

Joint homogenization of time series with unequal length by applying the MASH procedure

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY Beatrix Izsák^{1,2}, Mónika Lakatos¹, Rita Pongrácz⁴, Tamás Szentimrey³, Olivér Szentes¹

¹ Hungarian Meteorological Service, Unit of Climatology, Hungary
² ELTE Faculty of Science, Doctoral School of Earth Sciences Budapest, Hungary
³ Varimax Limited Partnership Budapest, Hungary

⁴ ELTE Institute of Geography and Earth Sciences, Department of Meteorology Budapest, Hungary

The Hungarian Meteorological Service (OMSZ) is celebrating its 150th birthday this year.

On the homepage of the Hungarian Meteorological Service we have published 4 stations data series from 1870 until 2020. We used MASH for quality control of the archive daily data series.

Creating a representative database for the study of Hungary's climate

Creating the representative database we have to use as much data and as long data series as possible!

The research is supported by the ÚNKP-20-3 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Found.

A spatially and temporally representative climatological database is created using MASH and MISH software:

MASHv3.03

(Multiple Analysis of Series for Homogenization; Szentimrey, T.)

For homogenization, quality control and missing value completion of station daily data series

MISHv1.03

(Meteorological Interpolation based on Surface Homogenized Data Basis; *Szentimrey, T.and Bihari, Z.*)

For gridding (interpolation) of homogenized daily data series http://www.met.hu/en/omsz/rendezvenyek/homogenization_interpolation/ software/

The main features of MASHv3.03

Homogenization of monthly series:

- Relative homogeneity test procedure.
- Step by step iteration procedure: the role of series (candidate, reference) changes step by step in the course of the procedure.
- Additive (e.g. temperature) or multiplicative (e.g. precipitation) model can be used depending on the climate elements.
- Including Quality Control and missing data completion.
- Providing the homogeneity of the seasonal and annual series as well.
- Meta data (probable dates of break points) can be used automatically.
- The homogenization results can be evaluated on the basis of verification tables generated automatically during the procedure.

Homogenization of daily series:

Based on the detected monthly inhomogeneities.
Including Quality Control and missing data completion for daily data.
The quality control results can be evaluated by test tables generated automatically during the procedure.

Problem: how do we homogenize 3 time series of different lengths together?

When the station network is upgraded and we have short data series besides the long series, the common section must be homogeneous together with the long as well as with the short data series, while the two or three systems have to be homogeneous themselves too. MASH is able to fulfill these criteria, as it is based on hypothesis testing and it involves an iteration procedure. The solution is that we synchronize the common part's inhomogeneities within three different MASH processing for the three datasets with different length.

MASH is an iteration procedure, the series are examined and adjusted many times, therefore the homogenization of the new system can be considered as a continuation of the earlier homogenization procedure.

The **test of hypothesis** and throughout this test, the **test statistics** enable us to use the former results.

Verification of homogenization

- TEST STATISTICS FOR SERIES INHOMOGENEITY
 - Test Statistics After Homogenization
 - Test Statistics Before Homogenization
 - Statistics for Estimated Inhomogeneities
- CHARACTERIZATION OF INHOMOGENEITY
 - Relative Estimated Inhomogeneities
 - Relative Modification of Series
 - Lower Confidence Limit for Relative Residual Inhomogeneities
- REPRESENTATIVITY OF STATION NETWORK
- EVALUATION OF META DATA
 - TEST STATISTICS
 - REPRESENTATIVITY OF META DATA

Daily mean temperature

Daily precipitation

Homogenization with 3 MASH systems

Steps:

