

DRMKC Drought Workshop – 06 November - Budapest

European Commission

Outline

1. Presentation

• JRC and DRMKC

2. Introduction

• Drought and drought impacts

3. Drought trends

Recent past and projections

4. Drought Risk

Risk Concept

5. Approach to Drought Risk Assessment

Contextual framework

6. Implementation Example

• Global Drought Observatory

7. Discussion

JRC sites

Headquarters in Brussels and research facilities located in **5 Member States:**

- Belgium (Geel)
- Germany (Karlsruhe)
- Italy (Ispra)
- The Netherlands (Petten)
- Spain (Seville)

JRC's Mission

As the science and knowledge service of the Commission our mission is to support EU policies with independent evidence throughout the whole policy cycle

- Boundary organisation
- Independent of private, commercial or national interests
- Policy neutral: has no policy agenda of its own
- Work for more than 20 EC policy departments (DGs)

JRC Knowledge Centres

Commission

DRMKC - Dealing with the information overload

DRMKC - Working together: Partnership

- Reinforcing and supporting scientific partnerships
 - Scientific WS
 - Trainings
 - Exercises
- Contributing to the science-policy interface
 - **Cross-cutting topics** are addressed to facilitate an harmonized approach in support to policies:
 - Damage and Loss Data collection
 - Adaptation strategies
 - Risk Assessment
 - Risk Management Capability Assessment
 - It allows an **enhanced coordination** across policies, increasing their effectiveness

Image: Emilio Morenatti

DRMKC - Developing collective knowledge

Project Explorer – Learning from research results and identification of gaps.

Visualization of Networks: Who knows what!

1380 research DRM related projects**5324** institutions involved WorldwideAccess to the results

More to come!

When 79 +194 = >5000 downloads and >2000 copies distributed

Outline

•

•

- **1.** Presentation
 - JRC and DRMKC

2. Introduction

- Drought and drought impacts
- 3. Drought trends
 - Recent past and projections
- 4. Drought Risk
 - Risk Concept
- 5. Approach to Drought Risk Assessment
 - Output, Contextual and Hybrid framework
- 6. Implementation Example
 - Global Drought Observatory

Drought Definition

- Negative water balance, due to
 - A shortfall in precipitation over an extended period of time
 - High temperatures \rightarrow to increased evapotranspiration
- The inadequate timing of precipitation
 - Unusual and temporary deficit in water availability, resulting in negative economic, social and environmental <u>impacts</u>!

To be distinguished from:

Aridity: A permanent climatic feature

Water Scarcity: Climatologically available water resources are inadequate to meet long-term average water requirements!

Drought: Different types

Source: National Drought Mitigation Center, University of Nebraska-Lincoln, USA

Drought Characteristics

- Slow onset, "creeping" phenomenon
- Affects all compartments of the hydrological cycle (rainfall, soil moisture, groundwater, reservoirs, river flows)
- Impacts are non-structural, spread over large areas and long time periods (direct and indirect), affect many people, and depend on the <u>societal and</u> <u>environmental vulnerability</u>

About 15% of the EU territory and 17% of the EU population affected annually Economic impacts in the EU are estimated to be 3 billion Euros/year on average With climate change impacts are likely to increase by a factor 5 to 10 by 2100 Environmental impacts are difficult to quantify and not included!

Drought Impacts

Agriculture

Human Health

Forest/Wild Fires

Public Water Supply

Terrestrial & Freshwater Ecosystems

Tourism

European Commission

Waterborne Transport

Forestry

Drought Impacts in Europe

Economic Impacts:

Over 30 years: estimated cost of at least **100 billion** Euros

Annual economic impact doubled from 1976-1990 to 1991-2006

Environmental Impacts:

Drought can cause serious long-term environmental impacts (e.g., water quality, salinization, desiccation of wetlands, soil erosion, desertification, ...)

These impacts are difficult to quantify and data are generally lacking

Source: European Commission, 2007 (WS&D, 2nd Interim Report)

Drought and Flood Damage Projected in the EU

Drought Management: Changing the Paradigm

Cycle of Disaster Management

Risk assessment key for adequate drought management

Outline

•

- **1.** Presentation
 - JRC and DRMKC

2. Introduction

Drought and drought impacts

3. Drought trends

- Recent past and projections
- 4. Drought Risk
 - Risk Concept
- 5. Approach to Drought Risk Assessment
 - Output, Contextual and Hybrid framework
- 6. Implementation Example
 - Global Drought Observatory

Drought variability

- Sub-seasonal to inter-annual variability
- Past trends
- Climate Change and Future droughts

