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Editorial 
 

Spatial interpolation techniques in climatology and meteorology 
 
Interpolation plays a growing role in the meteorology and climatology. Reconstruction of 
meteorological fields, developed data quality control procedures, and gridded databases 
require interpolation methods. The increasing needs indicate two directions for development. 
From one side, the diverse use of interpolation demands more accurate and complex methods, 
and from the other side, the common everyday’s application has a request of simple useable 
software, usually as an option of free or commercial software. To overbridge this situation, a 
COST Action was implemented (COST 719: The Use of Geographic Information System in 
Climatology and Meteorology, end date 2006). The first Conference on the Spatial Interpolation 
Techniques in Climatology and Meteorology was organized in the frame of this Action. The 
proceedings were published by the COST Office. 

Since there, several international projects deal with interpolation problems, at least 
partly. The request was arisen for an open meeting to overview the developments in the 
interpolation techniques. Therefore, the Hungarian Meteorological Service organized the 
conference second time in 2009. 

The participants of the conference agreed, that the presentations could have a possibility 
to be published in a special issue of the quarterly journal of the Hungarian Meteorological 
Service, additionally to the abstract volume distributed widely among the other scientists 
working on the field of interpolation methods.  

Finally, eight articles were gathered, and accepted for publication, which are covering 
wide range of topics on methodological issue, interpolation processes in international data 
bases, data quality control, applied research like hydrology, gridded data bases, interpolation 
in climate projections. These papers give about one-fourth of the conference presentations. 

We strongly believe, that similar workshops and conferences are needed to avoid the 
misuse of interpolation method, understand and follow the development of interpolation 
methods, give new ideas for further scientific developments, involve new applied areas, and 
show new practices. Dissemination of best practices has benefit not only for the adopting, but 
the donor parties as well, they are for the common use and development. 

Therefore, we are extremely grateful to the Editor-in-Chief of IDŐJÁRÁS supporting 
the progress on the field of interpolation, thank to the authors of the articles for their high 
scientific level work, and also to the reviewers supporting the improvement of papers with 
their critical comments and recommendations keeping the high standards of the journal. We 
have to underline the hard work of the Executive Editor of the journal, the present volume 
could not be published without it. Therefore, we express our thanks together with the authors 
of the papers for that. 
 

Sándor Szalai 
Guest Editor 

 

Szent István University, Gödöllő, Hungary 
szalai.sandor@mkk.szie.hu 
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Abstract —The paper focuses on the basic mathematical and theoretical questions of 
spatial interpolation of meteorological elements. Nowadays, in meteorology the most 
often applied procedures for spatial interpolation are the geostatistical interpolation 
methods built also in GIS software. The mathematical basis of these methods is the 
geostatistics that is an exact but special part of the mathematical statistics. However, 
special meteorological spatial interpolation methods for climate elements also exist, such 
as Gandin optimum interpolation as well as the MISH method developed at the Hungarian 
Meteorological Service in the last few years. These meteorological interpolation methods 
are also based on the mathematical statistical theory. Therefore, the basic type of the 
interpolation formulas applied by the geostatistical and meteorological methods are 
similar. One of our intentions is to present some comparison of the various kriging 
formulas, such as ordinary, universal, regression, residual, detrended, etc., ones. In 
general, these formulas can be derived from the multiple linear regression formula by 
using the generalized-least-squares estimation for certain unknown parameters. But the 
main difference between the geostatistical and meteorological interpolation methods can 
be found in the amount of information used for modeling the necessary statistical 
parameters. In geostatistics, the usable information or the sample for modeling is only the 
system of predictors, which is a single realization in time, while in meteorology we have 
spatiotemporal data, namely the long data series which form a sample in time and space as 
well. The long data series is such a speciality of the meteorology that makes possible to 
model efficiently the statistical parameters in question. 
 
Key-words: spatial interpolation, geostatistics, statistical climatology, data series, 

geostatistical interpolation, meteorological interpolation 
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1. Introduction 

First let us consider the abstract scheme of the meteorological examinations. The 
initial stage is the meteorology that means the qualitative formulation of the 
given problem. The next stage is the mathematics in order to formulate the 
problem quantitatively. The third stage is to develop software on the basis of the 
mathematics. Finally, the last stage is again the meteorology that is the 
application of the developed software and evaluation of the obtained results. In 
the practice, however, the mathematics is sometimes neglected. Instead of 
adequate mathematical formulation of the meteorological problem, ready-made 
software are applied to solve the problem. Of course, in this case the results are 
not authentic either. Allow me a not word for word citation from John von 
Neumann: without quantitative formulation of the meteorological questions, we 
are not able to answer the simplest qualitative questions either. 

Concerning our topic we have the following question. What kind of 
mathematics of spatial interpolation is adequate for meteorology? Nowadays, 
the geostatistical interpolation methods built in GIS software are applied in 
meteorology. The mathematical basis of these methods is the geostatistics that is 
an exact but special part of the mathematical statistics. The speciality is 
connected with the assumption that the data are purely spatial. To illustrate this 
problem, here are some quotations from the valuable book of Noel A.C. Cressie: 
“Statistics for Spatial Data” (Cressie, 1991). On page 29: “The first part of this 
book is concerned with modeling data as a (partial) realization of a random 
process }:)({ DZ ∈ss ….”. Explanation of the sentence is that the data are 
purely spatial data, since D  is a space domain. On page 30: “It is possible to 
allow for spatiotemporal data by considering the variable Z(s, t), but for most of 
this book it will be assumed that the data are purely spatial…”. Last, on page 53: 
“Statistically speaking, some further assumptions have to be made. Otherwise, 
the data represent an incomplete sampling of a single realization, making 
inference impossible.” It means “incomplete sampling” in space, “single 
realization” in time. 

Consequently, as we see it, the geostatistical methods can not efficiently 
use the meteorological data series, while the data series make possible to obtain 
the necessary climate information for the interpolation in meteorology. 

2. Mathematical statistical model of spatial interpolation 

In practice, many kinds of interpolation methods exist, therefore, the question is 
the difference between them. According to the interpolation problem, the 
unknown predictand Z(s0, t) is estimated by use of the known predictors Z(si, t) 

),,...,1( Mi =  where the location vectors s  are the elements of the given space 



 3 

domain ,D  and t  is the time. The vector form of predictors is 
)].,(),.....,,([)( 1

T tZtZt MssZ =  The type of the adequate interpolation formula 
depends on the probability distribution of the meteorological element in 
question. In this paper only the linear or additive formula is described in detail, 
which is appropriate in case of normal probability distribution. However, perhaps 
it is worthwhile to remark that for case of a quasi lognormal distribution (e.g., 
precipitation sum), we deduced a mixed additive multiplicative formula which is 
used also in our MISH system, and it can be written in the following form, 
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where the interpolation parameters are ,0,0 >> iqϑ ),,...,1(0 Mii =≥λ  and 

1
1

=∑
=

M

i
iλ .  

 
2.1. Statistical parameters 

In general, the interpolation formulas have some unknown interpolation 
parameters which are known functions of certain statistical parameters. At the 
linear interpolation formulas the basic statistical parameters can be divided into 
two groups, such as the deterministic and the stochastic parameters.  

The deterministic or local parameters are the expected values 
).,...,0()),(E( Miti =sZ  Let ))(E( tZ  denote the vector of expected values of 

predictors, i.e., ))].,((E)),....,,((E[))(E( 1
T tZtZt MssZ =  

The stochastic parameters are the covariance or variogram values 
belonging to the predictand and predictors, such as 

c  : predictand-predictors covariance vector,  
C : predictors-predictors covariance matrix,  
γ :  predictand-predictors variogram vector, 

Γ : predictors-predictors variogram matrix.  
The covariance is preferred in mathematical statistics and meteorology, while 
the variogram is preferred in geostatistics. Here is a quotation from the chapter 
“Geostatistics” of the mentioned book of Noel A.C. Cressie (Cressie, 1991, p. 
30.). “The cornerstone is the variogram, a parameter that in the past has been 
either unknown or unfashionable among statisticians.” In our opinion, the main 
reason of this reluctance is that the covariance is a more general statistical 
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parameter than the variogram. The variogram values, can be written as functions 
of the covariance values and it is not true inversely. 
 
2.2. Linear meteorological model for expected values  

At the statistical modeling of the meteorological elements we have to assume, 
that the expected values of the variables are changing in space and time alike. 
The spatial change means that the climate is different in the regions. The 
temporal change is the result of the possible global climate change. Consequently, 
in case of linear modeling of expected values, we assume that 
 

)()()),(E( ii EttZ ss += μ  ),,...,0( Mi =                           (2) 
 
where )(tμ  is the temporal trend or the climate change signal and )(sE  is the 
spatial trend. We emphasize, that this spatiotemporal model for expected values 
is different from the classic models used in geostatistics or by the multivariate 
statistical methods. As regards the geostatistics, there are purely spatial data 
assumed in general. 
 
2.3. Linear regression formula  

In essence, the multiple linear regression formula is the theoretical basis of the 
various linear interpolation methods. The multiple linear regression formula 
between predictand ),( 0 tZ s  and predictors )(tZ  can be written as  
 

)))((E)(()),E(Z(),( 1T
00 ttttZ LR ZZCcss −+= −

∧
                  (3) 

 

and ),( 0 tZ LR s
∧

 is the best linear estimation that minimizes the mean-square 
prediction error. Consequently, the linear regression formula would be the 
optimal linear interpolation formula concerning the mean-square prediction 
error. In respect of application, however, problems arise from the unknown 
statistical parameters ),...,0()),E(Z( 0 Mit =s  and c , C . Assuming the mete-
orological model, Eq. (2), for the expected values, Eq. (3) can be written as 
 

)))(()(())()((),( 1T
00 E1ZCcss +−++= −

∧
ttEttZ LR μμ ,              (4) 

 
where )](),.....,([ 1

T
MEE ssE =  and vector 1  is identically one. As it can be 

seen, the main problem is the estimation of the unknown climate change signal 
)(tμ , if we want to apply the optimal linear regression interpolation formula. 
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3. Geostatistical interpolation methods 

The various geostatistical interpolation formulas can be obtained from the linear 
regression formula, Eq. (3), by the application of the generalized-least-squares 
estimation for the expected values. The type of kriging formulas depends on the 
model assumed for the expected values. 
 
3.1. Ordinary kriging formula  

The ordinary kriging formula is a special case of the universal kriging formula.  
The assumed model for the expected values is ),...,0()()),(E( MittZ i =≡ μs , 
thus, there is no spatial trend. The generalized-least-squares estimation for )(tμ  
by using only the predictors )(tZ  may be expressed in the form 

( ) )()(ˆ 1T11T ttgls ZC11C1 −−−=μ . Substituting the estimate )(ˆ tglsμ  into the 
linear regression formula, Eq. (3), we obtain the ordinary kriging formula as 
 

∑=−+=
=

−
∧ M

i
iiglsglsOK tZttttZ

1

1T
0 ),())(ˆ)(()(ˆ),( s1ZCcs λμμ ,            (5) 

where ∑ =
=

M

i
i

1
1λ . 

 
The vector of weighting factors ],..,[ 1

T
Mλλ=λ  can be written in covariance 

form 
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−

−
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⎠
⎞⎜

⎝
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+= C
1C1
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1cλ ,                                     (6) 

or equivalently in variogram form  

( ) 1
1T

1T
TTT 1 −

−

−
⎟
⎠
⎞⎜

⎝
⎛ −

+= Γ
1Γ1
γΓ1

1γλ .                                    (7) 

The unknown variogram values γ , Γ  preferred in geostatistics are modeled 
according to the Section 3.3. 
 
3.2. Universal kriging formula 

The universal kriging formula is the generalized case of the ordinary kriging 
formula. The model assumption is that the expected values may be expressed as  

∑=
=

K

k
ikki xtt

1
)()()),E(Z( ss β  ),...,0( Mi = , that is in vector form  
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)()),(E( T
0 ttZ βxs = , )())(E( tt βXZ = , where Xx ,  are given supplementary 

deterministic model variables. 
The generalized-least-squares estimation for coefficient vector )(tβ , by 

using only the predictors )(tZ , can be written in the form 

( ) )()(ˆ 1T11T ttgls ZCXXCXβ −−−= . It is to be remarked, that in this way the 
spatial trend )(sE  according to Eq. (2) is modeled also by using only the 
predictors )(tZ . Substituting the estimates )(ˆT tglsβx , )(ˆ tglsβX  into the linear 
regression formula, Eq. (3), we obtain the universal kriging formula as 
 

∑=−+=
=

−
∧ M

i
iiglsglsUK tZttttZ

1

1TT
0 ),())(ˆ)(()(ˆ),( sβXZCcβxs λ ,          (8) 

where TT xXλ = . 
 

The vector of weighting factors ],..,[ 1
T

Mλλ=λ  can be written in covariance 
form 

( ) ( ){ } 1
T

1T11TT −−−− −+= CcCXxXCXXcλ , 

or equivalently in variogram form 

( ) ( ){ } 1
T

1T11TT −−−− −+= ΓγΓXxXΓXXγλ . 

The unknown variogram values γ , Γ  preferred in geostatistics are modeled 
according to Section 3.3.  
 
3.3. Modeling of unknown statistical parameters in geostatistics 

In geostatistics, only the predictors ),...,1(),( MitZ i =s  constitute the usable 
information or the sample for modeling of variogram values γ , Γ . It means we 
have only a single realization in time for modeling of the statistical parameters 
in question. In order to solve the problem of absence of temporal data, some 
assumptions about the statistical structure are made that is some simplification 
of the problem. For example, such assumptions are the intrinsic stationarity or 
second-order (weak) stationarity, semivariogram )())(),(( jiji ZZ ssss −=γγ , etc. 

4. Meteorological interpolation 

Similarly to the geostatistical interpolation formulas, an appropriate 
meteorological interpolation formula can be obtained from the linear regression 
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formula, Eq. (3), by the application of the generalized-least-squares estimation 
for the expected values. The key-question is the model assumption for the 
expected values. 

4.1. Meteorological interpolation formula 

The meteorological model, Eq. (2), is assumed namely 
)()()),E(Z( ii Ett ss +=μ ),...,0( Mi = , where )(tμ  is the temporal trend and 

)(sE  is the spatial trend. Supposing that the spatial trend )(sE  is known, we 
apply the generalized-least-squares estimation for temporal trend )(tμ  by using 
the predictors )(tZ  and the spatial trend )](),.....,([ 1

T
MEE ssE = . In this case, 

the generalized-least-squares estimate can be written in the form as 

( ) ))(()(ˆ 1T11T EZC11C1 −= −−− ttE
glsμ . Substituting the estimate )(ˆ tE

glsμ  

into the linear regression formula, Eq. (4), rewritten from Eq. (3) according to 
Eq. (2), we obtain the following interpolation formula:  
 

( ) ( )( )=+−++= −
∧
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00 ttEttZ E

gls
E
glsMI μμ  

))(),(()(
1
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M
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iii EtZE sss λ ,                                 (9) 

where ∑ =
=

M

i
i

1
1λ .                                        

 
The vector of weighting factors ],..,[ 1

T
Mλλ=λ  can be written equivalently in 

covariance and variogram form according to Eqs. (6) and (7). The obtained 
interpolation formula is a detrended or residual interpolation formula that 
includes the spatial trend and the theoretical ordinary kriging weighting factors. 
However, it is not identical with the detrended or residual interpolation method, 
because the interpolation formula as well as the modeling methodology of the 
necessary statistical parameters together defines an interpolation method. For 
example, at the detrended interpolation methods applied in the practice, the 
modeling procedure for the statistical parameters is based on only the predictors 

),...,1(),( MitZ i =s .  

4.2. Possibility for modeling of unknown statistical parameters in meteorology 

According to Eq. (9), where the sum of weighting factors is equal to one, we 
have the following appropriate meteorological interpolation formula 
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1λ  and the covariance form of weighting factors is defined by Eq. 

(6). Consequently, the unknown statistical parameters are the spatial trend 
differences ),...,1)(()( 0 MiEE i =− ss and covariances Cc, . In essence, these 
parameters are climate parameters which in fact means that we could interpolate 
optimally if we knew the climate. The special possibility in meteorology is to 
use the long meteorological data series for modeling of the climate statistical 
parameters in question. The data series make possible to know the climate in 
accordance with the fundamentals of statistical climatology! 
 
4.3. Difference between geostatistics and meteorology in respect of spatial 

interpolation 
 
The main difference can be found in the amount of information used for 
modeling the statistical parameters. In geostatistics, the usable information or 
the sample for modeling is only the predictors ),...,1(),( MitZ i =s  which belong 
to a fixed instant of time, that is a single realization in time. „Statistically 
speaking, some further assumptions about Z have to be made. Otherwise, the 
data represent an incomplete sampling of a single realization, making inference 
impossible.” (Cressie, 1991, p. 53.). The assumptions are, e.g., intrinsic stationarity 
or second-order (weak) stationarity, semivariogram )())(),(( jiji ZZ ssss −=γγ , 
covariogram )()()())(),((cov jijiji CZZ ss0ssCss −−=−= γ , which are some 
simplifications in order to solve the problem of absence of temporal data. While 
in meteorology, we have spatiotemporal data, namely long data series which 
form a sample in time and space as well make the modeling of the climate 
statistical parameters in question possible. If the meteorological stations 

),..,1( Kkk =S  )( D∈S  have long data series, then spatial trend differences 
)()( lk EE SS −  ),...,1,( Klk =  as well as the covariances ))Z(),(Z(cov lk SS  

),...,1,( Klk =  can be estimated statistically. Consequently, these parameters are 
essentially known and provide much more information for modeling than the 
predictors ),...,1(),( MitZ i =s  only.  

5. Software and connection of topics  

Our method MISH (Meteorological Interpolation based on Surface 
Homogenized Data Basis) for the spatial interpolation of surface meteorological 
elements was developed (Szentimrey and Bihari, 2007a,b) according to the 
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mathematical background that is outlined in Section 4. This is a meteorological 
system not only in respect of the aim but in respect of the tools as well. It means 
that using all the valuable meteorological information – e.g., climate and 
possible background information – is required. 

