceballos, A., K. Scipal, W. Wagner, J. Martinez-Fernandez (2005) Validation of ERS ZSSA\
scatterometer-derived soil moisture data over the central part of the Duero Basin, Spain, m @
Hydrological Processes, 19, 1549-1566, doi: 10.1002/hyp.5585. ' A\



Soil Water Index (SWI)
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Quality of SWI

= The quality of SWI depends critically upon
- Density of time series
- Regular sampling
- Removal of erroneous data (frozen and snow covered soil)
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Pellarin, T., J.-C. Calvet, W. Wagner (2006) Evaluation of ERS Scatterometer soil moisture

products over a half-degree region in Southwestern France, Geophysical Research Letters,

33(17), L17401.

Efficiency based
on Model Simulations
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Assimilation

= Models and data are
Imperfect

= Improve outputs by data
assimilation

= Satellite soil moisture
data can help to correct
Impact of erroneous
precipitation data

Wade Crow (2007)
Journal of
Hydrometeorology

Crow, W.T., and X. Zhan, "Continental-scale evaluation of remotely-sensed soil moisture
products,” IEEE Geoscience and Remote Sensing Letters, 4(3), 451-455, 2007.
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7-day Analysis Increments [mm]
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Improved Soil Moisture Estimates through Assimilation

Open-loop skill (R) (surface)

a) Skill improvement of assimilation over b) Skill improvement of assimilation over
open-loop for surface soil moisture open-loop for root-zone soil moisture
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Draper, C.S., Reichle, R.H., De Lannoy, G.J.M., & Liu, Q. (2012). Assimilation of
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Letters, 39, L04401
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Yield Modelling using Scatterometer SWI Data

= Assimilation of SWI in crop model WOFOST

- Crop model data assimilation with the Ensemble Kalman filter with the goal of
improving regional crop yield forecasts
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Rainfall derived from satellite soil moisture: SM2RAIN

Water balance model: Z ...soil water capacity (= soil depth * porosity)

d i .. relative saturation
( ) (t) _ r(t) e(t) g (t) ... precipitation
dt ..surface runoff

..evapotranspiration
...drainage

e ® = o @

Inverting for p(t):

o(t) = Z dz(tt) Fr(t)+e(t) +g(t)

Assuming during rainfall: |:> p(f)z / d.S‘(I)/dI +as (I)b
g(t)=as(t)’ + e(t)=0 + g(t)=0

Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd,
R., Dorigo, W., Wagner, W., & Levizzani, V. (2014). Soil as a natural rain gauge:
Estimating global rainfall from satellite soil moisture data. Journal of Geophysical

Research: Atmospheres, 119(9), 5128-5141.
eod &
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latitude

ASCAT Rainfall
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July, 2007

Soll Moisture and Vegetation

July 28 - August 12,2007
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Naeimi, V., W. Wagner (2010). C-band Scatterometers and their Applications, Chapter 13 of
"Geoscience and Remote Sensing New Achievements”, Pasquale Imperatore and Daniele
Riccio (Ed.), INTECH, Vukovar, Croatia, 230-246.
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Prediction of NDVI using SWiI

= Modelling next month's NDVI using SWI

1991-1992

RMSE=0.009

~+satellite NDVI
-+ Simulated NDVI
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Zribi, M., T. Paris Anguela, B. Duchemin, Z. Lili, W. Wagner, S. Hasenauer, A. Chehbouni
(2010) Relationship between soil moisture and vegetation in the Kairouan plain region of
Tunisia using low spatial resolution satellite data, Water Resources Research, 46,
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Earth Observation in the Era of Big Data

= Volume and diversity of EO data is growing fast

= Bringing the users and their software to the data rather than vice versa
becomes inevitable

9 Petabyte

Predicted Growth of
Sentinel-1/2/3 Raw

Data Volume ,
6 M Sentinel-3B

M Sentinel-3A
3 Sentinel-2B
m Sentinel-2A
W Sentinel-1B
3 mSentinel-1A
W Envisat ASAR

2014 2015 2016 2017 2018 2019 2020 2021
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Earth Observation Ground Segment
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Earth Observation Ground Segment

Future




Google Earth Engine FAQ  TIMELAPSE

DATASETS CASE STUDIES PLATFORM SIGNUP

A planetary-scale platform for Earth
science data & analysis

Powered by Google's cloud infrastructure

P> WATCH VIDEO

Meet Earth Engine

Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and
makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.

e

+[§ + é

SATELLITE IMAGERY YOUR ALGORITHMS REAL WORLD APPLICATIONS

https://earthengine.google.com/




Earth Observation Data Centre

EODC works together with its partners from science, the public- and the
private sectors in order to foster the use of EO data for monitoring of
water and land

Central Goals
- Bring users and their software to the data m
- Organise cooperation & enable specialisation

Facilitate Joint Developments
- Cloud infrastructure, platform services, data services, software, etc.