Droughts are caused by:

- Persistent atmospheric patterns
- Linked to low frequency sources: SSTs, Madden-Julian Oscillation, NAO, etc.
- ENSO (El Niño Southern Oscillation)

Past droughts (1951-2017) Data and Methods

INPUT DATA

- GPCCv7 RR data (0.5°)
- CRUTSv4 PETPM data (0.5°)
- EOBSv13-17 RR, TN and TX data (0.25°)

DROUGHT INDICATORS

- Standardized Precipitation Index (SPI)
- Standardized Precipitation-Evapotranspiration Index (SPEI)
- From SP(E)I-3 to SP(E)I-72

DROUGHT EVENTS

Database of drought events (1951-2017) Multiple indicators and spatial scales Country-based and macro-regional List of mega-droughts of the last decades Dedicated reports and analysis of impacts Drought time series at country scale

DROUGHT QUANTITIES

Drought Frequency (DF) Drought Duration (DD) Drought Severity (DS) Drought Intensity (DI) Drought Area involved (DA) Extreme droughts and Peak Events (PkE) Drought Impacts (ongoing)

Global past Drought and Trends

22 DF & DS (1951-2017)

Top Events

Global past Drought and Trends Europe and Mediterranean Region

Commission

Future droughts (2021-2100) Data and Methods

INPUT DATA

- 109 CORDEX Simulations (0.44°)
- >15 GCMs combined with >15 RCMs
- RR, TN, TX (PETHS)
- RCP4.5 and RCP8.5

DROUGHT INDICATORS/VARIABLES

- SPI-12 and SPEI-12
- Drought frequency (DF) & severity (DS)
- Extreme events (PkE)

Number of CORDEX Simulations

Global drought projections

2071-2100 vs 1981-2010 (Drought Severity)

Global drought projections The role of temperature

Past (1951-2017) and Future (1981-2100) drought drivers

Drought Trends Take home messages

- More than 4,000 meteorological drought events at country and macro-regional scales from 1951 to 2017
- Drought hotspots in 1951-2017: Chile, Mediterranean region, tropical Africa, central Asia, NE China, and southern Australia
- For the SPI, DF and DS will increase in 1981-2100 over Chile, Mediterranean region, southern Africa, SW Australia. For the SPEI over western North America, most of South America and Africa, Mediterranean region, central Asia, central and southern Australia
- The role of temperature (AED) is crucial in meteorological drought projections

Two new papers just submitted: biggest global drought events in 1951-2017 & CORDEX-based drought projections Spinoni et al 2018a,b 27

Outline

•

- **1.** Presentation
 - JRC and DRMKC

2. Introduction

- Drought and drought impacts
- 3. Drought trends
 - Recent past and projections

4. Drought Risk

- Risk Concept
- 5. Approach to Drought Risk Assessment
 - Output, Contextual and Hybrid framework
- 6. Implementation Example
 - Global Drought Observatory

Drought Risk Concept

<u>Risk or</u> <u>Likelihood of</u> <u>drought impact</u> Probability of a drought event with a certain severity. <u>Amount</u> of population, livelihoods, assets, resources, services potentially affected. Susceptibility to suffer adverse effects

Sensitivity

Coping Capacities

European Commission

Drought Risk Analysis - Components

		Characterisation	Relevant data	Examples of studies
Hazard		Magnitude of a hydrometeorological deficit	Meteorological, hydrological and/or biophysical indicators	Sepulcre-Canto et al. (2012); Vicente-Serrano et al. (2010); Svoboda et al. (2002); Kogan (1995); McKee et al.(1993); Palmer (1965).
	Exposure	Amount of elements subject to drought hazard	Amount and location of human populations, activities and/or ecosystems	Winsemius et al. (2015); Christenson et al. (2014).
	Vulnerability	Susceptibility of exposed elements to damaging effects of drought hazard	Composite indicators that include environmental, social, economic and/or infrastructural components Impact data	Gonzélez-Ténago et al. (2016); Naumann et al. (2014); Brooks et al. (2005); Cutter et al. (2003).
nen et al. 2017	Overall risk	Likelihood of impact	Measured in a probabilistic scale linked to intervention policies	Blauhut et al. (2016); Carrão et al. (2016); Kim et al. (2015); Eriyagama et al. (2009);

Peduzzi et al. (2009).

?