The new software version MISHv1.02 consists of two units that are the 
modeling and the interpolation systems. The interpolation system can be 
operated on the results of the modeling system. In the following paragraphs we 
summarize briefly the most important facts about these two units of the 
developed software. 

Modeling system for climate statistical (deterministic and stochastic) 
parameters: 

• Based on long homogenized data series and supplementary deterministic 
model variables. The model variables may be height, topography, 
distance from the sea, etc.. Neighborhood modeling, correlation model 
for each grid point. 

• Benchmark study, cross-validation test for interpolation error or 
representativity.  

• Modeling procedure must be executed only once before the interpolation 
applications! 

Interpolation system:  

• Additive (e.g., temperature) or multiplicative (e.g., precipitation) model 
and interpolation formula can be used depending on the climate 
elements. 

• Daily, monthly values and many years’ means can be interpolated. 
• Few predictors are also sufficient for the interpolation and there is no 

problem if the greater part of daily precipitation predictors is equal to 0. 
• The interpolation error or representativity is modeled too.  
• Capability for application of supplementary background information 

(stochastic variables), e.g., satellite, radar, forecast data. 
• Data series complementing that is missing value interpolation, 

completion for monthly or daily station data series.  
• Interpolation, gridding of monthly or daily station data series for given 

predictand locations. In case of gridding, the predictand locations are the 
nodes of a relatively dense grid.  

 
As it can be seen, modeling of the climate statistical parameters is a key 

issue to the interpolation of meteorological elements, and that modeling can be 
based on the long homogenized data series. The necessary homogenized data 
series can be obtained by our homogenization software MASHv3.02 (Multiple 
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Analysis of Series for Homogenization; Szentimrey, 1999, 2007). Similarly to 
the connection of interpolation and homogenization, in our conception the 
meteorological questions can not be treated separately. We present a block 
diagram (Fig. 1) to illustrate the possible connection between various important 
meteorological topics. 
 

 
                                                                                                                                      
                                                                                 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

LONG DATA SERIES 

data completion, quality control, 
homogenization (MASH) 
representativity examination of  
a station network with data series 
(inside the network; statistical way)

CLIMATE EXAMINATIONS 

e.g.,  climate change detection 

SPATIAL MODELING OF 
CLIMATE PARAMETERS (MISH) 
local statistical parameters 
stochastic connections 

SHORT DATA SERIES  

data completion 
quality ontrol 
e.g., automatic stations

SPATIAL INTERPOLATION   
for arbitrary location (MISH) 
background information: e.g., 
satellite, radar, forecast data 

REPRESENTATIVITY 
EXAMINATION OF  

ARBITRARY STATION NETWORK 

inside the network 
for arbitrary location  
(network planning) 
e.g.,  automatic stations  

FORECAST 
e.g.,  data assimilation, 
variational analysis 

         : data and method or/and result 
         : only method or/and result 
         : only data  

 
 

Fig. 1. Block diagram for the possible connections between various basic meteorological 
topics and systems. 
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Abstract — Any transformation of a discrete variable into a continuous one is subject to 
uncertainty. Consequently, the identification and assessment of errors is essential for 
avoiding misinterpretations of models describing the spatial distribution of climatic 
parameters. Our study attempts to identify the main sources of errors affecting the 
statistical spatial models of climatic parameters and to assess their impact on the accuracy 
of these models. In particular, we focus on georeference errors, the representativeness of 
the stations network and the related extrapolation problem, the outliers problem, error 
propagation from simple to complex variables, the problems aroused by heterogeneous 
regions.  
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1. Introduction 

Our study derives from previous attempts to model the spatial distribution of 
various climate parameters, which were based, in most cases, on small samples 
of meteorological stations/rain gauges (Patriche, 2007; Patriche et al., 2008). 
Therefore, our conclusions are applied especially to outputs achieved from such 
samples, knowing that the degree of uncertainty rises significantly as the sample 
size used for statistical modeling decreases. 

There are many potential sources of uncertainty, which may be grouped 
into two broad categories: 

• Errors from data pre-processing stage (data quality)  
− Data recording errors / data series gaps; 
− Instrumental errors; 
− Changes in measurements standards; 
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− Change in the location of the station / changes in land use around the 
station. 

• Errors from data processing stage 
− Georeference errors; 
− Errors derived from the spatial representativeness of the stations 

network; 
− Errors induced by the presence of outliers; 
− Errors derived from the heterogeneity of the region; 
− Statistical errors; 
− Cumulated errors from computation of complex parameters (error 

propagation). 
Our study focuses on the errors from the data processing stage. 

2. Georeference errors 

Although simple, the georeference stage is very important. Georeference errors 
refer to errors of the x, y, z coordinates. Misplacements of stations / rain gauges 
points on the map may induce significant errors, especially in highly fragmented 
terrain, when predictors’ values are extracted from raster layers or when local 
interpolators, such as kriging, are used for spatial modeling. The former will 
lead to wrong predictors’ values and, therefore, inaccurate regression models, 
while the latter will generate locally displaced climatic fields.  

The correlation between the stations / rain gauges altitudes and the 
respective DEM (Digital Elevation Model) altitudes may be used for identifying 
possible georeference errors or errors in recording the stations / rain gauges 
altitudes. The correlation should be very good, although not perfect for several 
reasons: the DEM generalizes the altitude information according to its 
resolution; the stations / rain gauges latitude and longitude values are generally 
given in degrees and minutes. Following up the latter issue, if we suppose that 
the seconds are rounded up or down to the closest minute, it actually means that 
we may have a coordinate error of up to 30 seconds, meaning about 900 m for 
latitude and 600 m for longitude, for middle latitudes. These errors double if no 
coordinate rounding was performed and the seconds were just disregarded. 

In the example shown in Fig. 1, extracted from a study attempting to model 
the spatial distribution of mean annual precipitations in Vrancea County, 
Romania (Patriche et al., 2008), we notice one point (Groapa Tufei) situated 
outside the correlation cloud indicating a possible georeference error. The 
recorded altitude for this rain gauge is 125 m, while the DEM altitude for this 
particular location is 355 m. We can see how far the 125 m altitude isoline is, 
along which the rain gauge should be located. There are two possible 
explanations for this error: either the horizontal coordinates of Groapa Tufei are 
wrong, or the recorded altitude is incorrect. Let us now see the potential 
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negative impact of such a georeference error on spatial statistical models of 
precipitations. If the real altitude of Groapa Tufei is 125 m, so the recorded 
altitude is correct, but the horizontal coordinates are wrong, then this point may 
be used for regression analysis, provided that neither DEM altitude values nor 
other derived predictors’ values are used for models computation. In a 
geostatistical approach (ordinary kriging, residual kriging, etc.) it is not 
advisable to include such misplaced points, because they will misplace, in their 
turn, the precipitation values. Still, if the value of a misplaced point is similar to 
those of the neighbouring points, as it is in our case, the error induced by the 
georeference error may be small enough, and the respective point may be kept.  
 

 
 

Fig. 1. Revealing two georeference errors for a sample of rain gauges situated in Vrancea 
County, Romania (Patriche et al., 2008). 

3.  Spatial representativeness of the stations network and 
the extrapolation problem 

The spatial representativeness of the meteorological stations / rain gauges 
network is an important issue which needs to be addressed in a preliminary 
stage, as it constitutes a potential source of errors. Theoretically, the spatial 
distribution of the meteorological network should be well-balanced, in order to 
grasp all the meteorological and climatological aspects of a territory. However, 
in most cases, the spatial representativeness of the stations network is more or 
less inappropriate, due to both its feeble density and its biased location, mainly 
in valley bottoms. 

The representativeness of the meteorological network in relation with the 
potential predictors may be visualized and evaluated by comparing the predictors’ 
histograms with the histograms of the same predictors, which are based on the 
predictors’ values associated to the meteorological stations / rain gauges. 

An example is given in Fig. 2 for the altitudinal representativeness for a 
sample of meteorological stations situated in eastern Romania. In an ideal 
situation, the curves of the cumulated histograms, derived from the DEM and 
the stations’ altitudes, should overlap. However, we notice the shortage of 
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stations between 300 m and 350 m of altitude. Also, we observe the lack of 
stations at lower altitudes (< 59 m) and especially at higher altitudes, where the 
highest meteorological station is situated at 391 m of altitude, while the terrain 
altitudes go as high as 1071 m. As a consequence, we are forced to extrapolate 
the altitude-based regression models in these areas. As the extrapolation may 
induce errors, we need to give a special attention to these areas and to consider 
carefully the reliability of the estimated values. 

 

 
 
Fig. 2. Assessment of spatial representativeness of stations network by comparing 
frequencies of predictors’ values for station points and for the whole region. Example 
from eastern Romania (Moldavia) for altitude representativeness for a sample of 28 
stations.  

 
Fig. 3 shows an example in which the extrapolation of the regression model 

should be avoided (Patriche et al., 2008). The mean annual precipitation – 
altitude regression model, elaborated for Vrancea County (Romania), was based 
on a sample of 34 rain gauges. The westernmost mountainous part of the region 
is uncovered by rain gauges, meaning that we must extrapolate our regression 
model there, if we want to estimate the mean annual precipitation values for this 
part as well. Performing the extrapolation up to 1770 m of altitude, we estimate 
precipitation values of up to 1463 mm. Such estimated values are, in our 
opinion, unrealistic. If the extrapolation is unreliable, then we should confine 
ourselves with the calibration area of our model. Taking into account that the 
highest rain gauge altitude is 540 m, we recommend that the study region should 
not extend over 700 m (Fig. 3, black line). Therefore, the entire westernmost 
part of our region should be excluded from the final map because of 
extrapolation uncertainty. 
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Fig. 3. Avoiding extrapolation. An example from Vrancea County (Romania) for mean 
annual precipitations. 

4. The outliers’ problem 

An outlier is a point value showing a significant deviation from the statistical 
model (therefore, marked by a high residual value), corresponding to points 
(meteorological stations, rain gauges) which mark spatial anomalies for the 
analyzed parameter’s distribution (e.g., foehnization areas, areas of orographic 
enhancement of precipitations, temperature inversion areas, etc.). Such a “rebel” 
value may be also an error value, and this possibility must be checked out. If no 
error is identified then we should proceed to the assessment of the degree in 
which this value is altering the statistical models, mainly regression models. 
This is happening in the case of the regression analysis, because it is used 
mainly as a global interpolation method, and the regression itself is incapable to 
render spatial anomalies. If such spatial anomalies exist, then the integration 
within the statistical model of values describing these anomalies may 
significantly alter the regression equations, which, therefore, become unreliable. 

From the viewpoint of their influence over the regression models, we may 
distinguish two types of outliers: 

•  Outliers showing high residuals but with similar values of the real 
residuals and deleted residuals (also known as jackknife error and 
computed without taking into account the anomaly point). Because such 
outliers do not modify significantly the regression models, they can be 
included in the analysis. 
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• Outliers showing high residuals but with significant differences 
between the values of the real residuals and those of the deleted 
residuals. Such outliers modify the regression model and must be, 
therefore, taken into consideration if the induced modifications are 
proved to be significant. 

There are many statistical procedures aimed towards the identification of 
outliers. Good syntheses of these procedures are provided by Maimon and 
Rokach (2005), and Wilcox (2002). 

Our approach is a simple one. In order to identify the outliers, we should 
first inspect the configuration of the correlation cloud between the dependent 
variable and the predictor, or between the real and predicted values in the case 
of multiple predictors, looking for points situated significantly outside the cloud. 
If such points exist, we should further inspect the magnitude of their residual 
values and see if they are located outside the ± 2.5 RMSE (root mean square 
error) interval. If such points exist, we should then test their influence on the 
regression models. The most common way to do this is to perform a cross-
validation, the analysis of the differences between the actual residual values and 
the deleted residuals (jackknife error). If these differences are important, then 
the exclusion of the respective points significantly changes the regression 
model, which is, therefore, unstable. Next, we should actually see these changes 
by elaborating the models with and without the outliers and finally decide 
whether to keep or eliminate the respective points. 

Fig. 4 shows the correlation between the mean annual precipitation and the 
altitude for a sample of 28 meteorological stations situated in eastern Romania 
(Moldavia). The chart indicates at least 2 suspect points situated outside the 
correlation cloud, one with a lower precipitation value than expected for the 
respective altitude (Cotnari station), another with significantly higher precipitation 
amounts than expected (Barnova station). These deviations are related to local 
terrain conditions influencing the pluviometry. Cotnari station is situated in a 
foehnization area of western air masses descending the eastern slopes of Dealul 
Mare – Harlau Hill. Here, the real mean annual precipitation value is 121.3 mm 
lower than the value predicted by the altitude regression model using all 
stations. On the contrary, Barnova station is situated in an area of orographic 
enhancement of precipitations caused by the presence of a high energy slope 
(Iasi Cuesta) facing the more humid western air masses and by the shape of the 
Barnova-Voinesti depression, which causes the convergence of the western air 
masses. Another factor is related to the location of Barnova station within a 
well-forested area. Being the only station from our sample situated within 
forested areas, it is impossible for us to assess the relative importance of these 
factors and to state which of them, the local topography or the presence of the 
forest, is more responsible for the high precipitation values recorded at this 
location. The real mean annual precipitation value at Barnova station is 172.7 mm 
higher than the predicted value. 
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Fig. 4. Correlation chart between altitude and mean annual precipitations for a sample of 
28 meteorological stations situated in eastern Romania (Moldavia), indicating the 
presence of four possible outliers. 

 
If the visual inspection of the correlation charts gives us a first guess on the 

presence of possible outliers, other methods provide more insight. Our next step 
is to inspect the magnitude of the residuals. Generally, if some value goes out 
the interval limited by ± 2.5 RMSE (equivalent with the standard deviation of 
the residuals for large samples), then it is possible that this value is an outlier. 
From  Fig. 5c (left), we notice that the residue from Barnova station goes 
beyond the +2.5 RMSE, while the residue from Cotnari station is very close to 
the –2.5 RMSE limit. If we eliminate only Barnova station, we find that the 
residual value at Cotnari goes also beyond the specified limit. Thus, the 
conclusion is that both stations must be excluded to ensure stability for the 
regression model. But if we exclude these two stations and rebuild our 
regression model, we shall find that yet another station (Odobesti) displays 
residues greater than the +2.5 RMSE limit. Furthermore, if we chose to 
eliminate Odobesti station, we obtain another high residual value for Voinesti 
station, situated in the same area of orographic enhancement of precipitations as 
Barnova station, only at a lower altitude.  

So far we have established that we have some poor estimated points in our 
sample, displaying high residual values. Thus, we are certain that we have some 
points acting like the first type of outliers (referring to the above classification). The 
problem now is to decide whether it is necessary to eliminate them from the 
regression model that is, if this elimination would significantly improve the model. 
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To answer this question, one must test the influence of these outliers on the 
regression models and find out whether or not we are dealing with outliers of 
type two. 

 

 
 
Fig. 5. Correlation between observed and predicted mean annual precipitation (a), 
cross-validation (b), and comparison of residuals vs. deleted residuals with bars showing 
the ± 2.5 RMSE (c), using all stations (left) and without four possible outliers (right). 

 
One way to establish the answer is to perform cross-validation, that is, to 

compare the observed values with the predicted values obtained by successive 
elimination of the sample points. If the regression models are stable, one should 
find that the cross-validation charts are similar to the correlation charts between 
the observed and predicted values. In our case, we may notice that the 
differences between the observed vs. predicted correlations and the cross-
validation correlations decrease as the outliers are removed from the models, 
from about 11%, in the case of all stations model, to about 6%, in the case of the 
regression model obtained by removing all of the four possible outliers (Fig. 
5a,b). The slight difference is hampering us so far to state that the removal of 
the 4 stations significantly improves the regression models. 

The comparison between the observed vs. predicted values and the cross-
validation charts tells us only something about the stability of the regression 
models. In order to investigate the influence of particular values, we may find it 
useful to compare the regression residuals with those obtained by eliminating 
the suspect point (deleted residuals, jackknife error). If the suspect point is not 
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an outlier, then the magnitude of the residues should be very similar. In our case, 
we notice that the difference between the actual and deleted residuals is the 
greatest in the case of Barnova (22.5 mm), which means that its exclusion from 
the model significantly changes the altitude – precipitation relationship (Fig. 
5c). The next greatest difference can be found in the case of Cotnari station 
(7.8 mm). Even if this is not such an important difference, keeping Cotnari 
station without Barnova station generates an even poorer regression model than 
the one using all stations. This is due to the fact, that these two points, one 
above, the other below the regression line, have opposite effects, balancing the 
regression line to the extent that if one point is removed, the other will “attract” 
the line towards it. This means that if we chose to eliminate Barnova station, we 
must eliminate Cotnari station as well. 

If we construct our model without these two stations and analyze the 
residuals, we find that yet 2 other stations display high residuals, going beyond 
the +2.5 RMSE: Odobesti and Voinesti stations, the latter being situated within 
the same area of orographic enhancement of precipitations as Barnova station. 
However, the difference between the actual and deleted residuals is not very 
significant. The elimination of all these 4 stations leads to a regression model, 
where no more points display residuals outside the ±2.5 RMSE interval (Fig. 5c, 
right).  

Table 1 shows how significant is the influence of the 4 outliers on the 
regression models. We notice, that the regression quality parameters (correlation 
coefficients, standard error of estimate) improve by excluding these outliers. 
However, one should bear in mind that even if there is an overall improvement 
of the regression models excluding the outliers, these models will still perform 
poor in the case of the outliers themselves. It is necessary for us to assess if the 
altitude – precipitation relationship is significantly changing. As we stated 
before, the regression model without Barnova only is not reliable due to the 
“attraction” effect of the Cotnari station, and we can clearly see that this model 
is the most different from the others, showing the highest intercept and the lower 
pluviometric vertical gradient (regression coefficient). The other models display 
quite similar parameters: intercepts ranging from 485.6 mm to 498.9 mm and 
gradients from 30.1 mm /100 m to 36.2 mm /100 m.  