- 1. -MASH1: monthly data homogenization
- 2. -Cut out the inhomogeneities of the common parts and insert them into MASH2, MASH3
- 3. -MASH2: monthly data homogenization
- 4. -Cut out the inhomogeneities of the common parts and insert them into MASH1, MASH3
- 5. -MASH3: monthly data homogenization
- 6. -Cut out the inhomogeneities of the common parts and insert them into MASH1, MASH2
- 7. -If the statistics in MASH1 are acceptable go to step 8
 - If not, go to step 1
- 8. If the statistics in MASH2 are acceptable go to step 9
 - If not, go to step 3
- 9. Homogenization of daily data in MASH1, MASH2, MASH3
- 10. Compilation of homogenized daily data from MASH1, MASH2, MASH3
- 11. –End

Location of the temperature stations

Location of the precipitation stations

Some preliminary results: v17

MASH1

Mean temperature, annual values

Statistics of the 11 station series from 1871 to 2019:

Test Statistics Before Homogenization

Series	Index	TSB	Series	Index	TSB	Series	Index	TSB
63413	10	2042.24	56312	8	1864.82	55808	7	1194.04
44121	4	851.32	58116	9	478.47	48101	5	302.67
64711	11	285.2	27815	3	203.58	17809	2	177.6
53215	6	118.82	13704	1	116.05			

AVERAGE: 694.07

Null hypothesis: the examined series are homogeneous. Critical value (significance level 0.05): 22.05 Test statistics (TS) can be compared to the critical value.

Some preliminary results: v17

MASH2

Mean temperature, annual values 25 stations, 1901-2019

1. Test Statistics After Homogenization							
Series	Index	TSA	Series	Index			

Series	Index	ISA	S	eries	Index	ISA		beries	Index	IS/	A
17809	Э	4	68.56	44121		12	57.04	34234	1	8	54.3
34808	3	9	51.14	64704		25	45.97	63411	L	24	42.53
4710	7	16	38.1	36100		10	35.27	27815	5	7	34.97
4810	1	17	34.16	58113		23	33.55	16414	1	3	32.15
55808	3	20	29.09	15310)	2	25.38	44214	1	13	23.83
2650	5	6	23.62	13704		1	23.17	56300)	21	22.65
5731	1	22	22	52744		18	21.05	39113	3	11	19.75
44400	C	14	19.18	46400)	15	18.84	23201	L	5	17.88
5321	5	19	15.17								
AVERAGE	32.	37									

2. Test Statistics Before Homogenization

Series	Index	TSB		Series	Index	Т	SB	Series	Index	Т	SB
56300) 2	21	2014.2	55808	3	20	1485.39	3610	0	10	1023.77
26505	5	6	895.57	58113	3	23	876.65	6 4710	7	16	671.48
52744	1 1	18	607.99	48101	L	17	573.09	3423	4	8	492.8
46400) 1	15	447.74	39113	3	11	422.55	6470	4	25	421.06
44214	1 1	13	357.59	57311	L	22	303.46	6 4440	0	14	301.43
23201	L	5	239.63	44121	L	12	228.59) 1780	9	4	214.64
27815	5	7	192.58	15310)	2	188.04	1641	4	3	157.46
13704	1	1	154.99	63411	L	24	118.2	3480	8	9	107.52
53215	5 1	19	93.73								
AVERAGE:	503.6	51				Cr:+:/		laignifia			051. 21 -