Outline

•

•

- **1.** Presentation
 - JRC and DRMKC

2. Introduction

- Drought and drought impacts
- 3. Drought trends
 - Recent past and projections
- 4. Drought Risk
 - Risk Concept

5. Approach to Drought Risk Assessment

- Output, Contextual and Hybrid framework
- 6. Implementation Example
 - Global Drought Observatory

Drought Risk Analysis - Approaches

Drought Risk Analysis - Outcome/ Impacts Approach

<u>Vulnerability</u>: "the degree to which geophysical, biological and socio-economic systems are susceptible to, and unable to cope with, adverse impacts of climate change". (IPCC)

Recorded damages/losses are statistically linked to drought characteristics \rightarrow impact functions/damage functions/average annual loss (AAL)/probable maximum loss (PML)

Depends on

- (a) Characterization of drought events (drought indicator dependent)
- (b) Quantitative data on damage and/or loss on past drought events (impact data dependent)
- (c) Context and region specific

Examples: Blauhut et al. (2015), Bachmair et al. (2015), Naumann et al. (2015)

Outcome/ Impacts Approach Example 1 Linking reported impacts to drought indices

LIO: Likelihood of Impact Occurrence

No. of impacts/sector (e.g. agriculture)

NUTS-combo			
region	Year	Impact	SPEI-12
DE1	1975	0	-1.3
DE1	1976	1	-2.1
DE1	1977	0	-0.4
DE1	2000	0	-0.8
DE2	2001	0	0.3
DE3	2002	0	0.8
DE4	2003	1	-2.8
DE5	2004	1	-1.1

$$\boldsymbol{i}$$

$$IO = \log\left(\frac{LIO_N}{1-LIO_N}\right) = \alpha_M + \beta_M \cdot P_N$$

 α_M = intercept by macro region β_M = slope by macro region P_N = predictor by NUTS-combo region Drought Indicator (e.g. SPEI)

Example 1 Drought Risk - Maps

Energy & Livestock farm. Industry supply Water quality SPEI: -1.5 SPEI: 2 SPEI: N SPEI: ę SPEI:

Public water

Agriculture &

Hazard severity

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 no data Likelihood of Impact Occurrence (LIO)

European Commission

Blauhut et al. 2015

Outcome/ Impacts Approach Example 2 Linking quantitative impact information to drought indices

Drought Damage $\approx \alpha s^{\beta}$ (s: drought severity)

BETA = 1 linear relation

BETA < 1 limited growth relation

BETA > 1 exponential relation

BETA = 0 no relation

BETA << 0 positive effects of droughts?!

European Commission

Naumann et al., 2015

Example 2 Impact Relation - Cereal Production and Hydropower Generation

Drought Risk Analysis - Contextual/ Factor Approach

<u>Vulnerability</u>: "Characteristics and circumstances of a community, system or asset that make it susceptible to the damaging effects of a drought" (UNISDR)

Links vulnerability and exposure factors to the underlying causes of risk

Depends on:

- (a) Exposure factors (assets that are potentially affected by drought) \rightarrow sector dependent
- (b) Vulnerability factors (of a farm, community, region, country)
 → scale dependent
- (c) All factors are normalized (0 1)
 - \rightarrow relative measure (depending on analysed spatial domain)

Examples: Iglesias et al. 2009, Naumann et al. 2014, De Stefano et al. 2015, Carrao et al. 2016

Contextual Approach – Components

Drought Hazard (H)

e.g. rainfall anomalies, Vegetation vigor, CDI

Exposure (E) e.g. Population density Agricultural areas, livestock

Vulnerability (V) e.g. Social, Economic, Infrastructural Indicators

Carrão et al., 2016

Proxy Indicators for Computing Contextual Vulnerability Factors

Social Factor:

Level of well-being of individuals and communities

Economic Factor: Economic status of individuals, communities and nations

Infrastructural Factor:

Infrastructures needed to support the production of goods and sustainability of livelihoods

(a)

$$dv_i = \frac{Soc_i + Econ_i + Infr_i}{3}$$

Drought Risk Evaluation

Drought Risk - Scale Dependency

Drought Risk computed with the contextual approach for different spatial domains

Example for **July 2006** (Drought in NW Europe):

- Normalized SPEI-12 for JULY 2006 (top left)
- Vulnerability and exposure normalized at global level (top right)
- Vulnerability and exposure normalized at European level (bottom left)
- Difference between both (Europe-Global) (bottom right)

Drought Risk: Hybrid/ convergent approach

- Risk assessment based on a combined statistical relation between impact occurrence and hazard/vulnerability factors (stepwise regression)
- Sector dependent
- Potential bias in areas with predominance of impact data or vulnerability factors?