 
Table 1. Comparison of the regression models using and excluding the outliers 

 
Regression model Intercept Regression 

coefficient  
R2 Standard 

error of 
estimates 

All stations  489.21 0.362 0.352 54.472 
Without Barnova 501.82 0.265 0.321 41.678 
Without Barnova, Cotnari 498.90 0.301 0.450 36.190 
Without Barnova, Cotnari, Odobesti 492.72 0.315 0.547 31.697 
Barnova, Cotnari, Odobesti, Voinesti 485.64 0.335 0.649 27.626 
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From Fig. 6 we may see that 31% of the station sample displays the lowest 
residuals under the 2nd model (without Barnova and Cotnari stations). A similar 
percent (30%) is found for the 4th model (without all of the 4 outliers). 

To sum up, our conclusion is that in the particular case of our sample, the 
elimination of the identified 4 outliers improves the regression model even 
though the differences among the various models are not very important. 

 

 
 

Fig. 6. The optimum altitude regression model (lowest values of actual residuals minus 
deleted residuals) for each station. 

 
The problem is that we can not just exclude some real values from the 

analysis, because then we would obtain an incomplete image of the spatial 
distribution of the analyzed climatic parameter. 

Some of the possible solutions could be: 
•  data transformation (logarithms); 
•  derivation of new predictors to account for spatial anomalies; 
•  application of robust regression methods (Wilcox, 2002); 
•  application of regression as a local interpolator (e.g., geographically 

weighted regression method); 
•  application of residual kriging. 
A common solution is to derive one or more predictors (Lhotellier  and 

Patriche, 2007) capable to explain the anomaly associated to the outlier point 
(e.g., the west-east aspect component combined with terrain local altitudinal 
range could theoretically explain the precipitations anomaly identified at 
Cotnari, Barnova, and Voinesti stations from the previous example). Practically, 
we are often hampered in our analysis by the poor spatial representativeness of 
the stations network, especially when we have to work with small stations 
samples, which is, in most cases, unable to fully account for all terrain aspects 
relevant for the spatial distribution of the analyzed climatic parameter. 
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The application of residual kriging is also a common approach (Lhotellier, 
2005; Dobesch et al., 2007; Hengl, 2007; Silva et al., 2007). Thus, what regression 
is unable to explain (the residuals), is interpolated using ordinary kriging, then 
the spatial trend, derived by regression, is added to the spatial anomalies, 
resulting in the final spatial model of the climate parameter. The output of this 
approach is still influenced by the quality of the regression model. If the model 
is significantly influenced by the outliers, then we can not attempt to interpret 
the predictors-predictand relations. 

An alternative solution could be the elaboration of the regression model 
without the values identified as outliers, the spatialization of the residuals by 
ordinary kriging, including the residuals associated with the anomaly points, 
followed by the addition of the spatial trend with the interpolated residuals so as 
to obtain the final spatialization. We notice, that this is a residual kriging approach, 
which eliminates the outliers during the regression stage, if these belong to the 
type two mentioned above, but includes the residuals from these points during 
the kriging interpolation stage (Fig. 7). 

 

 
 
Fig. 7. Mapping the optimum solution: residual kriging approach leaving out the outliers 
during the regression stage, but taking the outliers’ residuals into account during the 
kriging stage. 
 
A better approach consists in the application of regression as local 

interpolator (e.g., geographically weighted regression, Fotheringham et al., 2002), 
taking into account the spatial anomalies (Engen-Skaugen and Tveito, 2007; 
Maracchi et al., 2007). The local regression can be further included into a 
residual kriging approach in order to improve the quality of the output. The main 
drawback to this approach is the need of a sufficiently large stations sample in 
order to be capable to derive local regression models.  
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Let us now see a situation, in which the outliers may indicate possible data 
errors or different recording intervals. The example is extracted from a study 
attempting to model the spatial distribution of mean annual precipitations in 
Vrancea County (Romania) on the basis of 34 rain gauges (Patriche et al., 2008). 

Figs. 8 and 9 show 2 points situated significantly outside the altitude – 
precipitation correlation cloud, namely Pufesti (686.9 mm) and Slobozia 
Bradului (378.9 mm), therefore, indicating the presence of two possible outliers. 
In the case of Pufesti rain gauge, the mean annual precipitation regime is 
characterized by a secondary maximum in August. Taking into account, that all 
other rain gauges display a single maximum in June, we are inclined to believe 
that either the August data is incorrect or the Pufesti data represent a shorter 
time frame, corresponding to a more humid period. On the other hand, the mean 
annual value recorded at Slobozia Bradului rain gauge is obviously too small for 
the climatic conditions of our region. Because the monthly values display a 
normal annual distribution, we are inclined to believe, as before, that the data 
correspond to a shorter time frame from a drier period. 

 

 
 
Fig. 8. Observed mean annual precipitations in Vrancea County, Romania (a), mean 
annual precipitations regime for all stations (b), and for the two suspect points (c). 
 
From Fig. 9b, we notice that even though these two points are associated 

with the highest residuals, the difference between the actual and deleted 
residuals (jackknife error) is small, meaning that their removal from analysis 
does not significantly change the altitude regression model. This is happening 
because the points are situated on opposite sides as compared to the regression 
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line (Fig. 9a) and, therefore, they have opposite effects, balancing the regression 
line. Their removal increases the correlation coefficient but does not significantly 
change the direction of the regression line, meaning that the regression equations 
are very similar with or without these points. This can also be grasped, if one 
notices that the altitude – precipitation correlation coefficient (0.66) is quite 
similar with the cross-validation correlation coefficient (0.62), meaning that the 
one by one removal of all sample points does not significantly change the 
altitude – precipitation relationship (Fig. 9c). 

 

 
 

Fig. 9. The altitude – mean annual precipitation relationship (a) and the comparison 
between actual and deleted residuals (c) showing the presence of two possible outliers. 
Cross-validation of the altitude model using all stations (b). 

 
Let us see the effects on other predictors. We must mention that, apart from 

altitude, we also used latitude and longitude as predictors, and at first we 
obtained a good regression model using both altitude and latitude. Looking 
further into details, we noticed that the latitude – precipitation correlation is a 
false correlation, induced by the presence of the two outliers (Fig. 10), one with 
a higher precipitation value situated in the northern part of our region (Pufesti), 
the other one with a lower precipitation value situated in the south (Slobozia 
Bradului). If one eliminates these two points, the latitudinal correlation is no 
longer statistically significant. 

For this reason and because of our intention of using also kriging for 
spatialization, in which case the great residual values of the two suspect points 
would be represented on the map, we decided to eliminate them from analysis. 
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Fig. 10. An unwanted effect of outliers: false precipitation – latitude correlation. 

5. Error propagation 

Statistically based spatial models are usually computed for elementary variables, 
such as temperature or precipitations. In order to describe the climate of a 
region, we also need to compute complex variables, derived from the elementary 
ones, such as the de Martonne index, potential and real evapotraspiration, etc. 

Spatial models of complex variables may be achieved either by computing 
the complex variable at stations’ locations and then interpolating the results or 
by integrating the spatial models of the elementary variables in order to obtain 
the complex one. Using the first approach, we are able to quickly compute the 
errors as well. In this case, we cannot speak of error propagation. Still, in our 
opinion, this approach is conceptually less appropriate, because the computation 
of the complex variable is deterministic, according to a physical model. For 
instance, computing the potential evapotranspiration according to Penman-
Monteith approach involves the computation of the net shortwave radiation, 
which depends on terrain slopes and expositions and on land use. If one 
computes this parameter at stations’ locations and then interpolates the results, 
neither of these control factors will be taken into account. 

The second approach, namely the integration of elementary variables, each 
of them displaying certain errors, has the disadvantage of inducing invariably in 
the propagation of these errors to the derived, complex variable. Knowing these 
errors is important for the assessment of the accuracy of the derived variable’s 
spatial distribution. 

A simple example is presented in Table 2. The example refers to the 
derivation of the de Martonne aridity index, for the territory of Moldavia 
(eastern Romania), on the basis of the mean annual temperatures and 
precipitations statistically modeled by regression. The mean annual temperature 
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model uses altitude and latitude as predictors, the computed standard error of 
estimate is ± 0.215 

oC, meaning that the real temperature differs from the 
estimated one with ± 0.215 

oC in about 68% of the cases. If we consider, for 
exemplification, an estimated mean annual temperature of 10 

oC, then the real 
temperature will most probably be found within the interval of 9.8 –10.2 

oC. On 
the other hand, the mean annual precipitation model uses altitude as predictor 
and has a standard error of estimate of ± 54.472 mm/year, which means that, for 
an estimated value of 500 mm, the real precipitation values will most probably 
lie within the interval of 445 –554 mm/year. Considering the two estimated 
temperature (10 

oC) and precipitation (500 mm/year) values, it results an aridity 
index of 25. Taking into account the possible errors for the estimated input 
parameters, it results that the real value of the aridity index will be most likely 
found between 22 and 28. 

 
Table 2. Exemplification of error propagation 

 
Statistical parameters Mean annual 

precipitation 
Mean annual 
temperature 

Aridity index 

 Real values 
Exemplification values 500 10 25 
Mean 561.95 8.90 29.21 
Standard deviation 66.395 0.734 3.136 
Standard error 54.472 0.215 – 

Lower limit 445.528 9.785 22.039 
Upper limit 554.472 10.215 28.025 

Confidence 
interval 

Range 108.944 0.431 5.986 
 Standardized values 
Standardized standard error 0.820 0.294 – 

Lower limit –1.754 1.206 –2.287 
Upper limit –0.113 1.793 –0.378 

Confidence 
interval 

Range 1.641 0.587 1.909 
 

We are, however, unable to compare these confidence intervals, because 
the 3 parameters are expressed in different measurement units. One solution is to 
compute the regression models using the standardized values of the input 
parameters. We find that the size of the confidence intervals is 1.641 for mean 
annual precipitation and 0.587 for mean annual temperature. The resulting 
aridity index distribution for the stations sample is characterized by a mean 
value of 29.21 and a standard deviation of 3.136. Therefore, the lower limit of 
the confidence interval (22) corresponds to a standardized value of –2.287 and 
the upper limit (28) corresponds to a standardized value of – 0.378, resulting a 
range of 1.909. This value is greater than the ones of the input parameters, 
indicating the propagation and enhancement of the errors, from the elementary 
variables to the derived, complex variables. 
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6. Homogeneous vs. heterogeneous regions 

Another issue we address in our study is that of heterogeneous regions. 
Generally, the greater a region, the more heterogeneous it is. A certain level of 
heterogeneity is necessary for the spatialization of climate parameters. For 
instance, within a small region, in which the altitudinal range does not exceed, 
for example, 100 –200 m, the spatial variation of the climate fields may be too 
feeble for us to correctly infer the spatial variation rules. On the other hand, 
within a large region, the climatic heterogeneity may be too high for a single 
statistical model to explain it.  
 

 
 

Fig. 11. Changes of the relationships between the mean annual temperatures and the 
altitude, latitude, and longitude for Europe (a) and for two different subregions: the Alps 
(b) and the Russian Plain (c). Source of data: FAO, 2003. 
 
An example is shown in Fig. 11 for the relationship between the mean 

annual temperature (FAO, 2003) and 3 predictors: altitude, latitude, and 
longitude. At continental scale, the territory of Europe is very heterogeneous. 
We may notice, that the altitude – temperature relationship changes form one 
region to another to such an extent that a single regression equation for the 
whole European territory cannot be constructed. A region like the Alps displays 
a very good altitude – temperature correlation, while the temperature variation 
within the flat relief of the Russian Plain is statistically independent of the 
altitude, as temperature inversions are frequent. Here, the latitude comes 
forward to explain a good part of the temperature spatial distribution. 
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In such situations, when we deal with large heterogeneous regions, it 
becomes necessary to divide it into smaller, more homogeneous sub-regions, for 
which the predictors-predictand relationships do not change. A possible approach 
could consist in the examination of regression parameters and residuals as we 
extend or reduce the area of our region and establish the sub-regions limits 
according to the most stable regression model (maximum correlation, minimum 
residuals). Another possible approach could be the application of regression as a 
local interpolator. 

7. Conclusions 

When applying statistical methods for deriving digital spatial models of climatic 
variables, one must take great care in identifying and assessing the sources of 
uncertainty, especially in the case of small stations samples. There are many 
such sources of different nature, which can easily mislead us towards wrong 
unrealistic conclusions. Consequently, a good knowledge of data quality, statistical 
methods, and, needless to say, climatology is imperative for the achievement of 
sound results. Although simple, the georeference stage is very important. The 
misplacement of one or more meteorological stations on the map may generate 
an unwanted chain of errors, because the predictors’ values are automatically 
drawn from the raster maps in GIS environment. The representativeness of the 
stations network is another important issue, which needs to be analyzed in a 
preliminary stage of climate parameters spatialization. Theoretically, the spatial 
distribution of the stations network should be in agreement with terrain 
complexity, so as to be able to account for all climatic aspects. The extrapolation 
problem is tightly related to this issue. Unfortunately, in most cases, the stations 
network is biased, therefore, not sufficiently representative for the terrain. The 
extrapolation of the spatial models is correct as far as the predictors-predictand 
relationships do not significantly change outside the calibration area. The 
outliers problem, meaning the problem of values evading a certain spatial 
variation rule, is another aspect we analyzed in our study. This is another aspect 
of the representativeness of the stations network in respect to predictors, which 
needs to be preliminary addressed in order to minimize the potential errors. 
Statistical modeling is generally performed on simple, elementary variables, 
such as temperature or precipitation. For a more thorough investigation of a 
region’s climate, we need to dispose of complex variables, derived from the 
elementary ones, such as the de Martonne aridity index, potential evapotran-
spiration, etc. The integration of elementary variables, each having its own 
statistical errors, into complex variables leads to error propagation. Knowing 
these errors is very important in order to assess the accuracy of the modeled 
spatial distribution of the complex variable. Another issue we address in our 
study is that of the heterogeneous regions. Generally, the greater a region, the 
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more heterogeneous it is. A certain level of heterogeneity is necessary for the 
spatialization of climate parameters. On the other hand, within a large region, 
the climatic heterogeneity may be too high for a single statistical model to 
explain it. In such a situation, it becomes necessary to divide our large region 
into smaller, more homogeneous sub-regions, for which the predictors-
predictand relationships do not change. 
 
Acknowledgment — This study was carried out with support from project POSDRU/89/1.5/S/49944, 
coordinated by “Alexandru Ioan Cuza” University of Iaşi (Romania). 
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Abstract —A spatial interpolation method for the construction of operational climate 
maps for the WMO RA VI Region (Europe and Middle East) is presented on the example 
of monthly mean temperature. The method is suitable for an in situ data base with 
relatively low data coverage in a relatively large and climatically heterogeneous area, and 
considers the classical geographical parameters latitude, longitude, and altitude by multi-
dimensional linear regression, but improved by continentality, using a new continentality 
index. A comparison of several interpolation methods reveals that radial basis functions 
(subtype multiquadratic) seems to be the most appropriate approach. Separate regressions 
for land and sea areas further improve the results.  
 
Key-words: spatial interpolation, multi-dimensional linear regression, climate maps, 

RA VI, Europe 

1. Introduction 

Climate monitoring requires an operational analysis of the variability of climatic 
quantities in space and time. For this purpose, operational maps, generated for 
regular time intervals (days, months, seasons, years) are very useful to see at a 
glance the spatial variability of climate elements and its change with time. Such 
maps are often used by national meteorological and hydrological services as a 
basis for climate reviews and interpretation of outstanding features of climate 
variability. Maps are available for various spatial areas from the catchment scale 
to the whole globe.  
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For some recent years, the German Meteorological Service (Deutscher 
Wetterdienst, DWD) develops methods for generating such operational maps. 
These methods are not exactly the same for all climate elements due to 
various databases, their special nature of variability, and the data availability. 
Some are based on satellite data (e.g., cloud and radiation parameters), others 
are based only on in situ data, because in that cases the in situ data have a 
relatively good quality compared to satellite data (e.g., temperature, 
precipitation, sunshine duration, snow depth). Examples of these maps can be 
seen on the DWD website (www.dwd.de/rcc-cm, www.dwd.de/snowclim, 
www.dwd.de/satklim). 

On the other hand, it is desirable to use consistently the same method for 
each climate element to achieve consistent maps, at least the same basic 
principle of a method. Our present strategy is to develop a basic approach which 
is at least applicable for most of the in situ data. The process of map generation 
is still under further development.  

Usually, maps are a result of gridding or spatial interpolation of point data 
into the area. Nowadays, a large variety of mathematical and geostatistical 
methods for spatial interpolation is available. However, in practice, it has turned 
out that pure mathematics and geostatistics are necessary, but not sufficient for 
construction of climate monitoring maps; instead it has been found that the 
consideration of geographical conditions and climate processes can much 
improve the results. Nevertheless, the impact of such additional parameters and 
processes depends highly on the extent and topography of the area of interest, 
and also on data density. Therefore, the choice of the gridding method depends 
on the selected area, and the selected climate element as well. 

This paper refers specifically to spatial interpolation of monthly mean 
temperature and its anomalies from the reference period 1961–1990 in a 
relatively large area, the WMO (World Meteorological Organization) Region VI 
(covering nearly the whole Europe and the Middle East). The next chapter 
describes this area and the motivation for the choice of this area. After a short 
review of previous literature, the data and the succeeding steps of the method 
applied in this paper are described and compared with a number of alternatives. 
Results of the comparison and the mapping are presented in Section 6, followed 
by some conclusions in Section 7.  

The main goal of this paper is to propose a method of spatial 
interpolation of monthly temperature data in WMO Region VI which is 
suitable for an operational generation of monthly climate monitoring maps. 
However, it is intended that this approach is applicable to other climate elements 
as well to receive maps of various elements which are consistent to each other as 
far as possible, at least for in situ data. Other data sources, like satellite data 
which already have a large spatial coverage certainly require a different 
approach. 

 



 33

2.  The WMO Region VI and the Regional Climate Centre (RCC) network 

Recently, a new network of so-called Regional Climate Centres (RCCs) has 
been established under the auspices of the World Meteorological Organization 
(WMO) (http://www.wmo.int/pages/prog/dra/eur/RAVI_RCC_Network.php). 
The term “regional” refers to the six WMO Regions which cover roughly (but 
not exactly) the various continents and the surrounding sea areas on the globe.  