Processing of Big Data

- From satellite raw data to biogeophysical data products up to model forecasts
- Sentinel-1, Sentinel-2, etc.

Organisation
- The EODC GmbH was founded in May 2014 as Public Private Partnership
- Interested organisations can join the EODC Partner Network by becoming

Principal- or Associated Cooperation Partners




EODC Infrastructure @ TU Wien’s Science Centre

=  Shared, multi-owner infrastructure

Science Integration and
Development Cloud Platform

Cloud Plattform Supercomputer
>40 VMs in OpenStack >2'000 Nodes
2.25 TB RAM >128 TB RAM
122 TB Private Storage 600 TB Parallel FS
200 vCPUs

Infiniband
Fabric
4 x 56

EO-Compute EO-Storage GBit

Ethernet
2 x 10 GBit

Compute Cluster Hard Drive Disks
30 CPUs 2 PB Parallel FS — | Petabyte-Scale

3.5 TB RAM + 1 PB Tape Storage Disk Storage
1.1 PB Object Storage 2 Drives / 100 Tapes (D| sks & Tap es)
3.2TB SSD

Dedicated EO Data
Processing Cluster




Data Avallability @ EODC

Data are received via the Sentinel National Mirror Austria \ |
i

EODC aims to store complete Sentinel data record

- Sentinel-1
. Sentinel-2 > 1.4 PB of Raw Data
(Status March 2017)

ZAMG

« Sentinel-3

Data coverage until 2017-04-19: Sentinel 1 GRD IW, all polarisation

Up-to-date coverage maps:
https://www.eodc.eu/
sentinel-1la-coverage-maps/

“*°E@eodcc
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Sentinel-1 Processing Times

Global

Europe

Monthly data volume

15.546 TB

3.976 TB

Preprocessing time (10m) on
single computing node

9,056.2 hrs (~377.3 days)

2,316.2 hrs (~96.5 days)

Monthly preprocessed data
volume (2.5 x raw data)

38.865 TB

9.94TB

Automatic quality check

93.2 hrs (3.8 days)

23.8 hrs (~1 day)

Parameter Estimation (10m)

1378.8 hrs (~57.5 days)

352.6 hrs  (~14.7 days)

Flood Mapping (10m)

391.7 hrs (~39.1days)

100.2 hrs  (~4.2 days)

Total processing time

~479 days

~118 days

Processing time for monthly Sentinel-1 (A&B) Level-1 IW GRDH (10 meters sampling) data.
The table shown only automatic processing times, i.e. not including the reprocessing time

and man power for running/checking/managing the processing.

Numbers are based on 4 month Sentinel-1 data from October 2016 to January 2017

;-r,-—
S
}"?*,"3’\ \“‘




Supercomputing Experiment:. SAR Geocoding

Test n.1l n. 2 n. 3 n. 4
SAR product mode ASAR GM ASAR WS ASAR WS S-1 IW GRDH
Spatial resolution 1 km 150 m 150 m 20 m
Total number of data files 189,621 31,199 31,199 1,075
Number of images for job / Total 8 /23,703 2 /15,600 2 /15,600 1/1,075
Number of jobs
Input data file size range 1-73MB 12 - 692 MB 12 - 692 MB 08-1.7GB
Total input data files size 1.579TB 5401 TB 5401 TB 1.2TB
Max.-number of simultaneous 417 454 612 396
running nodes
Number of cores used by Sentinel-1 4 3 3 g
Toolbox
Input data caching on node False False True True
Output data caching on node True True True True
Averaged processing time
(seconds/MB) 9.18 5.65 2.39 2.69
Elapsed time including SLURM - - - -
queleing = 3.5 days = 4 days =~ 8 hours = 3.5 hours
Estimated elapsed time using only 1
nodle psed time tising only =~ 167 days | =353 days | =353 days =~ 37 days

Elefante et al. (2016) High-performance computing for soil moisture
estimation, BiDS'2016, EUR 27775 EN, 95-98.
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Sentinel-1 Surface Soil Moisture

12 16
(A)

48
46

Surface Soil Moisture 0 50 100 km 0 50 100 km = 0 50 100 km
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Precipitation Fronts seen in Sentinel-1 Soil Moisture
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Conclusions & Outlook

Scientific, technical and organisational challenges for building EO-based
agrometeorological services are often underestimated

Cooperation is essential

- if one wants to avoid becoming 100 % dependent on a handful of big
commercial ITC companies

- to build processing chains covering all steps from raw EO data to final app
interface for agrometeorological users

Several EODC Partners are developing applications in support to
agricultural decision making

- E.g. agricultural drought apps based upon multi-sensor soil moisture and
vegetation data products
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