Examples: Blauhut et al. 2016, Nuñez et al, 2017

Hybrid/ convergent approach Example

Risk (LIO) = Hazard x Vulnerability Factors

$$\mathbf{LIO} = \log\left(\frac{LIO_N}{1 - LIO_N}\right) = \alpha_M + \sum_i \left(\beta_{i,M} \cdot H_N\right) + \sum_i \left(\beta_{j,M} \cdot V_N\right)$$

 $\alpha \& \beta$ = model parameters by macro region H_N = selection of hazard indicators by NUTS region

≤ 2 Hazard Indicators ≤ 3 Vulnerability factors

- V_N = selection of vulnerability factors by NUTS region
- Hazard predictors: mix of long and short temporal aggregation, majority covers summer month May- Aug (SPEI)
- Vulnerability factors: 40% describe landsurface characteristics related to agriculture & semi natural areas; 16% describe adaptive capacity
- ~50% of vulnerability factors quantify water resources or usage

Blauhut et al. 2016

Drought Risk Maps (Hybrid approach)

Outline

•

- **1.** Presentation
 - JRC and DRMKC

2. Introduction

- Drought and drought impacts
- 3. Drought trends
 - Recent past and projections
- 4. Drought Risk
 - Risk Concept
- 5. Approach to Drought Risk Assessment
 - Output, Contextual and Hybrid framework
- 6. Implementation Example (dynamic Contextual risk analysis)
 - Global Drought Observatory

Global Drought Observatory (GDO)

- JRC development for Emergency Response Coordination Centre (ERCC) at DG ECHO
- Targeted monitoring, forecasting and impact assessment for different sectors
- Based on sectorial risk assessment (hazard, exposure, vulnerability)
- Landing page: global map of RDrI for the Agricultural sector

Global Drought Observatory (GDO) What is behind the GDO Risk of Drought Impact?

(A) Drought Hazard

- Rainfall Anomalies
- Vegetation Vigor
- Soil Moisture Anomalies
- Temperatures
- Low Flows
 - (B) <u>Exposure</u>
 - Population Density
 - Agricultural area
 - Waterways, Reservoirs, Power plants, etc.
 - (C) Societal Vulnerability
 - Social Indicators (Age, Poverty, Infant Mortality, etc.)
 - Economic Indicators (GDP, Energy Consumption, etc.)
 - Infrastructural Indicators (Irrigation, Accessibility, etc.)

Global Drought Observatory (GDO)

	JOINT RESEARCH CENTRE European GDO - Global Drought Observatory		
	European Commissions JRCS (EES) COD2 Clobal Drought 3 Mag/dewor GLOBAL DROUGHT Map Risk of Drought Impact	Identified of Drought Impact Cancol (RW) High Medium Low Medium Identified of (RW) Identified of (RW) <t< th=""><th> Dynamic Risk Ass. Hierarchical list of affected countries (visible on the map) </th></t<>	 Dynamic Risk Ass. Hierarchical list of affected countries (visible on the map)
49	2000 km 1000 m Copyright, European Union, 2015. Maps created by EC-JRC. The boundaries and names	(C) 2015 - Global Drought Observatory (JRC - EC)	European Commission

Global Drought Observatory (GDO) Country Summary

Global Drought Observatory (GDO) Report Generation

+ selectable pie charts on land cover types and other surface characteristics in the affected areas

Global Drought Observatory (GDO) **Probabilistic Forecasting**

Commission

Global Drought Observatory (GDO) Linking to Media News

Global Drought Observatory (GDO) Take home messages (1)

- Drought has wide-spread impacts in many different sectors
- Reducing drought impacts requires a paradigm shift from crisis management to risk management
- Drought risk management requires sector specific Drought Risk Assessments (DRA)
- The critical part of DRA is linked to the vulnerability assessment
- Approaches to DRA include:
 - Impact- based approach (outcome) \rightarrow statistical
 - Factor based approach (contextual) \rightarrow conceptual model
 - Hybrid approach \rightarrow combination of both

Global Drought Observatory (GDO) Take home messages (2)

- The impact-based approach suffers from a lack of high-quality, consistent and quantitative impact data
- The contextual approach is scale dependent and includes subjective factor weighting → expert & stakeholder knowledge
- The collection of qualitative and quantitative impact data is crucial for improving risk assessments
- Adequate spatially and temporally resolved exposure and socio-economic data are crucial for the contextual vulnerability assessments
- Sector specific conceptual risk models need to be developed

Any questions?