Nearly the whole of Europe (except the easternmost parts of European 
Russia from 50°E to the Ural) belongs to the WMO Region VI (often referenced 
as “RA VI”, indicating the Regional Association of the WMO in Region VI). 
Beside Europe, this region also covers parts of the Middle East which belong 
geographically to Asia, and also large sea areas, namely large parts of the 
northern and central North Atlantic, the Norwegian Sea, the European part of the 
Arctic, and the whole Mediterranean. The RA VI area is displayed in Fig. 1.  

The border of the Region VI (Europe and Middle East) is not rectangular, 
because it is defined by the borders of single countries, which means largely by 
political conditions. Over European Russia, the eastern border runs along the 
50°E meridian. In the south and west, the border crosses the Mediterranean Sea 
and the Atlantic Ocean to the Davis Strait and the Baffin Bay between 
Greenland and Canada. 

Thus, that Region covers quite a large and climatically very heterogeneous 
area, spanning a wide range of latitude, longitude, and altitude and strong 
contrasts between land and sea climates.  

 

 
Fig. 1. Map of the Region VI with the height above sea level. The kilometer bar refers to 
Central Europe.  
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In RA VI, presently three RCCs (so-called nodes of the RCC network) are 
already preliminarily established and are operating in a pilot phase since June 
2009: one RCC node on climate data, one on climate monitoring, and one on 
long-range forecasting. The DWD has taken over the lead function of the RCC 
node on climate monitoring in RA VI, within a consortium consisting of some 
more members (national meteorological and hydrological services) of RA VI. 
To fulfill this function, the generation of climate maps for various climate 
elements in RA VI is a very important task.  

3. Previous approaches 

A large number of papers dealing with spatial interpolation of climate data have 
already been published. Basic information about spatial interpolation methods 
can be found in various books, especially for the widely used kriging technique, 
which was very popular already in the 1990s (e.g., Lang, 1995; Stein, 1999). In 
the 2000s, geographical information systems (GIS) came more and more into 
operation for climate mapping. Commercial GIS software has made it 
technically very easy to apply spatial interpolation methods on any geographically 
defined data points. In 2001, the COST Action 719 was launched (COST= 
European Cooperation on Science and Technology, an intergovernmental 
framework for research coordination in Europe, supported by the European 
Union). The goal of COST 719 was to review and assess the use of GIS for 
spatial interpolation in meteorology and climatology. The Action had been 
finished in 2006, resulting in an overview of spatial interpolation methods and 
their application in climatology by GIS software (Thornes, 2005; Tveito et al., 
2008) and many related papers (e.g., Ustrnul and Czekierda, 2005; Dobesch et 
al., 2007).  

Until now, there are several more recent papers. Various methods are 
applied to national data, some also to larger areas, e.g., the Alps, some to global 
data, but in coarse resolutions. Many investigators used ordinary or residual 
kriging techniques for monthly, seasonal, or annual data, e.g., Bjornsson et al. 
(2007) for temperature in Iceland, Ustrnul and Czekierda (2005) for temperature 
in Poland, Dolinar (2006) for sunshine duration in Slovenia, Perčec Tadić 
(2010) for climate normal values of various elements (including temperature) for 
Croatia, Alsamamra et al. (2009) for solar radiation in southern Spain. Others 
just used multiple regression techniques, but in a dense station network and with 
many geographical predictors, e.g., Hiebl et al. (2009) for monthly temperature 
in the Alps or Claps et al. (2008) for monthly temperature in Italy. Non-linear 
instead of linear statistical relationships between terrain variables as predictors 
and climate variables lead to an improvement at least for special variables like, 
e.g., fog frequency as shown by Vicente-Serrano et al. (2010) for northeast 
Spain. In some cases, circulation types were used as predictor, e.g., the well-
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known “Grosswetterlagen” catalogue from Hess and Brezowsky (1952) for the 
temperature in Poland (Ustrnul, 2006). Other authors included remote sensing 
data for statistical temperature modeling (e.g., Cristóbal et al., 2008 for 
northeast Spain).  

In contrast, there have been very few attempts to look for a method which 
is specifically appropriate for an area like RA VI. Recently, Haylock et al. 
(2008) presented a new European high-resolution gridded data set of daily 
precipitation and surface temperature for the period 1950 –2006 on four spatial 
resolutions (the so-called E-OBS data set). Although this data set is widely 
known and used, the authors themselves pointed to limitations of their gridded 
data due to inhomogeneities and interpolation uncertainties (Hofstra et al., 
2009). Hofstra et al. (2008) also compared several interpolation methods for 
various variables in some parts of Europe and found that the main controlling 
factor on the skill of interpolation is rather the density of the station network 
than the interpolation method. Only recently, another investigation used the 
spatial variability from past observations of a denser network to improve the 
interpolation skill, in this case applied to precipitation in the complex terrain of 
Switzerland (Schiemann et al., 2010).  

Monthly, seasonal, and annual maps are frequently used for operational 
climate monitoring activities. The monitoring of the WMO RA VI Regional 
Climate Centre on Climate Monitoring (WMO RAVI RCC-CM) can be found 
on the web: http://www.dwd.de/rcc-cm, including links to national maps of 
many national meteorological and hydrological services. For global climate 
monitoring, monthly temperature maps are displayed, e.g., on the website of the 
National Oceanic and Atmospheric Administration (NOAA) in the USA:  
http://www.ncdc.noaa.gov/climate-monitoring/index.php#global-icon . 

4. Data and data quality 

Since the goal is to generate monthly maps for RA VI in the operational 
environment of DWD, it is essential to use monthly in situ data which are 
available at DWD soon after the end of month, but, nevertheless, of good 
quality. National data sets exist for each country in RA VI. Mainly they are 
under the responsibility of the public national and hydrological services. Due to 
this national responsibility of the data, each country has its own data policy, and 
in most cases there are restrictions in data distribution beyond the national 
services. For this reason, only a limited number of all existing data can be used 
in the DWD environment. However, there are some data which are distributed 
internationally and regularly via the Global Telecommunication System (GTS) 
of the WMO. Two important data sets in this case are the SYNOP and CLIMAT 
data. SYNOP data are data from synoptical stations, distributed several times a 
day (often hourly), containing also the air temperature at two meters height over 
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ground. They are mainly intended for usage in weather forecasting. CLIMAT 
data are distributed only monthly and the number of stations is much smaller 
than for SYNOP, but the selection of CLIMAT stations was done for usage of 
climate analyses. Monthly mean temperature is one of the climate elements 
which are reported in the CLIMAT bulletin. DWD has taken over the task to 
check the quality of the CLIMAT data each month in various steps. The quality 
check consists of two steps: a quick automatical check soon after data arrival 
and a more thoroughly manual check later. More details about the CLIMAT data 
archive and quality control method can be found on the DWD website 
(www.dwd.de – click on Climate and Environment – Climate Data Centers – 
ACD). The first step of quality check is normally done within 10 days after the 
end of each month. The check of SYNOP data would be more time consuming, 
and a complete routine quality control for SYNOP temperature data at DWD is 
only performed for German data, but not for the whole of the RA VI area.  For 
this reason it was decided to use the CLIMAT data of monthly mean 
temperature for spatial interpolation, which means a data basis which is timely 
available in good data quality, but relatively poor data coverage (Fig. 2a). 
Around 800 CLIMAT stations are currently available for RA VI each month, 
and the area has an extension of several 1000 km in both zonal and meridional 
directions. This decision means to invest into an appropriate and reasonable 
interpolation procedure, which also takes the diverse topography of RA VI into 
account.  

CLIMAT stations are available only for the land areas, but not for the sea. 
However, there exist weather reports from ships which are summarized into a 
2.5° × 2.5° latitude-longitude grid and are archived at DWD. Altogether, around 
130 sea grid points are used for each month. Although the grid points are 
uniformly distributed over the area, the underlying ship reports are not equally 
distributed. The best data coverage can be found along the main shipping routes 
such as between Europe and the eastern coast of the USA or Brasilia, and the 
main route to the Mediterranean Sea, but in other areas ship data are quite rare 
(Fig. 2b). Thus, the quality of ship data is strongly dependent on ship 
observation coverage. They are most reliable along the main shipping routes 
where a large number of ship observations during the whole month are 
considered for gridding, but quite poor in those regions where only very few 
ship observations are available, e.g., over the Arctic Sea. Long-term averages for 
the 1961–1990 reference data (CLIMAT and ship data, as far as data available) 
are also quality controlled and included in the DWD archive, and anomalies 
(monthly means minus long-term averages) are computed each month as well.  

For using the topography in the interpolation procedure, grid data for 
altitude are needed. Data for the height above sea level are taken from the 
GTOPO30 altitude raster from the U.S. Geological Survey (www.usgs.gov). The 
data are available in a spatial resolution of 30 seconds of degree in latitude and 
longitude (it means about 1 km for middle latitudes). For the operational maps, a 
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spatial resolution of 0.1° was taken; thus, the GTOPO30 data were averaged into 
a 0.1° grid.  

 
 

 
Fig. 2a. Spatial distribution of CLIMAT stations and ship data points available at DWD 
for September 2010 as an example. Ship data of the whole month are arithmetically 
averaged into a 2.5° × 2.5° grid. 

 

 
Fig. 2b. Ship data coverage, data from DWD (white = land area, light grey to dark grey 
= more travel on sea, if the color is darker, more ships travel on this route). 

5. Methods 

In principle, the spatial interpolation method for monthly averages used here 
consists of three steps. The first step is a multi-dimensional linear reduction of 
the station data, which means a multiple linear regression of latitude, longitude, 
altitude, and other parameters to zero level. The linear regression model is 
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subtracted from the original data; the results of the subtraction are often called 
“residuals”.  

The second step is the interpolation of residuals with the method radial basis 
functions, using the version of the software ESRI Arc GIS 9.2 within the tool 
geostatistical analyst. The last step is recomputing the interpolated residuals to 
the original values of latitude, longitude, altitude, and other parameters. This 
computing is achieved by using the raster calculator of Arc GIS 9.2 within the tool 
spatial analyst. The three steps are described in more detail in Sections 5.1–5.6.  

For the anomalies there is no reduction, just a spatial interpolation is 
necessary, assuming that they do not depend very strongly on geographical 
parameters. Spatial resolution is 0.1°; this corresponds to about 10 km over 
Central Europe. The number of grid points in the RA VI area roughly amounts 
to nearly one million. 

At the borders of Region VI, the problem of extrapolation appears. For this 
reason, the interpolation is computed for an extended area (from 85°W to 70°E 
and from 20°N to 90°N), but only the Region VI itself is displayed. For this 
purpose, some more climate stations beyond Region VI are added to the data 
pool. The additional climate stations are located in the east part of the USA and 
Canada, the North African states, and in the part of the Middle East, which 
belongs to the Region II Asia. 

5.1. General approach of multiple regression in latitude, longitude, altitude 

The assumption of the multi-dimensional reduction is that the spatial variability 
of monthly averaged climate is dominated by a very limited number of impact 
factors.  

The general approach is 
 

kxxxfbxxxfaY nn +++= KKK ),,,(),,,( 212211 ,                    (1) 
 

where Y is a climate state variable like temperature, x1, x2, … are impact factors 
like latitude etc., f1(), f2(), … are functions of impact factors, which are not 
necessarily linear, and a,b, …, k are constant values. 

This approach is used to find the dominating impacts, x1, x2, and the 
functions of impacts, f1(), f2(), for each Y. The functions of the impact factors 
must be linearly independent from each other. Then, a linear regression can be 
computed.  

5.2. Multiple linear regression in latitude, longitude, altitude 

We start with latitude, longitude, and altitude as predictors. These factors are 
reasonable because of the following reasons: latitude characterizes the climate 
due to the solar angle, which is, by far, the most dominating factor for Region 
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VI. The longitude is the alternative for land-sea contrasts or continentality, 
which explains much of the seasonal variations. Finally, the altitude is included, 
because all climate state variables increase or decrease more or less with height 
above sea level. For monthly mean temperature, this factor is generally weak 
within Region VI compared to latitude and longitude but not negligible, 
especially in mountainous areas. The amount of variation of temperature as 
function of altitude varies largely from month to month, depending on season 
and the prevailing weather type during the month. In most cases, monthly mean 
temperature decreases with altitude, but in winter months, when inversion 
weather types are prevailing, a slight increase with altitude can also happen. For 
this reason, the regression model is fitted for each month separately.  

The linear approach in this special case yields:  
 

kaltitudeclongitudeblatitudeaY +⋅+⋅+⋅= .                          (2) 
 
This is a specialization of the general approach Eq. (1). The three 

predictors (latitude, longitude, and altitude) represent the three spatial 
dimensions which are obviously orthogonal and, therefore, independent from 
each other. The coordinates are mostly well known for each station, thus, these 
predictors are mostly easily available. The fitting of the multi-linear regression 
has been done using the method of least squares (see, e.g., Mosteller and Tukey, 
1977).  

5.3. Continentality impact 

For improving the approach, the longitude is replaced by a suitable 
continentality index. The continentality is a function of latitude and the annual 
temperature amplitude, which is calculated by the difference of the long-term 
means (1961–1990) of the maximum temperature in summer (June to August) 
and that of the minimum temperature in winter (from December to February). 
That calculation of the annual temperature amplitude is only an approximation 
for simplifying the computation, but does not reflect exactly the real annual 
amplitude. For example, March, which belongs to spring, is sometimes the 
coldest month in the year because of the drifting ice in bays near Finland in the 
Baltic Sea. In the literature, there are various versions of continentality indices 
(see, e.g., Blüthgen, 1980). Many equations show that the continentality for 
Europe can be described by a function of latitude and the annual temperature 
amplitude. One example is the approach by Iwanow (1959). Hogewind 
(Hogewind, 2010) modified this index to obtain a better suitability for the 
Region VI:  
 

,260
ϕlatitude

amplitudeannual
k ⋅=                Iwanow (1959)  and 
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This modification results in four classes in the range of the index: between 

0 and 25 (highly maritime), from 26 to 50 (maritime), from 51 to 75 (continental), 
and from 76 to 100 (highly continental) over Region VI and its surroundings, and 
a threshold of around 50 between prevailing maritime and prevailing continental 
areas (Fig. 3).  

Taking the continentality into account, the modified regression approach 
reads: 

 
klitycontinentadamplitudeannualcaltitudeblatitudeaY +⋅+⋅+⋅+⋅= .     (3) 

 

 
 

Fig. 3. Continentality (Hogewind, 2010). 
 

This is now a non-linear approach in the explanatory variables, because 
continentality is a non-linear function of latitude, but the multiple regression is 
still linear, because a non-linear data transformation has been done (Wilks, 
2006).  

To get the residuals (Tred, the part of variability which is not explained by 
the regression model), the linear regression is subtracted from the original 
monthly mean temperature value for each station:  

 

.)(
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klitycontinentad
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−⋅−
⋅−⋅−⋅−=             (4) 
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The considered parameters are now latitude, altitude, annual amplitude, and 
the newly created continentality index. 

5.4. Interpolation of residuals 

The reduced climate state variable, also known as residual (here Tred) is given 
for each measurement station and has to be interpolated into the area. The main 
question is now: which is the best suitable interpolation method? 

The used software ArcGIS 9.2 Geostatistical Analyst offers a number of 
methods: inverse distance weighted, global polynomial interpolation, local 
polynomial interpolation, radial basis function, kriging, cokriging, and subtypes 
for each. From these methods a number of alternative approaches, which seem 
reasonable, are taken and applied to the computed residuals. 

All these methods are described in the literature. An overview can be found 
in Tveito et al. (2008) including the mathematical background, the implementation 
in GIS software, and further references. The method “radial basis functions”, 
which has been used for the final construction of maps in this paper, is described 
in the next section.  

5.5.  Radial basis functions 

A radial basis function (RBF) is a real-valued function whose value depends 
only on the distance from the origin, so that Φ(x) = Φ(||x||), or, alternatively, on 
the distance from some other point c, called a center, so that Φ(x,c) = Φ(||x – c||). 
Any function φ that satisfies the property Φ(x) = Φ(||x||) is a radial function. The 
norm is usually the Euclidean distance, although other distance functions are 
also possible. For example, by using the Lukaszyk-Karmowski metric, for some 
radial functions it is possible to avoid problems with ill conditioning of the 
matrix solved to determine coefficients iω  (see below), since the ||x|| is always 
greater than zero. 

Sums of radial basis functions are typically used to approximate given 
functions. This approximation process can also be interpreted as a simple kind 
of neural network. 

The radial basis functions type used in this paper is multiquadratic 
(r = || x – ci

 ||): 

²²)( βϕ += rr                     for some β > 0.                                    (5) 
 
Radial basis functions are typically used to build up function 

approximations of the form: 
 

∑ −=
=

N

i
ii cxxy

1
||),(||Φ)(           ω                                                                         (6) 
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where the approximating function )( xy       is represented as a sum of N radial basis 
functions, each associated with a different center ic  , and weighted by an 
appropriate coefficient iω . The weights iω  can be estimated using the matrix 
methods of linear least squares, because the approximating function is linear in 
the weights. 

Approximation schemes of this kind have been particularly used in time 
series prediction and control of non-linear systems exhibiting sufficiently simple 
chaotic behavior, and 3D reconstruction in computer graphics (Lukaszyk, 2004; 
Buhmann, 2003). 

Eq. (6) can also be interpreted as a rather simple single-layer type of an 
artificial neural network, called a radial basis function network, with the radial 
basis functions taking the role of the activation functions of the network. It can 
be shown that any continuous functions on a compact interval can in principle 
be interpolated with arbitrary accuracy by a sum of this form, if a sufficiently 
large number of radial basis functions is used. 

The approximant )( xy       is differentiable with respect to the weights iω . 
The weights could thus be learned using any of the standard iterative methods 
for neural networks. 

There is a lot of literature about radial basis functions for further reading 
(e.g., Baxter, 1992; Beatson et al., 2000; Bors, 2001; Buhmann, 2003; Wei, 1998).  