Critical value (significance level 0.05): 21.76

Some preliminary results: v17

MASH3

Mean temperature, annual values, 58 stations, 1971-2019

1. Test Statistics After Homogenization

Series	Index	TSA	Ser	ies Inc	dex T	SA S	eries	Index ⁻	ΓSA
247	709	31	70.53	28700	34	68.48	44121	12	63.67
241	L20	30	60.88	46400	15	48.43	64704	25	47.93
527	744	18	44.24	55507	52	41.98	58300	53	40.52
178	309	4	37.54	26505	6	35.62	58113	23	34.38
153	310	2	34.22	25408	32	33.51	23703	29	33.14
721	103	57	32.97	56300	21	30.85	36407	38	29.62
665	519	56	29.52	53521	49	27.83	34234	8	27.45
173	306	28	27.14	36100	10	26.56	14707	26	26.48
573	311	22	25	42602	42	24.95	26306	33	24.84
617	709	54	24.52	27815	7	24.28	44214	13	23.3
733	313	58	23.08	63411	24	22.98	34808	9	22.75
351	L16	36	21.82	52517	47	21.29	44400	14	21.09
558	308	20	20.33	36500	39	19.62	54309	50	19.02
532	215	19	18.81	51705	46	18.1	43613	43	17.57
164	414	3	17.09	47606	45	16.85	48101	17	16.5
391	L13	11	14.65	13704	1	14.09	16204	27	13.99
445	527	44	13.6	54600	51	13.45	37402	40	13.32
657	700	55	13.28	35418	37	12.76	38605	41	12.24
471	L07	16	11.72	32805	35	11.54	53101	48	7.88
232	201	5	5.57						
AVERAGE	:	26.82							

Critical value (significance level 0.05): 20.86

2. Test Statistics Before Homogenization

Series	Index	TSB	Series	Index	TSB	Series	Index	TSB
4361	3 43	1764.94	48101	17	522.25	26505	6	452.45
1470	7 26	422.65	72103	57	415.65	52744	18	372.61
4260	2 42	372.58	61709	54	364.53	35418	37	327.96
6651	9 56	326.88	57311	22	310.23	44214	13	287.73
5550	7 52	285.89	65700	55	267.57	58113	23	264.69
3610	0 10	264.62	55808	20	248.52	24120	30	235.25
3280	5 35	212.4	36407	38	203.49	35116	36	199.69
5630	0 21	191.67	24709	31	180.63	34808	9	178.75
4412	1 12	164.74	15310	2	150.98	38605	41	146.45
5251	7 47	139.71	27815	7	130.12	64704	25	129.89
4760	6 45	128.6	44400	14	111.78	58300	53	110.26
4452	7 44	106.99	46400	15	97.1	53521	49	95.27
7331	3 58	92.13	51705	46	75.51	54309	50	72.6
6341	1 24	66.47	37402	40	65.75	47107	16	64.86
3423	4 8	57.33	54600	51	56.74	23703	29	53.04
5321	5 19	51.71	23201	5	51.63	16414	3	47.7
1370	4 1	45.25	25408	32	44.91	28700	34	36.89
3650	0 39	35.54	26306	33	28.81	39113	11	27.86
1730	6 28	27.53	17809	4	20.26	16204	27	16.47
5310	1 48	13.26						

AVERAGE:

93.75

MASH3

Critical value (significance level 0.05): 20.86

MASH1: 11 stations 1871-2019

- Critical value (significance level 0.01): 28.00
- Test Statistics Before Homogenization AVERAGE: 51.10

MASH2: 131 stations 1901-2019

- Critical value (significance level 0.01): 28.00
- Test Statistics Before Homogenization AVERAGE: 63.24
- Test Statistics After Homogenization **AVERAGE: 27.56**

MASH3: 461 stations 1951-2019

- Critical value (significance level 0.01): 30.00
- Test Statistics Before Homogenization AVERAGE: 42.73
- Test Statistics After Homogenization AVERAGE: 26.79

Test statistics: PRECIPITATION

Homogenized and raw annual average temperature time series from 1870 to 2019, the values are in °C

Values of change (° C) over the total period (1870-2019) obtained by linear trend estimation based on homogenized and raw station data sets

(values are significant in all cases on the significance level of 0.1)

	SOPRON	BUDAPEST	SZEGED	NYÍREGYHÁZA
Homogenized	1.43	1.69	1.48	1.50
Raw	1.82	2.53	0.60	1.10
Difference	-0.39	-0.84	0.88	0.40

Izsák, B., Szentimrey, T. To what extent does the detection of climate change in Hungary depend on the choice of statistical methods?. *Int J Geomath* **11**, 17 (2020). https://doi.org/10.1007/s13137-020-00154-y

Thank you for your attention!