You can find me at: gustavo.naumann@ec.europa.eu

References

- Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., ... & Crossman, N. D. (2016). Drought indicators revisited: the need for a wider consideration of environment and society. Wiley Interdisciplinary Reviews: Water, 3(4), 516-536.
- Blauhut, Veit, Lukas Gudmundsson, and Kerstin Stahl. "Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts." Environmental Research Letters 10, no. 1 (2015): 014008.
- Blauhut, Veit, Kerstin Stahl, James Howard Stagge, Lena M. Tallaksen, Lucia De Stefano, and Jürgen Vogt. "Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors." Hydrology and Earth System Sciences 20, no. 7 (2016): 2779-2800.
- Davey, M.K., Brookshaw, A. and Ineson, S., 2014. The probability of the impact of ENSO on precipitation and near-surface temperature. Climate Risk Management, 1, pp.5-24.
- EC, European Commission, 2007. Drought Management Plan Report, Including Agricultural, Drought Indicators and Climate Change Aspects. Technical Report 2008–023, Water Scarcity and Droughts Expert Network, DG Environment.
- Global Drought Observatory. http://edo.jrc.ec.europa.eu/gdo
- Iglesias, A., Moneo, M., & Quiroga, S. (2009). Methods for evaluating social vulnerability to drought. In Coping with Drought Risk in Agriculture and Water Supply Systems (pp. 153-159). Springer, Dordrecht.
- Naumann G., P. Barbosa, Garrote L., Iglesias A., and Vogt J., 2014. Exploring drought vulnerability in Africa: an indicator based analysis to be used in early warning systems, Hydrol. Earth Syst. Sci., 18, 1591-1604, doi:10.5194/hess-18-1591-2014
- Naumann G., Spinoni J., J. Vogt and P. Barbosa, 2015. Assessment of drought damages and their uncertainties in Europe. Environmental Research Letters, 10 124013. doi:10.1088/1748-9326/10/12/124013
- Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R. A., Carrao, H., Spinoni J., Vogt J., & Feyen, L., 2018a. Global changes in drought conditions under different levels of warming. Geophysical Research Letters.
- Naumann G, Vargas W, Barbosa P, V. Blauhut, Vogt J, 2018b: Dynamics of socio-economic exposure and drought impacts of recent droughts in Argentina. Submitted.
- Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., & Vogt, J., 2014. World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology, 34(8), 2792-2804.
- Spinoni et al., 2018a. Global collection of meteorological drought events from 1951 to 2016. Submitted
- Spinoni et al., 2018b.Future global meteorological drought hotspots. A study based on CORDEX data. Submitted

References

Blauhut, V., Stahl, K., Vogt, J. (2015). Assessing Risk by Impacts: A Probabilistic Approach for Drought Risk Assessment in Europe. EGU 2015

Stahl, K., Kohn, I., De Stefano, L., Tallaksen, L.M., Rego, F.C., Seneviratne, S.I., Andreu, J. & Van Lanen, H.A.J. (2015) An impact perspective on pan-European drought sensitivity. p. 329-334. In: Andreu, J. et al (Eds). Drought research and science policy interfacing. Taylor & Francis, London.

Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52.

Tallaksen, L., M. and Van Lanen, H. A. J., 2004. Hydrological Drought. Processes and Estimation Methods for Streamflow and Groundwater, Developments in Water Science. Elsevier Science B.V., Amsterdam.

UNISDR, 2004. Living with Risk: A Global Review of Disaster Reduction Initiatives. Review Volume 1. United Nations International Strategy for Disaster Reduction, Geneva, Switzerland.

van Lanen, H., Vogt, J., Andreu, J., Carrao, H., De Stefano, L., Dutra, E., Feyen, L., Forzieri, G., Hayes, M., Iglesias, A., Lavaysse, C., Naumann, G., Pulwarty, R., Spinoni, J., Stahl, K., Stefanski, R., Stilianakis, N., Svoboda, M., Tallaksen, L., 2017. Climatological risk: droughts. In: Poljanšek, K., Marín Ferrer, M., De Groeve, T., Clark, I. (Eds.). Science for disaster risk management 2017: knowing better and losing less. EUR 28034 EN, Publications Office of the European Union, Luxembourg, Chapter 3.9.

Werner M., S. Vermooten, A. Iglesias, R. Maia, J. Vogt, and G. Naumann, 2015. Developing a framework for drought forecasting and warning: results of the DEWFORA project. Drought: Research and Science-Policy Interfacing, 01/2015: chapter 41: pages 279-285; CRC Press, Taylor and Francis Group.

Wilhite D.A. (Ed.), 2005. Drought and Water Crises: Science, Technology, and Management Issues. Taylor and Francis, Boca Raton, 406, CRC Press 2005.

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.