5.6. Recomputing interpolated residuals 

For recomputing the interpolated residuals to original data, the same regression 
equation, Eq. (4), as for reduction is used (Section 5.3). The difference is that 
this time the computing is not carried out for stations, but for the interpolated 
grid for the Region VI  

 

.)(
)()()(

klitycontinentad
amplitudeannualcaltitudeblatitudeaTT red

+⋅+
⋅+⋅+⋅+=              (7) 

 
Therefore, gridded data for latitude, altitude, annual temperature amplitude, 

and continentality are needed. Latitude is just a linear interpolation in meridional 
direction. For altitude, the grid GTOPO30 from U.S. Geological Survey is used 
with a recalculated resolution in 0.1°. The annual amplitude is interpolated by 
the interpolation method radial basis functions from station data, and finally, the 
continentality is computed from latitude and annual amplitude for each grid 
point (see Section 5.3). 

5.7. Cross validation and root mean square error (RMSE) 

To assess the quality of the spatial interpolation, a cross validation of the 
residuals has been carried out. This means that the spatial interpolation has been 



 43

repeated after omitting one of the residual station values, and this has been done 
for each station value. Then, for all station points the difference between the 
residual station value and the corresponding interpolated value at this point has 
been computed. Finally, the root mean square error (RMSE) has been computed 
over the differences for all points, and then for each month and each of various 
interpolation methods, among them radial basis functions, several kriging 
approaches, and inverse distance weighted interpolation. Therefore, the RMSE 
is a quantity for estimating the mean interpolation error. However, it has to be 
kept in mind that the RMSE only can represent the information at the station 
points, but not for the whole area, and therefore, it does not exactly give the real 
mean interpolation error. Nevertheless, the estimate should be near to reality if 
the stations are representative for the area. As most stations are located in 
Central Europe, where the interpolation error is expected to be lower than in 
other more data sparse regions, the real mean interpolation error should be 
greater than the RMSE, which means that the RMSE can only give a minimum 
estimation. However, as the data base is the same for each method and each 
month (except for a few stations missing from month to month), the RMSE is a 
comparable measure of skill for each interpolation method.  

6.  Results 

6.1. Results of the multiple regression 

For the first approach (Eq. (2)), the three predictors (latitude, longitude, and 
altitude) explain a large part of the variance, generally over 70% for monthly 
mean temperature in Region VI for all months (Table 1).  

 
Table 1. Explained variance in % for each of the predictors in Eqs. (2) and (3), for all 
months of the 1991–2000 average. Other periods have similar results 
 

Month Latitude Longitude Altitude Annual 
amplitude 

Continen-
tality 

Lat+lon+alt 
(Eq. (2)) 

Lat+alt+amp+ 
cont (Eq. (3)) 

Jan 60.98 5.36 3.90 50.78 10.30 70.29 93.83 
Feb 66.21 4.85 2.52 43.93 6.13 73.74 93.44 
Mar 74.32 2.60 1.17 30.75 1.42 80.07 91.33 
Apr 83.92 0.68 0.23 13.73 0.76 89.08 90.72 
May 85.02 0.00 0.09 3.36 7.50 90.12 89.02 
Jun 80.85 0.54 0.42 0.00 18.63 88.04 88.93 
Jul 79.83 0.31 0.86 0.25 23.21 85.74 90.03 
Aug 83.78 0.01 0.55 0.12 17.56 88.56 91.33 
Sep 88.20 0.84 0.04 5.96 5.17 92.54 93.82 
Oct 86.28 2.39 0.64 16.47 0.33 91.73 94.94 
Nov 75.07 5.86 2.91 35.66 2.74 83.81 95.89 
Dec 65.77 6.95 3.98 47.29 8.08 75.72 95.07 
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The largest part is explained by latitude, especially in the warmer half year, 
due to the large variability of temperature as function of the solar angle. The 
explained part of variance in Eq. (3), using the predictors latitude, altitude, 
annual amplitude, and continentality, is considerably larger, especially during 
the colder months (from November to March) compared to Eq. (2), over 90%, 
due to the high impact of the annual amplitude particularly in winter, which has 
a high spatial variability within Europe. In the warmer half year, there is 
practically no or only a slight improvement concerning the explained variance 
by Eq. (3) compared to Eq. (2). However, the explained variance by Eq. (3) is 
within a range between 89 and 96% (rounded) for each month.  

6.2. Results of the spatial interpolation 

Results of the comparison between the various interpolation methods are shown 
in  Fig. 4. For some of the interpolation methods and subtypes, unwanted 
interpolation islands appear (so-called bulls eyes), in particular for inverse 
distance weighting, global and local polynomial interpolation. Some kriging and 
cokriging subtypes are not exact at the station points and smooth too much. The 
interpolation method cokriging needs a second variable with the same resolution 
as the climate variable. This cannot be an impact variable, because this has 
already been removed by reduction. Some methods, especially cokriging, need 
quite a high computing time depending on spatial resolution, and thus, they are 
not convenient for operational use. 

 

 
Fig. 4. Interpolated residuals (after subtracting the linear regression model) of annual 
temperature normal values of the period 1961–1990 using the following interpolation 
methods: inverse distance weighted (upper left), radial basis functions (upper right), 
ordinary kriging (lower left), simple kriging (lower right). RMS errors given for each 
method in K refer to the residuals. 
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Fig. 4 also shows the root mean square errors (RMSE) for various 
interpolation methods. The highest RMS errors of these show the interpolation 
methods simple kriging (Fig. 4, lower right) and inverse distance weighted 
(upper left). For inverse distance weighted, obvious interpolation islands can be 
clearly seen. Simple kriging amplifies point-to-point differences too much. The 
other two methods (ordinary kriging, Fig. 4, lower left, and radial basis 
functions, upper right), although basically different from each other, produce 
more or less the same results. The difference between these two interpolation 
methods is the longer computing time and the more difficult calibration of 
ordinary kriging because of every individual interpolation for the climate 
variable and period. As a result of this comparison of the different methods, the 
radial basis functions method with the subtype multiquadratic appears as the 
most suitable method for meeting our demands on operational map generation. 
The main advantages are exactness at data points (values at the data points are 
not changed after interpolation, except due to different altitudes and locations of 
the stations compared to the grid points), no smoothing, but no unrealistic 
interpolation islands either. The exactness at data points is also good to detect 
suspicious data on the map. The RMS error for the selected method is one of the 
lowest, the results are similar to ordinary kriging, but the computing is faster 
than kriging. Kriging, on the other hand, offers more possibilities of error 
assessment, but they are more difficult to interpret as they are not comparable 
with error assessments of other methods. Generally, the choice of the interpolation 
method matters only in data sparse areas. Otherwise, it is more important, when 
the regression error is higher or the data quality is worse. 

The results of the described process need a further development which is 
described by Hogewind (2010). The different thermal conditions between land 
and sea require a separate regression over land and sea with separate regression 
coefficients for land and sea, but each applied to the whole RA VI area (Fig. 5). 
To consider coastal effects, the climate stations near the coast are used for both 
computing processes for overlapping land-sea areas. Furthermore, the data pool 
is increased by including the stations from the European Climate Assessment 
Dataset (ECA&D, www.knmi.nl). To study the space-time variability, the 
procedure has also been carried out for 10-year subperiods of the period 1951–
2000. Examples of recomputed temperature fields for land and sea are shown in 
Figs. 6a and 6b (for recomputation, a land-sea mask was used). These fields are 
overlaid to one complete map for the whole Region VI like a puzzle (Fig. 7). 
The effect of the thermal contrast between land and sea can be seen in various 
places, e.g., for Turkey.  
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Fig. 5. Reduced temperature (residuals) over land (upper) and sea (lower) in September 
for the period of 1991–2000. Separate regression coefficients for land and sea are used, 
but applied to the whole RA VI area. 

 

 
 

Fig. 6a. Recomputed temperature over land in September for the period of 1991–2000 
White areas are excluded by using a land-sea mask.  
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Fig. 6b. Recomputed temperature over sea in September for the period of 1991–2000 
White areas are excluded by using a land-sea mask.  

 

 
 

 
Fig. 7. Recomputed temperature in September for the period of 1991–2000 for the whole 
RA VI Region (consisting of separate calculations over land and sea as in Fig. 6).  

7. Conclusions 

The newly created continentality index (Hogewind, 2010) improves the 
regression model in comparison to longitude. The separate land-sea regressions 
improve the regression model, too. Nevertheless, the most important parameter 
for Region VI is still the latitude because of the strong influence of the angle of 
solar radiation. Residuals up to 2 K (RMSE 0.9 K) do not change, due to small 
scale effects. Radial basis functions turned out to be the most suitable 
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interpolation method at the moment, at least for operational map production of 
monthly mean temperature in WMO Region VI. The method is exact, has a 
relatively low RMSE, can be realized very easily by using GIS software, and the 
interpolation can be computed in reasonable time. Probably the most promising 
effort to improve the results further is to enlarge and improve the data base and 
the regression model. Another challenge will be the application of this method 
to daily instead of monthly data.  
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Abstract —This study deals with modeling of spatial distribution of summer (JJA) 
precipitation over the Czech Republic. The aim is to analyze the time variation of the 
relationships between geographical factors and precipitation during summer. Various 
candidates geographical predictors are evaluated in the stepwise regression models for 
summer precipitation, namely: (1) a set of omnidirectional parameters of the elevation 
that characterize an area of 3 × 3 km around meteorological stations, (2) various cross 
products calculated on the basis of geographical coordinates and elevation or topographic 
parameters, (3) slope and four facets of slope aspect characterizing the orographic 
regimes in the Czech Republic, (4) land cover parameters describing an area of 10 × 10 km 
around meteorological stations, and (5) geographical coordinates. The orographic 
parameters are derived from the 1 km resolution digital elevation model (DEM); the land 
cover parameters are derived from the 1 km resolution CORINE (COoRdination of 
INformation on the Environment) land cover data. Daily precipitation data for the period 
1971–2003 have been used. The precipitations were collected from 203 stations 
throughout the country. Stepwise regression models of summer precipitation are 
generated for each year, and each overlapping decade from 1971 to 2003. To ensure the 
stability of the regression equations and comparability of regression models in time, 
similar suitable and stable independent variables in time should be selected. Therefore, 
orthogonally rotated principal component analysis (PCA) and frequency of significant 
predictors entering models are used to select them. Multivariate regression precipitation 
models are generated using definitive (PCA or stepwise based) selected predictors. Ten 
independent geographical variables have been selected as the most important predictors 
for precipitation regression models. They consist of latitude, longitude, slope aspect of the 
grid westward from the central grid, slope aspect of the grid northward from the central 
grid, slope of the grid northeastward from the central grid, slope of the grid eastward from 
the central grid, slope of the grid northward from the central grid, maximum value of 
elevation (percentile 95%) of northwestern grid from the central grid, minimum value of 
elevation (percentile 5%) of the central grid, and vegetation. The relationships between 
these significant predictors and precipitation are stable in time. No significant trend in 
regression coefficients has been found during 1971–2003.  
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1. Introduction 

Precipitation is a climatic variable that has a high spatial and temporal 
variability. Its spatial distribution is influenced by various factors such as terrain 
height, slope, etc. For mapping purposes, it is practical to estimate the effect of 
such factors on precipitation distribution. Spatial modeling is a suitable tool that 
allows to explore the relationship between the target variable and predictors, and 
to get continuous information on precipitation over a targeted area. Many studies 
have been undertaken recently to assess and model the relationship between the 
climatic variables, and independent factors. Several geographical variables, 
including land cover (Joly et al., 2003), proximity to the water bodies (Weisse 
and Bois, 2001; Vicente-Serrano et al., 2003; Marquinez et al., 2003; Daly et al. 
2002), atmospheric circulation (Johnson and Hanson, 1995; Basher and Zheng, 
1998;  Courault  and Monestiez, 1999), and topography (Johnson and Hanson, 
1995;  Goodale et al., 1998; Daly et al., 2002) have been frequently used as 
relevant independent variables to model spatial patterns of precipitation. The 
latter has a significant influence on spatial variability of precipitation (Joly et al., 
2003;  Weisse  and Bois, 2001, etc.). Therefore, numbers of these studies have 
been focused on modeling the influence of topographic features on the spatial 
variability of climate variables (Prudhomme  and Reed, 1999; Johnson  and 
Hanson, 1995; Drogue et al., 2002; Weisse and Bois, 2001; Diodatto, 2005, etc.).  

According to its geographical position in Central Europe, the Czech 
Republic is subject to both oceanic and continental influences. Topographically, 
the inner part of the country is dominated by lowlands and surrounded by 
highlands. Such topographic feature contributes to modifying airflow over the 
country and can induce a strong convective precipitation, especially in the 
mountains (Moravsko-slezské Beskydy, Jeseníky, Krkonoš, Jizerské hory, and 
Krušné hory). Extreme precipitation events are more frequent and intense over 
these highlands due, among other factors, to the influence of exposition to 
airflow (Kakos, 2001).  

In this study, the relationships between geographical factors and summer 
precipitation are examined through a stepwise regression model. Summer 
precipitation is analyzed instead of other seasons for several reasons. First, the 
annual cycle of precipitation in the Czech Republic is characterized by a 
tendency for maximum rainfall during summer. Therefore, summer precipitation 
contributes significantly on the character of the precipitation fluctuation (Tolasz 
et al., 2007). Second, summer precipitation, usually of shorter duration and 
greater intensity (Tolasz et al., 2007), is characterized by the high frequency of 
occurrence of extreme precipitation events (Kaspar and Muller, 2008), which 
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are often connected with several natural hazards including hydrological flood 
and soil erosion. The need of precipitation information during summer time is 
crucial for the risk management. Moreover, spatial models examine spatial 
dependence of climate variables using a single time realization of the variable, 
i.e., they widely use the mean values for a given period, as input. However, the 
performance of a model depends not only on the density of the station network 
and the choice of methods, but also on the temporal variability (Hulme et al., 
1997). Therefore, the choice of the period of study can bias the results of 
interpolation (Hulme et al., 1997). The spatial variability of environmental 
variables is commonly a result of complex processes working at the same time 
and over long periods of time, rather than an effect of a single realization of a 
single factor (Hengl, 2007). Geostatistics are less powerful than the statistical 
climatology based on sample in time, because they are based on single 
realization in time (Szentimrey and Bihari,  2007). The temporal variability 
seems to be an important task in modeling spatial variation of climate variables. 
This aspect has received substantial attention in several studies: Basher  and 
Zheng (1998) take into account seasonal behavior of precipitation (ENSO 
variations) for mapping precipitation patterns of a data-sparse tropical south-
west Pacific Ocean region. Brown and Comrie (2002) created the 39-year time 
series of maps and datasets of winter temperature and precipitation for the 
southwest US by comparing 30 years (1961–1990) modeled means with 39 
observed winter temperature and precipitation values. Johnson  and Hanson 
(1995) modeled the relative contribution of topographical and meteorological 
variability to regional precipitation variability. In order to improve interpolation 
of spatially generated weather data, Baigorria et al. (2007) analyzed changes in 
spatial correlations and compared spatial correlation on daily and monthly basis. 
Therefore, using seasonal rainfall amounts, temporal analysis is needed to find 
and determine: (1) how the relationships between independent variables and 
precipitation vary within years and decades; (2) how the model is affected by 
temporal changes. The aims of this study are: (1) to model spatial pattern of 
summer (JJA) precipitation in the Czech Republic at year and ten-year time 
steps from 1971 to 2003 using geographical variables as independent variables; 
(2) to analyze the time variation of the relationships between geographic 
variables, and the summer precipitation during 1971–2003. 

2.  Datasets 

Digital Elevation Models (DEM) 
 
DEM with the resolutions of 100 m and 1 km have been used. The fine spatial 
resolution of topographic and elevation variables have been retained in this 
study, because large-scale topographic features at a resolution of 1–15 km yield 
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a high correlation with precipitation (Daly et al., 1994; Daly, 2006). The 100 m 
DEM resolution data have been used to calculate the following smoothed 
elevation parameters: (1) the upper (percentile 95%) and (2) lower (percentile 
5%) percentiles of elevation for a grid of 1 km resolution, and (3) mean elevation 
for each grid with 1 × 1 km resolution. On the other hand, slope, and slope aspect 
are obtained directly from the 1 km resolution DEM data.  
 
Land cover data  
 

Land cover data are obtained from the CORINE (COoRdinate INformation on 
the Environment) land cover dataset. These data are available in the following 
link: http://www.dataservice.eea.europa.eu/dataservice. They describe the land 
cover units in Europe. According to the CORINE land cover classification, four 
main types of landscape characterizing the Czech Republic were identified, and 
used as candidate geographical independent variables. They are related to 
vegetation, agricultural area, water bodies, and artificial areas. 
 
Precipitation data 
 

Daily precipitation data for the period 1971–2003 have been used. The dataset 
consists of 203 stations distributed over the whole country (Fig. 1). Meteorological 
stations are unevenly distributed across these different land cover units and 
topographic patterns. Most of them are distributed across urban (towns, small 
cities, villages) and agricultural areas. Only few stations are located in 
vegetation-covered areas. Considering ground elevation, about 80% of meteoro-
logical stations are located below 600 m. Only 12% of them are located above 
600 m on the highlands or mountainous regions that have a significant influence 
on precipitation distribution (Table 1). The lack of observation in forested and 
mountainous areas shows how much it is important to model the relationships 
between rainfall, and elevation and/or other geographical variables.  

 

 
 

Fig. 1. Spatial distribution of meteorological stations with regard to DEM data (in m). 
Dots represent geographic position of meteorological stations. 
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Table 1. Elevation of meteorological stations 
 

Elevation (m) Number of stations % of total area 

< 200  12 6 
200 – 400  85 42 
400 – 600 82 40 
> 600 24 12 

 
In order to perform time variation analysis (see Section 4), two subsets of 

summer precipitation series are derived from the summer precipitation dataset: 
(I) yearly summer precipitation amounts and (II) the overlapping decade 
precipitation mean, with a shift of one year from 1971–1980 to 1994 –2003. 
The lengths of both subsets of summer precipitation series are 33 and 24, 
respectively. 

3. Methods: model development 

3.1. Independent variables 

Spatial fields of precipitation are correlated with many environmental or 
geographic factors especially elevation and geographic coordinates. In this 
study, 54 candidate independent variables, which can explain spatial variability 
in the climate data, have been evaluated, and then selected (Table 2). A large 
number of geographical variables are evaluated, because none is a priori the 
most important. They are related to: 

• Omnidirectional variables describing elevation (27 variables), topographic 
features (slope and slope aspect: 13 variables). Those morpho-
topographic variables represent the values from the grids omnidirectionally 
oriented around central grids. The central grids can be defined as grids in 
which stations are located. Eight directions around the central grid have 
been defined as: (1) north, (2) east, (3) south, (4) west, (5) north-east, (6) 
south-east, (7) south-west, and (8) northwest.   

• Cross products involving (eight variables): (a) geographical coordinates 
and elevation variables (maximum: percentile 95%, minimum: percentile 
5%, and average elevation to north and east) and (b) geographical 
coordinates and topographic features (slope). Cross products were 
calculated (as indicated in Table 2) to obtain west-east or south-north 
gradient of elevation and topography (Brown and Comrie, 2002; Vicente-
Serrano et al., 2003).  

• Land cover parameters were selected from a grid data with spatial 
resolution of 1 km resolution. An area of 10 × 10 km around 
meteorological stations was delimited and four indexes (Iwat, Iveg, Iagr, 
Iurb) characterizing the main units of landscapes (water bodies, 
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vegetation cover, agricultural area, and urban and artificial area) in this 
area were calculated. Indexes are calculated as a ratio (%) of the area 
covered by land cover units to the total area (grid) of 10 × 10 km 
resolution.  

• Geographic coordinates: latitude (Lat) and longitude (Long). 
 

Table 2. Candidate independent variables for stepwise regression models. They are related to the 
Elevation variables, topographic variables (slope and slope aspect), cross products involving 
geographical position and morpho-topographic variables (elevation and topographic variables), 
geographical coordinates, and land use or cover variables. Abbreviations Emax, Emin, Eavg are 
related to maximum, minimum, and average elevation. Slope is related to slope values in %, 
while Oreg abbreviates slope aspect. The numbers after letters indicate orientation of grid from 
which slope or elevation values have been taken out, inside a bound of 3 × 3 km around the 
central grid. Central grid is defined as a grid in which meteorological stations are located. For 
elevation and slope eight directions have been defined (see section 3.1), while for slope aspect 4 
have been taken into account (1 for east, 2 for west, 3 for north, and 4 for south). Abbreviations 
ending with “-grad” are related to cross product involving longitude (with number 1 on the end of 
letters) or latitude (with number 2 on the end of letters) and elevation variables (Egrad, Exgrad, 
Engrad) or slope (Sgrad). Iagr, Iveg, Iurb, and Iwat abbreviate four Indexes of landscape units 
(agriculture, vegetation, urban area, water bodies)  

 

Candidate independent variables 
  

Abbre-
viations

Candidate independent variables 
  

Abbre-
viations

Central grid average elevation Eavg0 Central grid slope values  Slope0 
Central grid minimum elevation (percentile 5%) Emin0 Slope in the north Slope1 
Central grid maximum elevation (percentile 95%)  Emax0 Slope in the east grid Slope2 
Average elevation in the north from the central grid Eavg1 Slope in the south Slope3 
Minimum elevation (percentile 5%) in the north  Emin1 Slope in the west Slope4 
Maximum elevation (percentile 95%) in the north Emax1 Slope in the north-east Slope5 
Average elevation in the east from the central grid Eavg2 Slope in the south-east Slope6 
Minimum elevation (percentile 5%) in the east Emin2 Slope in the south-west Slope7 
Maximum elevation (percentile 95%) in the east  Emax2 Slope in the north-west Slope8 
Average elevation in the south from the central grid Eavg3 Slope facet east Oreg1 
Minimum elevation (percentile 5%) in the south  Emin3 Slope facet west Oreg2 
Maximum elevation (percentile 95%) in the south Emax3 Slope facet north Oreg3 
Average elevation in the west from the central grid Eavg4 Slope facet south Oreg4 
Minimum elevation (percentile 5%) in the west  Emin4 Cross product Long × average elevation Egrad1 
Maximum elevation (percentile 95%) in the west Emax4 Cross product Lat × average elevation  Egrad2 
Average elevation in the north-east from the central grid Eavg5 Cross product Long × slope  Sgrad1 
Minimum elevation (percentile 5%) in the north-east Emin5 Cross product Lat × slope  Sgrad2 

Maximum elevation (percentile 95%) in the north-east Emax5 
Cross product Long × 95% percentile of 
elevation  Exgrad1

Average elevation in the south-east from the central grid Eavg6 
Cross product Long × 5% percentile of 
elevation  Engrad1

Minimum elevation (percentile 5%) in the south-east Emin6 
Cross product Lat × 95% percentile of 
elevation  Exgrad2

Maximum elevation (percentile 95%) in the south-east Emax6 
Cross product Lat × 5% percentile of 
elevation  Engrad2

Average elevation in the south-west from the central grid Eavg7 Index for the ratio of Agricultural area  Iagr 

Minimum elevation (percentile 5%) in the south-west Emin7 
Index for the ratio of the Vegetation 
covered area  Iveg 

Maximum elevation (percentile 95%) in the south-west Emax7 Index for the ratio of Urban area  Iurb 
Average elevation in the north-west from the central grid Eavg8 Index for the ratio of the Water bodies Iwat 
Minimum elevation (percentile 5%) in the north-west Emin8 Longitude Long 
Maximum elevation (percentile 95%) in the north-west Emax8 Latitude Lat 
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3.2. Selection of suitable predictors for regression model and temporal analysis  

Analysis of time variation of relationship between precipitation and geographical 
factors mentioned in Table 2 was the objective of this study. Relationships are 
analyzed through regression models that are performed at various time steps. In 
order to assure stability of the regression equations and comparability of models 
in time, it was necessary to select similar suitable and stable independent variables. 
Selection of suitable independent variables was based on two approaches: 
stepwise-based approach (STW), and principal component analysis (PCA)-based 
approach, both for yearly-based precipitation models (STW I / PCA I) and 
overlapping decade-based precipitation models (STW II / PCA II).  

3.2.1. Stepwise regression based models (STW) 

Stepwise selection of suitable predictors has been made in two steps. At the first 
step, the significant candidate independent variables have been selected for each 
model at various time steps. At the second step, only the most frequently 
selected significant predictors have been taken into account.  

(a) It is important to remind that the set of geographical variables used as 
predictors (Table 2), particularly topographic and elevation parameters, 
are collinear. The choice of suitable predictors from this set has a 
significant influence on the behavior of models. Hence, forward stepwise 
linear regression was used to model summer precipitation as function of 
the collinear geographical factors at time steps of annual (STW I) and 
overlapping decades (STW II) from 1971–2003. All predictors mentioned 
in Table 2 are used. A p-value of 0.05 has been used to force out of the 
model any non-significant effects, and to select significant, and non-
collinear independent variables. Stepwise regression has been used in 
many studies (Ninyerola et al., 2000, 2007; Marquinez et al., 2003; 
Vicente-Serrano et al., 2007) as an accurate method in examining 
relations between precipitation and collinear independent variables. 

(b) On the second step, the most frequently selected significant predictors 
by both STW I and STW II-based models was considered. A threshold 
frequency value of 20 – 40% was defined to select them. Geographical 
variables of which frequency value does not reach at least 20% are 
considered as improper for temporal analysis, and are discarded; while 
independent variables exceeding the defined threshold are retained. If 
the retained variables are collinear, the operation is repeated (using a 
higher threshold value, i.e., 30 – 40%) until no co-linearity is found 
among them. Using this procedure, six predictors have been retained 
for both STW I and STW II-based precipitation models (see Table 3 
and Figs. 2 and 3). For the STW I-based models, the selection was 
ended at the first step, where frequency of significant independent 
variables exceeded 30%. However, for the STW II-based models, 11 
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collinear predictors have been selected at the first step (Fig. 3a). The 
operation was repeated for the 11 predictors to select a final series of 
six non-collinear predictors exceeding 40% (Fig. 3b). 

 
Table 3. Definitive selected independent variables for all models 

 
I. Year by year time series II. Moving long-term precipitation mean 

Models 
STW I PCA-A I PCA-B I STW II PCA-A II PCA-B II 

Slope2 PCI Emin0 Slope2 PCI Emin0 
Slope5 PCII Slope1 Slope5 PCII Slope1 
Emax8 PCIII Vegetation Emin8 PCIII Vegetation 
Lon Lon Lon Lon Lon Lon 
Lat Lat Lat Lat Lat Lat 
Oreg2 Oreg2 Oreg2 Oreg2 Oreg2 Oreg2 
– – – – Oreg3 Oreg3 

 

 
 

Fig. 2. Frequency of significant variables entering models for STWI-based models. 
 

 
Fig. 3a. Frequency of significant independent variables for STW II-based models. 
Dotted line represents the threshold value for selecting more frequent predictors. First 
step (A) of selection. 
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Fig. 3b. Frequency of significant independent variables for STW II-based models. 
Dotted line represents the threshold value for selecting more frequent predictors. Second 
step (B) of selection. 

 

3.2.2. PCA – based models (PCA) 

Principal component analysis (PCA) has been used to eliminate random 
variability in independent factors, and to generate stable models in time. The 
sets of independent variables have been checked for correlation before 
performing PCA. Eight independent variables, which were less correlated or 
uncorrelated with other independent variables, were discarded for the PCA. 
They were: geographical coordinates (longitude and latitude), two units of land 
cover (urban area and water bodies), and four orographic facets (slope aspect). 
PCA was performed for the remaining 46 variables. The number of principal 
components (PCs) to retain for rotation was given using screen test. Three PCs 
have been retained. They are related to: (1) characteristics of elevation, (2) 
topographic features, (3) land use and land cover parameters: agricultural and 
vegetation covers. The three PCs explain about 90.3% of total variability. 
Morpho-topographic variables that have the highest loadings with those retained 
PCs were then selected. For the further regression models, both PCs scores 
(three variables), and independent variables (three morpho-topographic variables), 
that were selected assuming highest loading, were considered as candidate 
independent variables. These candidate predictors selected using PCA were 
recombined with the 8 discarded variables before performing PCA. Then the 
stepwise regression has been performed to select significant and noncollinear 
variables. The frequencies of variables (Fig. 4) have been analyzed (considered 
as in Section 3.2.1.b). The frequent variables have been considered as stable 
and, therefore, suitable for multivariate regression model. This approach helped 
to avoid the problem encountered during interpretation of the PCs that involve 
independent uncorrelated variables. The final selected independent variables are 
shown in Table 3. Using this approach, six significant independent variables were 
selected for yearly-based precipitation models (PCA I) and seven independent 
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variables were selected for decade-based precipitation models (PCA II) (see 
Table 3). PCs scores (PCA-A) or selected variables assuming the highest loadings 
(PCA-B) have been used to compare their effect on the models. Table 3 shows 
important geographical variables that influence significantly the spatial patterns 
of precipitation in the Czech Republic. All approaches selected the geographical 
coordinates (including continentality) and the westward slope aspect. 
 

     
 

Fig. 4. Frequency of significant variables entering models for PCA I and II-based 
models. Dotted lines represent the threshold value for selecting more frequent predictors. 

 

3.3. Regression models and trend detection 

Once stable significant variables were selected, multivariate regression 
precipitation models were then performed using them as predictors. The 
multiple regression relationship is obtained through the following equations: 
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where  b1–n  is the multiple regression coefficient adjusted for each retained 
independent variable xn; Pest represents the predicted rainfall, and t1–n is the time 
step (i.e., year or decade).  

In order to carry out temporal analysis of the relationship between significant 
geographical factors and precipitation, time series of regression coefficients 
from each time resolution and approaches-based models were built. The linear 
trend in those series was estimated using a least-squares regression. The 
significance of trends was determined using the confidence interval (CI) given 
by the following equation: 
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where  t is the trend value, n is the length of the time series of the regression 
coefficients,      eσ is the standard deviation of the residuals, and xσ is the 
standard deviation of the independent variable. 

4. Results 

4.1. Model performance 
 
Several standard statistical measures of models performance and accuracy were 
calculated. The goodness of fit of the model and the proportion of the variation 
of summer precipitation explained by the model are measured by the coefficient 
determination (R2). The magnitude and sign of errors of the regression model are 
given by mean absolute error (MAE) and root mean square error (RMSE).  

The time variation of the coefficients of determination for all approaches 
and time resolution-based precipitation models is displayed in Fig. 5. The 
magnitude of errors is measured by the rootmeansquare error (Fig. 6) and mean 
absolute error (Fig. 7).  
 
 

  
 

Fig. 5. Time variation of determination coefficients of STW and PCA-based models for 
year (A) and decade (B) time resolution. 

 
 

   
 

Fig. 6. Time variation of the root-mean-square errors of STW and PCA-based models 
for year (A) and decade (B) time resolution. 
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Fig. 7. Time variation of the mean absolute errors of STW and PCA-based models for 
year (A) and decade (B) time resolution. 

 
The coefficients of determination and errors for model based on different 

approaches vary consistently in time, whereas their time variations are 
inconsistent for time resolution-based models. In fact, the STW-based models 
are more efficient than PCA-based models. Nevertheless, the difference between 
both approaches-based models is minor. Model accuracy varies widely among 
models generated at various time resolutions. Models based on long-term time 
resolution are more accurate and explain more variation than those based on 
shorter time resolution. An important variability in summer precipitation (> 0.61 
for both approaches-based models) is consistently captured by ten-year models 
for both PCA and STW-based approaches. The magnitude of errors (RMSE, 
MAE) does not reach 15% (37 mm) of summer precipitation for ten-year models. 
On the contrary, terrain influences did not always account for an important 
variability of summer precipitation for the annual precipitation models. The 
coefficients of determination of these models describe an important inter-annual 
variability; they vary from 0.23 (1988) to 0.7 (1997). Similarly, the magnitude of 
errors is fluctuant. The larger (35%  –  86 mm) and the smaller RMS errors (13%  –
32 mm) have occurred in 1972 and 2003, respectively. Unlike other years, 
where model errors are inversely proportional to the explained variance, both 
variance explained and error yielded by the models are large in 1997 and 2002.  

Several models were unable to capture more than 50% of variability in 
precipitation and to generate small error. Considering that a good precipitation 
model must capture at least 50% of precipitation variability (Ninyerola et al., 
2000) and yield very small prediction error, we can conclude that numbers of 
these models failed. The temporal variability of summer precipitation combined 
with the ability of the set of predictors to capture variation in data can explain it. 
Fig. 8 displays the relationships between rainfall departure (from the long-term 
precipitation average) and coefficient of determination. It reveals that the 
stronger the negative rainfall anomalies for a given year, the smaller the variation 
explained in precipitation data. Indeed, the coefficients of determination fall under 
0.5 or rarely (once) overtake this value during dry years. Therefore, additional 
predictors (different from the used set of predictors) or additional analysis on 
removing temporal variability were needed to improve models. If it is necessary 



 63

to add other auxiliary variables, then it should be important to consider that not 
only geographical factors but also other factors such as atmospheric circulation 
affect the spatial distribution of precipitation. However, their mechanisms are 
more complex and not easy to evaluate their statistical relationships. 
 

 

Fig. 8. Comparison of determination coefficients (color lines) with precipitation 
departures (histogram). 

4.2. Time variation of effect of significant geographical factors  

The relationships between summer precipitation and geographic variables, 
selected using STW approach and PCA, have been examined through regression 
model. Resulting coefficients of regression for each approach and time resolution-
based model are plotted in Figs. 9 –12. Six independent variables have been 
selected using STW approach: slopes of grids eastward and northeastward from 
the locations, maximum elevation northwestward from locations, geographic 
coordinates (longitude and latitude), and slope aspect westward.  

At the annual time resolution, spatial patterns of summer precipitation 
show an increase of precipitation with a growing value of elevation and slope 
aspect. However, they show an increase and a decrease of precipitation to 
increasing latitude, longitude, and slope. Considering the inter-annual variability 
of the relationships between precipitation and each significant geographical 
variable, it can be pointed out in some extreme cases of strong relationships. 
They are found between precipitation and elevation (emax8), latitude, slope 
(slope5), and slope aspect (oreg2), respectively, during 1980, 2002, 1997, and 
1972. The precipitation models based on STW approach reveal that the spatial 
pattern of precipitation during the heavy precipitation events of 1997 and 2002 
were strongly related to the slope northeastward and latitude, respectively. The 
fields of intense precipitation during such years have a significant influence on 
the spatial pattern of precipitation across the whole country. For example, the 
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decrease of precipitation with an increasing longitude during 1997 is mainly due 
to the fields of intense precipitation in the northeastern part of the country. 
Spatial patterns of summer precipitation and precipitation amount fluctuate in 
time according to different factors such as atmospheric conditions.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Time variation of the regression coefficients of significant predictors (as 
indicated in A, B, C, D) for STW I-based models. 

 
During the whole period under study, the precipitations have had a positive 

relationship with elevation variables. The well-known effect of elevation on the 
spatial pattern of summer precipitation, which is related to an increase of 
precipitation with growing elevation, is observed along the entire period. The 
highlands are seemingly rainier during summer than lowlands all over the 
country. However, during some years (1976, 1986, 2003, etc.) spatial pattern of 
precipitation is characterized by a decrease of rainfall with a growing value of 
slope (slope2, slope5). Thus, if multiple factors of mountain regions are taken 
into account, their relationships with precipitation become more complex than a 
simple increase with growing elevation. During the period 1971–2003, the 
precipitations increased strongly in 1980 and slightly in 1992 with maximum 
elevation northwestward from the locations. The slope orientated eastward from 
the locations has influenced considerably the summer precipitation during 1972.  

For the decade-based models, minimum elevation northwestward (Emin8) 
has been selected as predictor instead of Emax8. Unlike the yearly-based models, 
no geographical variable was related to any decreases of summer precipitation. 
Although the effect of minimum elevation (Emin8) on precipitation is less 
variable in time, the influences of the topographic and geographical position 
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fluctuate largely in time. The variation of the effect of topographic features 
(slope5, slope2, and oreg2) shows two peaks at the beginning and at the end of 
the period under study. The influence falls in the middle of this study period 
(i.e., during 1981–1997). This can be related to drought that occurred in the 
Czech Republic in this period (Kaspar and Muller, 2008). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Time variation of the regression coefficients of the significant predictors for 
STW II-based models. 

 
Time variation of the relationships between spatial patterns of summer 

precipitation and significant geographical variables selected using PCA-based 
approach has been also analyzed (Figs. 11 and 12). New variables were selected 
using the loading of the components: slope northward from the locations 
(Slope1), vegetation (Veg), and minimum elevation at the locations. An additional 
geographical variable was specifically selected for the ten-year models: slope 
aspect oriented northward. These additional predictors influence the spatial 
patterns of precipitation as well. They are related to the increase of precipitation, 
except the vegetation during some years (1984, 1992, and 2002). A strong 
relationship with precipitation is observed during 1972 for slope2 and in 1995, 
2002 for the vegetation.  

The PCA-based models show an increase of summer precipitation for the 
two PCs scores during the period considered by this study (Figs. 11 and 12). In 
particular, spatial patterns of summer precipitation in 1972 and 1980 have been 
related to PC1 and PC2, respectively. Similarly to STW-based models, PCA-
based models reveal that spatial distribution of precipitation during the summer 
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of 1997 is related to topographic features and geographical coordinates, while 
spatial distribution of summer precipitation in 2002 is influenced by urban 
effect, elevation, and especially latitude.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Time variation of the regression coefficients of the significant predictors for 
PCA I-based models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The extremeness of precipitation during the summer of 1997, especially  
Fig. 12. Time variation of the regression coefficients of the significant predictors for 
PCA II-based models. 
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The extremeness of precipitation during the summer of 1997, especially 
during the two heavy precipitation episodes in July, is associated with the 
atmospheric advection of moist air stream (Rezacova et al., 2005). Meteorological 
features were specifically characterized by an intensive influx of moisture into 
Central Europe and intensive upward motions in the precipitation area. Finally, 
the regression coefficients of precipitation models reveal that topographic feature 
and geographic coordinates have stronger influence on spatial distribution of 
summer precipitation over the Czech Republic than other geographical factors.  

4.3. Trends in coefficients of regression of significant predictors 

The trends in regression coefficients for the yearly-based models during the 
period 1971–2003 are displayed in Fig. 13 (a,b,c). It is obvious that the trends in 
regression coefficients are negative for almost all selected independent 
variables. The only exception concerns the slope of grids northeastward from the 
locations, which has positive trend. The magnitude of the trends is higher for 
latitude and west slope (reaching – 0.37 yr–1 and – 0.23 yr–1) than for other 
independent variables, especially elevation, vegetation, and longitude. The sign 
and magnitude of trends are similar for the same predictors independently 
selected from different model-based approaches. The positive and negative 
trends detected are insignificant. Therefore, the relationships between the spatial 
patterns of summer precipitation and geographical variables, during the 
relatively short period considered in this study, are stable in time.  
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Fig. 13a,b. Trends in coefficient of regression estimated by STW-based (A) and PCA-B 
(B) precipitation models. Models are generated at the annual time step. 
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Fig. 13c. Trends in coefficient of regression estimated by PCA A-based precipitation 
models. Models are generated at the annual time step. 

5. Conclusions 

Relationships between geographical variables (land cover, geographical 
positions, morpho-topographical features) and rainfall spatial pattern were 
analyzed in this study using regression models. Stepwise regression and rotated 
PCA identified several significant geographical variables: slope2, slope5, emax8, 
emin0, vegetation, oreg3, oreg2, and geographical coordinates. Geographical 
coordinates (including continentality) and slope orientation westward are the 
most significant predictors for modeling the spatial distribution of summer 
precipitation over the Czech Republic. Except the minimum elevation (Emin0), 
all important topographical factors correspond to the outside grids at the 
distance of 1 km from the location. Therefore, the terrain characteristics had 
more significant influence when a larger area than a station location is taken into 
account for selecting independent variables. Similarly, the models working with 
independent variables selected from stations are slightly inaccurate in comparison 
with models working with independent geographical variables describing a large 
area around the location. Furthermore, PCA and STW-based approaches for 
selecting significant geographical variables to model spatial patterns of 
precipitation over the Czech Republic are consistent. Nevertheless, PCA-based 
models seem to be less powerful than STW-based models. They yield a small 
explained variance and a large prediction error. In the same way, models based 
on a one-year time resolution are notably less powerful than models based on 
long-term time resolution.  

The time variation of explained variance indicated that precipitation 
variability has an influence on the variance accounted by models and on its 
performance. Thus, smaller explained variance is accounted by models during 
dry years. A temporal analysis of regression coefficients from ten-year precipitation 
models showed positive relationships between precipitation and geographical 
factors. Spatial patterns of averaged summer precipitation at a decade time 
resolution are modeled as increasing with continentality, morpho-topographic 



 69

features, and latitude. On the other side, at the smaller time-resolution, negative 
relationships were found, especially between precipitation and topographical 
features, vegetation, and geographical positions. The spatial pattern of precipitation 
during the summer of 2002, for example, is strongly related to decreasing 
latitude.  

Trend analysis of regression coefficients revealed that relationships 
between summer precipitation patterns and morpho-topographical features, land 
cover, and geographical positions are stable in time. No significant trend in the 
model parameters (effect of geographical factors) has been found during 1971–
2003. Model parameters are stable in time. Therefore, spatial prediction of 
precipitation based on single realization in time (i.e., long term average) is not 
biased by the length of the sample period.   

Spatial precipitation patterns vary in time according to the effect of 
geographical factors, as well as performance of models. The models failed to 
capture the relationships between the precipitation patterns and the geographical 
factors during dry years, namely 1987 and 1988. These years have been dominated 
by intensive drought (Kaspar and Muller, 2008). Precipitation patterns during 
these years could be well modeled using other auxiliary independent variables 
such as the dominant mode of atmospheric circulation that are linked with both 
spatial and temporal variability of precipitation. Although this was not the aim 
of this analysis, the conclusions of this study show the necessity to investigate 
further on the relationships between precipitation pattern and atmospheric 
circulation. 
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Abstract —Air temperature and precipitation data organized within a 10 × 10 km grid 
covering the whole of Slovakia were subject to analysis. The source data are produced by 
the ALADIN Climate/CZ regional climatic model. The output of the global climatic 
model ARPEGE-Climat (Meteo-France) provided the driving data for the regional model. 
The IPCC A1B scenario provides the information on the future development of 
greenhouse gas emissions. Such scenario was developed within the 6th Framework 
Programme project CECILIA (Central and Eastern Europe Climate Change Impacts and 
Vulnerability Assessment).  

Geostatistical prediction of annual mean air temperature and precipitation data was 
carried out for the reference (1961–1990) and distant future (2071–2100) climates. The 
experimental data were non-stationary and significantly correlated with elevation. 
Therefore, we used non-stationary multivariate geostatistical techniques allowing for the 
integration of such information. In particular, we used kriging of residuals, universal 
kriging with external drift, and external drift kriging in the scope of IRF-k (intrinsic 
random functions of order k). Prediction based on linear regression of elevation data was 
used as a complementary technique. Accuracy assessment was based upon the mean 
square errors produced by cross-validation in case of kriging-based predictions and upon 
the mean square residual in case of linear regression-based prediction. 
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We found that all kriging-based techniques outperformed the linear regression-based 
approach, yielding mean square error lower by 53–75%. External drift kriging in the 
scope of IRF-k produced slightly better results for most of the climate variables analyzed. 
The poorest results were achieved in the case of annual mean air temperature for the 
period 1961–1990, where the variogram of residuals was very erratic.  

External drift kriging-based techniques were found to be very efficient for interpolating 
annual mean air temperature and annual precipitation data organized in regular grids. 
Accuracy assessment indicated that the three predictors used yielded almost identical 
results for a single variable, while significant differences in mean square error were 
observed in a between-variables comparison. 
 
Key-words: mean annual air temperature, annual precipitation totals, ALADIN regional 

climatic model, external drift kriging, non-stationary modeling, Slovakia 

1. Introduction 

Maps of various climate elements produced by spatial interpolation of point-
distributed data are frequently used to improve understanding of climate’s 
spatio-temporal variability as well as for various studies of climate impacts on 
society and ecosystems (Haines et al., 2006; Trnka et al., 2004; Hlásny and 
Turčáni, 2009).  

Recent availability of large amounts of climate data produced by global and 
regional climate models (GCMs / RCMs) has drawn attention to the need for 
optimizing the spatial interpolation of such data (e.g., Haylock et al., 2008). The 
data are primarily organized in regular grids with spacing depending on the 
respective GCM / RCM. However, follow-up studies on agriculture, forestry, air 
pollution, and other areas often ask for seamless information on climate rather 
than point-distributed data. Therefore, the search for optimal interpolation 
techniques is a timely task (Mulugeta, 1996; Dobesch et al., 2007). A growing 
number of recent works comparing interpolation techniques and identifying 
optimal data- or region-specific methods is testimony to this issue’s importance 
(Goovaerts, 2000a; Haberland, 2007). 

In addition to the frequently used non-model-based techniques (not using a 
variogram, such as inverse distance weighting or spline interpolation, e.g., 
Hancock and Hutchinson, 2006), there exists a range of geostatistical techniques 
allowing for specific improvements of spatial interpolation, mainly by integrating 
heterogeneous data (Isaak and Srivastava, 1989). In this paper, we demonstrate 
the use of several external drift kriging-based techniques (EDK, hereinafter) 
(Matheron, 1973) for interpolating high resolution climate change scenario data. 
These techniques allow for flexible integration of point-distributed climatic data 
with correlated grid-distributed predictor variables, such as elevation and solar 
insolation. 

An early paper on EDK’s use for predicting air temperature and 
precipitation in Scotland was published by Hudson and Wackernagel (1994). 
Later, EDK’s ability to integrate heterogeneous data prompted many other 
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climatology studies. Carera-Hernandez and Gaskins (2007) found that the use 
of elevation as a secondary variable improves the prediction, even if the 
correlation is low. The influence of such other terrain-related parameters as 
relief slope and aspect was investigated by Attore et al. (2007), who found that 
universal kriging with external drift performed the best for 17 out of 21 climatic 
variables analyzed. Goovaerts (2000a) tested the efficiency of several approaches 
to spatial interpolation of rainfall data (linear regression, ordinary cokriging, 
kriging with external drift, simple kriging with local means) and stressed the 
benefits of incorporating the elevation data. That author found that the latter two 
named techniques yield slightly better results than did the others. 

The purpose of this paper is to analyze the climatic data produced by the 
ALADIN-Climate /CZ regional climate model (Farda et al., 2010) for the whole 
of Slovakia in 10 × 10 km spatial resolution. Maps of mean annual air temperature 
(hereinafter just air temperature) and mean annual precipitation totals (hereinafter 
just precipitation) for the reference (1961–1990) and distant future (2071–2100) 
climates were to be produced. In particular, we focused on: 

(1) describing and preprocessing the data, 
(2) using several EDK-based techniques and a linear regression-based 

approach for spatial prediction of air temperature and precipitation 
data for the reference and distant future climates, and 

(3) assessing the accuracy of the maps produced and discussing the 
results. 

2. Data  

The reference and future climate data were originally calculated using the GCM 
ARPEGE–Climat V4 (Déqué, 2007) in an experiment performed by CNRM/-
Météo-France. Because of rather coarse resolution of the GCM (~50 km over 
Central Europe), the RCM ALADIN-Climate /CZ (Farda et al., 2010) was used 
for additional downscaling of the GCM data. The IPCC A1B emission scenario 
was adopted to provide information on future development of greenhouse gas 
emissions. The data were developed as part of the CECILIA (Central and Eastern 
Europe Climate Change Impacts and Vulnerability Assessment, www.cecilia-
eu.org) project under the European Union’s 6th Framework Programme. The 
RCM covers Central Europe with a resolution of 10 km. Such resolution allows 
for better representation of the driving physical processes (e.g., more accurate 
resolution of geographical features and thus, various interactions with the 
surface), thus, leading to better description of local climate and positively 
affecting the quality of the simulations. 

The data used in this study comprise a subset of ALADIN’s entire 
integration domain covering the Slovak Republic. The 10 km resolution grid, 
with rotation 6o azimuth, is extended beyond the country’s borderline by 
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approximately one grid point in order to reduce interpolation errors in the edge 
locations (Fig. 1). In total, 644 grid points are used for the analysis. Source data 
statistics are given in Table 1. 
 

 
 

 
 

Table 1. Source data statistics. Abbreviations: N – number of observations, Min – 
minimum, Max – maximum, Avg – average, Med – median, SD – standard deviation, 
IQR – inter-quartile range, Skew – skewness,  Kurt – kurtosis. Variables: T – mean 
annual air temperature for the given period, P – mean annual precipitation totals for the 
given period 

 
Variable N Min Max Avg Med SD  IQR Skew Kurt 

T 1961–1990 644 0.6 10.7 7.3 7.4 2.0 3.1 – 0.32 – 0.42
T 2071–2100 644 5.2 13.4 10.7 10.8 1.8 3.2 – 0.40 – 0.90
P 1961–1990 644 416.5 1206.7 697.3 675.6 145.1 207.8 0.83 0.12
P 2071–2100 644 472.5 1175.0 671.3 629.7 154.5 214.9 0.94 0.05

 
Elevation of the study area is used as a supportive variable (Fig. 1). It is 

organized in a 180 m resolution grid, which is more than 55 times denser than 
the ALADIN grid.  

3. Methods  

The climate data used are clearly non-stationary, as they have a global elevation-
controlled trend in the south-north direction. Therefore, we describe here the 
concepts for multivariate non-stationary geostatistical modeling that are used. 
All steps of the geostatistical analysis were carried out in the ISATIS v.9 
environment (Geovariances, Centre de Géostatistique in Fontainebleau). For 
regression modeling, STATISTICA v.7 (StatSoft, Inc., 2004) was used. 

Fig. 1. Spatial arrangement of 10 × 10 km grid of the ALADIN-Climate /CZ regional 
climate model in Slovakia. 



 75

3.1. Stationary spatial models 

Stationarity of spatial data, i.e., the presence of a stable mean for an analyzed 
variable, is the simplest and most frequently documented case of geostatistical 
analysis. This allows for straightforward modeling of the variogram, which 
measures the spatial correlation of the studied variable, as well as for an optimal 
estimation using kriging. In a stationary case, where drift )(xm  is a constant, 
the variogram γ  for distance h is estimated as:  
 

2)]()(E[ )(2 xhxh ZZZ −+=γ .                                     (1) 
 
For a regionalized variable, as one realization of a random function, the 
variogram is estimated by forming the average dissimilarities for all )(hN  pairs 
of data )( αxz  and )( hx +αz  available at sample points αx  that are linked by 
the vector βα xxh −=  (Hudson and Wackernagel, 1994): 
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Usually, we observe that the average dissimilarities between the couples of 
values increase when h is increased, up to a value of the variable autocorrelation 
(range of influence). Beyond this value, the dissimilarities become more or less 
constant around an upper asymptote (sill of the variogram) that is approximately 
equal to the data variance. 

3.2. Non-stationary spatial models 

In a non-stationary case, there is a definite trend in the data, being a gradient in a 
given direction (Hayet et al., 2000). The non-stationary approach to spatial 
modeling considers the phenomenon under study as a sum of two terms:  
 

)()()( xxx mYZ += ,                                             (3) 
 
where )(xY  describes the local variation of )(xZ , and it is assumed to be 
stationary with constant mean. The term )(xm  describes a large-scale variation 
of )(xZ  (drift). It is assumed that the drift can be represented by a polynomial 
of order L:  
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where la  are unknown coefficients of known functions )(xlf  of the spatial 
coordinates. Note that for 1=L , Eq. (4) reduces to a constant term, 0a , which 
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indicates no trend in the spatial coordinates. The term )(xY  in Eq. (3) represents 
the residual, i.e., the amount of variability remaining after the drift has been 
removed. The residuals have a stationary covariance (variogram) function 
between any pairs of random variables )}(),({ hxx +YY . The drift is essentially 
the mean value of the variable as a function of the location at which the variable 
is measured. In a non-stationary case, we can rewrite Eq. (1) as follows: 
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where the trend values )(xm  and )( hx+m  are unknown. The second term on 
the right side of Eq. (5) provides the drift estimate in a particular direction. The 
most straightforward approach to non-stationary modeling is based on 
computation of a residual variogram )(2 hYγ . A proper use of this technique is 
documented by Dowd (1984) and Goovaerts (2000b), who suggested several 
ways for coping with certain shortcomings of this technique, as discussed, for 
example, by Hayet et al. (2000). 

Another approach to non-stationary modeling used in this paper is the 
method of increments based on the theory of intrinsic random function of order 
k (IRF-k) (Matheron, 1973). It defines a linear combination of Z data that filters 
out the drift component )(xm . In a stationary case, the first order difference, or 
increment )]()([ xhx ZZ −+ , filters out the constant drift m. In a non-stationary 
case, higher order differentiation is required to filter out the higher orders of the 
polynomial drift. This approach leads to a so-called generalized covariance 
model )(hK  instead of a variogram )(hγ . The most widely used models for 
generalized covariances are polynomial in form (Matheron, 1973):  
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More information on this technique can be found in Dowd (1984) or Chiles and 
Delfiner (1999). 

3.2.1.  Case of external drift(s) 

In case of a non-stationary spatial model, we consider the trend )(xm  of the 
variable )(xZ  to be a function of spatial coordinates. For some applications, 
exhaustive data for one or more regionalized variables )(xjs  may be available 
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in the studied domain (representing, e.g., elevation). If such data are available, it 
is worthwhile to use them as additional constraints to the interpolation.  

If we assume that )(xZ  is on average equal to )(xjs  up to linear way and 
with coefficients 0a  and 1b , then: 
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Because variables )(xjs  are exhaustively available, they reflect the average 
shape of )(xZ , where just the scaling is different (Hudson and Wackernagel, 
1994).  

3.3. Interpolation techniques 

In this study, we include several techniques under the term external drift kriging. 
Their common feature is that the elevation acts as an external drift correlated 
with the primary climatic variables. In addition, a linear regression of the 
elevation data was used to predict the climate data.  

Residual kriging, known also as regression kriging (Odeh et al., 1994) or 
kriging after detrending (Goovaerts, 2000b), predicts the residuals at all nodes 
of the interpolated grid ox , )( o

* xY . Residual kriging uses the drift )(* xm  
calculated by a polynomial of a selected degree by the least squares method. 
Residuals )( αxY  are calculated as the differences between )( αxZ  and 

)(*
αxm  at all sample points. Using the variogram of residuals, the kriging 

system for weights )( αω x , n...,,1=α  includes 1+n  linear equations: 
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The residual kriging estimator is a linear combination of available n data )( αxy  
for only n random variables )( αxZ :  
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Finally, the estimated drift, Eq. (4) and kriged residuals, Eq. (9) are added 
together.  



 78 

Universal kriging provides an unbiased estimation, which considers drift 
)(xm  as a continuous and regular function (Eq. (4)), usually restricted to 

polynomials up to the order of 2. It uses a model representing both local and 
global variability of the variable in space. It determines the underlying 
variogram of )(xY  and estimates the degree of drift. We modeled the drift by 
Eq. (4), including elevation as the external drift. The simultaneous system of 
equations for the universal kriging estimator, considering both internal and 
external drift, is as follows:  
 

( ) ( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

==∑

==∑

=∑

=

=∑+∑++∑

=

=

=

===

. ..., ,1for           )()()(

    , ..., ,1for             )()()(

,1)(

, ..., ,1for                                                       

   ),()()(,

o
1

o
1

1

o
11

0
1

Llff

Jjss

nα

sf

l
n

l

n
j

n

Z
J

j
jj

L

l
ll

n
Z

xxx

xxx

x

xxxxxxx

α
αα

α
αα

α
α

ααα
β

βαβ

ω

ω

ω

γλλλγω

 (10) 
 

The kriging system for IRF-k is similar to the universal kriging system, 
Eq. (10). The only difference is that it uses the generalized covariance model 

)(hK  (Eq. (6)) instead of the variogram )(hγ  (Eq. (2)). More details about 
IRF-k can be found in Dowd (1984) or Chiles and Delfiner (1999). 

3.4. Linear regression-based estimation 

The generally recognized relationship between the climate variables addressed 
and elevation allows for a simple prediction of climate data at all positions for 
which elevation data are available. There exists a set of collocated climate 

)( αxz  and elevation )( αxs  data nαsz  ..., ,1 )];(),([ =αα xx , where n is the 
number of observations. The prediction )( o

* xz  is based on a linear relation-
ship: 
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where coefficients *

0a  and *
1b  are estimated from the collocated climate and 

elevation data. A major shortcoming of this type of prediction is that the climate 
data at a particular grid node are derived only from the collocated elevation, 
regardless of the surrounding observed climate data (Goovaerts, 2000a). 
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3.5. Accuracy assessment 

Two techniques were used to assess the accuracy of the maps produced and the 
performance of the predictors used. A cross-validation procedure was used in 
case of geostatistical predictions (Isaaks and Srivastava, 1989; Clark, 1986). 
The technique temporarily removes one observation at a time from the data set 
and “re-estimates” this value from the remaining data using a given predictor. 
Such procedure produces couples of values, the differences between which yield 
cross-validation residuals. The main criterion for assessing accuracy is mean 
square error (MSE), which measures the average squared difference between the 
observed )( αxz  and predicted )(*

αxz  values: 
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where n is the number of observations. 

Correlation coefficients of observed versus predicted values, normality of 
residuals distribution, mean value of residuals (criterion that the mean is 
approaching zero), and degree of randomness of spatial distribution of residuals 
can also be used. 

Another approach was used in the case of linear regression-based 
prediction. The MSE was computed as the average square residual value for the 
linear model fitted using all observations: 
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4. Results 

4.1. Drift identification 

To identify an optimal global trend, the polynomials of order one (linear) and 
two (quadratic) plus one external drift (elevation) were tested by the cross-
validation procedure for the lowest mean square error. Other criteria, such as 
mean of residuals approaching zero, minimal variance, normal distribution, and 
well-structured directional experimental variograms, were used as well. We 
found that the linear drift along the x and y coordinates (internal drift), together 
with the elevation (external drift), 
 

)(yx)( 1210
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performed the best for all climate variables. 
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4.2. Kriging-based predictions 

To perform the residuals kriging, we used the trend functions described above to 
filter out the residuals )( αxy           from the regionalized variable )( αxz          , then 
estimated the residual variogram models  )(hYγ  for all the climate variables 
analyzed (Fig. 2). Estimation of the variogram model for the variable T 1961–
1990 was problematic, because there were erratic directional experimental 
variograms without clear spatial structure. Therefore, an omnidirectional model 
was fitted to the experimental variogram values in this case. The variogram’s 
origin was estimated from the directional variogram constructed in the azimuth 
6o that rises from the variogram’s value at about 0.1 (oC)2. Directional experimental 
variograms are presented in Fig. 2 to demonstrate that no anisotropy can be 
modeled in this case.  
 

 
 

Fig. 2. Directional experimental residual variograms (thin lines) and respective 
variogram models (thick lines). The numbers on the right side indicate the angles at which 
the variograms were calculated. Abbreviations: P 1961–1990 – mean precipitation totals 
during the period 1961–1990, P 2071–2100 – mean precipitation totals during the period 
2071–2100, T 1961–1990 – mean annual air temperature during the period 1961–1990, 
T 2071–2100 – mean annual air temperature during the period 2071–2100. 
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The estimation of kriging weights )( αω x  was based on Eq. (8). Estimation 
of residuals )( o

* xy  was based on the linear combination of available data 
according to Eq. (9). Finally, the kriged residuals were summed with the trend 
model according to Eq. (3). 

In case of universal kriging, the trend component is directly included into 
the kriging system according to Eq. (10) for the drift estimation (Eq. (14)). The 
final estimation was performed directly using the raw variable )(xZ . 

In case of IRF-k, the automatic fitting procedure of the ISATIS 
environment was used to determine both the degree k of the drift and the 
generalized covariance. For all variables, the degree of the drift was 1 (linear in 
X and Y directions) plus the external drift represented by the elevation. The 
generalized covariance of order 1 (similar to the linear model of the variogram) 
without nugget effect was used for all climate variables.  

For interpolation neighborhood definition (Isaaks and Srivastava, 1989), 
we used a so-called unique neighborhood, i.e., all available data were used to 
estimate a value at a particular grid node. We also tested several designs for a 
moving neighborhood, such as a first ring neighborhood (4 adjacent samples), 
second ring neighborhood (16 adjacent samples), and third ring neighborhood 
(36 adjacent samples). The cross-validation tests indicated that the unique 
neighborhood was performing the best for all climate variables. In addition, the 
use of moving neighborhoods resulted in “radial” artefacts in the maps 
produced, due to the resolution of the estimated grid which is more than 55 
times higher than that of the ALADIN grid.  

The maps of both variables for both time slices produced by EDK in the 
scope of IRF-k can be seen in Fig. 3. We can see that the elevation pattern is 
much stronger in the case of temperature than in that of precipitation data due to 
the different correlation of climate variables with elevation (Table 2).  

4.3. Linear regression-based prediction 

Linear regression-based prediction was used to provide the reference value for 
assessing the accuracy of the kriging-based techniques. Regression parameters 
from elevation and the respective climatic variables are based on all 644 
observed values (Table 2). Mean square error was calculated using Eq. (13). 

4.4. Accuracy assessment 

Accuracy assessment was based on comparison of the MSE yielded by kriging-
based predictions (Table 3) with that from the linear regression-based prediction 
(Table 2) (Goovaerts, 2000a). The latter technique provided the MSE reference 
value for evaluating the performance of kriging techniques. Proportional values 
of MSE are illustrated in Fig. 4. Such an approach allows for evaluating the 
performance of respective predictors for a single variable as well as for between-
variable comparison. The results are discussed below.  
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Fig. 3. Maps of mean annual air temperature and mean annual precipitation totals for the 
reference (1961–1990) and distant future (2071–2100) climates produced using external 
drift kriging in the scope of IRF-k. 

 
Table 2. Linear regression parameters between elevation (X) and respective climatic 
variables (Y). Abbreviations: *

0a  – intercept, *
1b  – slope, R – correlation coeficient, R2 – 

coefficient of determination, MSE – mean square error 
 

X Y *
0a  *

1b      R R2 MSE 

Elevation P 1961–1990 526.86 0.39180 0.75 0.563 9141 
Elevation P 2071–2100 488.27 0.42060 0.76 0.578 10123 
Elevation T 1961–1990 10.26 – 0.00688 – 0.95 0.903 0.394 
Elevation T 2071–2100 13.34 – 0.00606 – 0.94 0.887 0.359 
 

Table 3. Results of the cross-validation based accuracy assessment. Abbreviations: KR – 
residuals kriging, UK – universal kriging with external drift, IRF-k – external drift 
kriging in the scope of IRF-k, R – correlation coefficient between observed and predicted 
values, R2 – coefficient of determination, MSE – mean square error of prediction, AVG 
– average value of residuals 

 
Variable Interpolator R R2 MSE AVG 

T 1961–1990 KR 0.978 0.956 0.17457    0.000286 
T 1961–1990 UK 0.978 0.957 0.17165    0.000286 
T 1961–1990 IRF-k 0.976 0.953 0.184628    0.000410 
T 2071–2100 KR 0.990 0.981 0.056014 – 0.000449 
T 2071–2100 UK 0.991 0.981 0.055269 – 0.000327 
T 2071–2100 IRF-k 0.990 0.981 0.054161 – 0.000306 
P 1961–1990 KR 0.954 0.909 1588.9 – 0.1220 
P 1961–1990 UK 0.954 0.910 1564.6 – 0.0280 
P 1961–1990 IRF-k 0.955 0.912 1536.9 – 0.0099 
P 2071–2100 KR 0.939 0.881 2329.5 – 0.0180 
P 2071–2100 UK 0.940 0.884 2273.9    0.0470 
P 2071–2100 IRF-k 0.943 0.889 2163.9    0.0660 
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Fig. 4. Results of accuracy assessment for predictions produced by three interpolation 
techniques for mean annual air temperature and mean annual precipitation totals for the 
periods 1961–1990 and 2071–2100. The figures indicate the proportions of the MSE 
(mean square error) yield by cross-validation in the case of EDK-based techniques to 
MSE yield using the linear regression approach.  

5. Conclusions and discussion 

We performed a series of analyses of high resolution RCM data covering 
Slovakia. Both air temperature and precipitation data are well correlated with 
elevation (Table 2), and thus, we focused on the integration of that variable into 
the interpolation. Such supportive variable is presumed to reduce the amount of 
uncertainty in the maps produced. We used three external drift kriging-based 
techniques: residuals kriging, universal kriging with external drift, and external 
drift kriging in the scope of IRF-k. We described in details the particular steps of 
the geostatistical analysis to allow for a deeper understanding of those 
techniques used.  

All kriging-based techniques produced comparable results for a single 
climate variable. The reason for this evidently lies in the high correlation of 
climate data with elevation, which covers the impact of different interpolation 
algorithms. In the cases of the variables T 2071–2100, P 1961–1990, and P 
2071–2100, EDK in the scope of IRF-k yields slightly better results than do the 
remaining kriging-based techniques. This can reflect the benefit of using an 
automatized procedure in generalized covariance calculation for regularly 
distributed data in comparison to manual variogram fitting (the case of residuals 
kriging). The poorest results were reached in the case of the variable T 1961–
1990, where the residuals were very erratic, and thus, they influenced the shape 
of the respective variograms (Fig. 2). This applies also for the remaining 
techniques, because drift parameters remain more or less stable. 
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Subsequently, we tested the ratio of mean square errors produced by 
kriging-based techniques to those from linear regression-based estimation. All 
kriging techniques significantly outperformed the linear regression-based 
estimation, which yields a mean square error 15 – 47% higher (depending on the 
variable). This means that, despite high correlation between climate data and 
elevation, information about the configuration of the surrounding data significantly 
improved the estimation. The accuracy assessment indicated that the three 
predictors used yielded almost identical results for a single variable, while 
significant differences in mean square error were observed by between-variables 
comparison. 

Geostatistical techniques, in general, require a certain extent of user 
intervention and cannot be fully automatized. In any case, large amounts of 
climate data produced by various instruments require at least a semi-automatized 
approach when producing series of climate maps for various time slices. 
External drift kriging in the scope of IRF-k is a candidate technique for this. It 
yielded slightly better results than did the remaining EDK-based techniques for 
three out of four variables analyzed, and the underlying generalized covariance 
may be calculated automatically (see implementation in the ISATIS environment 
used in this paper). By contrast, residuals kriging requires a series of user 
interventions, which were not, however, compensated by improved accuracy of 
the prediction.  
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Abstract —For various studies, it is necessary to work with a sufficiently long series of 
daily data that is processed in the same way for the whole area. National meteorological 
services have their own tools for data quality control; data are usually available non-
homogenized (with respect to artificial changes in the series due to relocations, change of 
observers, etc.). In the case of areas across borders of individual countries, researchers 
from both sides of a frontier can obtain quite different results depending upon the data 
they use. This was one of the reasons for processing stations from the area along borders 
of four countries in the Central European region within the international CECILIA project 
(Central and Eastern Europe Climate Change Impact and Vulnerability Assessment, 
project of EC No. 037005). For the processing of the series, quality control has been 
carried out, gaps have been filled and, in the end, a series at a new position (grid points of 
RCM output) were calculated. An interpolation technique which is able to deal with all 
these tasks is described in this work and then applied to a series of various meteorological 
elements in Central Europe.  
 
Key-words: data quality control, filling missing values, interpolation techniques, 

climatological time series 

1. Introduction 

During validation of regional climate model (RCM) outputs, its values are 
compared with the values of observations. Whereas the observations are located 
in the station network, which is irregular in its nature, the dynamical model 
(GCM, RCM) outputs are provided on a regular grid (statistical downscaling 
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procedures can yield output either at stations or grid points, depending on what 
they were trained on). Dynamical models thus provide area-aggregated, rather 
than point-specific data, which makes a direct comparison between station data 
and gridded model output less straightforward, especially for variables with a 
short correlation distance, such as precipitation (e.g., Skelly and Henderson-
Sellers, 1996). Therefore, validation has the potential to be truer to dynamical 
models if the observations are transformed from stations to a grid. This was one 
of the reasons that such a task was carried out within the CECILIA project. 

For the development and calibration of statistical downscaling methods, 
and for the use of outputs from dynamical as well as statistical downscaling in 
climate change impact studies, a common observed dataset needed to be created. 
It was decided that the common dataset would extend over the area along the 
boundaries of the Czech Republic, Austria, Slovakia, and Hungary (this region 
is hereinafter called the CECILIA Central European domain). The main 
intention was to cover the majority of the impact target areas in Central Europe. 
Another deciding factor in this decision was that it would be easier to obtain 
meteorological data from meteorological services for only relatively small parts 
of the countries than for their large parts or even whole countries. 

To achieve such a goal, it was necessary to prepare observation data in a way 
that they would be homogeneous, free of erroneous values, and they gaps would 
be filled. Ideally, they should also be available in the location of the used model 
output. For this reason, two versions of the dataset were created, one located at 
the stations, the other located on the grid of the regional climate model, in this 
case ALADIN-Climate/CZ (details about the model can be found, e.g., in Farda 
et al., 2007). To create series at given locations, interpolation methods, which 
are described further in this paper, have been used. The techniques for data 
quality control, carried out upon the data prior to any further processing, and for 
filling the missing values in the station series are, in principal, identical to that 
used for the calculation of series at a new position, mentioned above. For this 
reason, the quality control is described in this paper as well. 

2. Central European dataset, data preparation 

The area of interest covered by the dataset can be seen in Figs. 1 and 2. It 
includes:  

• in the Czech Republic: the southern and southeastern part, consisting of 
the regions of České Budějovice, the Highlands (Vysočina), South 
Moravia, Zlín, and minor southern parts of Central Bohemia; 

• in Austria: the federal states of Lower Austria, Upper Austria, Vienna, 
and Burgenland; 

• in Slovakia: the western part, consisting of the regions of Bratislava, 
Trnava, Nitra, Trenčín, and Banská Bystrica; 



 89

• in Hungary: the regions of Győr-Moson-Sopron and Komárom-
Esztergom. 

The Central European area covers the following impact target areas 
(processed in the CECILIA project): agriculture – Lower Austria (AT), southern 
Moravia (CZ), the Danube lowlands (SK), and the northwestern part of Hungary 
(HU); forestry – southern central Slovakia (SK); hydrology – the Dyje and upper 
Vltava catchments (CZ), the Hron catchment (SK).  

The dataset itself consists of daily data for the period of 1961–2000. 
Variables available in the dataset are given in Table 1. Potential evapotran-
spiration is not included, since there are several ways it can be calculated and it 
can also be derived from the available elements by individual users.  
 

Table 1. Meteorological elements available in the common dataset 
 

Abbreviation Description Unit 

TMI Maximum temperature °C 
TMA Minimum temperature °C 
H Relative humidity % 
SRA Precipitation mm 
SSV Sunshine duration h 

 
The following comments on the variables selected and not selected should 

be made: 
• Daily mean temperature was not included because of regional differences 

in its calculation and a change in the practice of its calculation in 
Austria in the early 1970s, which could induce an inhomogeneity in the 
time series and inconsistency along the state boundaries.  

• Relative humidity, and not another measure of atmospheric moisture 
unaffected by daily temperature cycle, such as specific humidity, was 
selected, because some of the impact models require only relative 
humidity as their input.  

• Wind speed and direction were not subjected to gridding and the creation 
of technical series because of the necessity of working separately with the 
two wind components, which would cause considerable complications, 
making the resultant technical series doubtful and unreliable.  

• Solar radiation can easily be approximated from the sunshine duration 
data. Solar radiation was not included among the final products, since 
meteorological services apply different approaches for its calculation 
(e.g., the Angström formula or regression models based on altitudes). 

Even incomplete time series were allowed into the database. The data were 
prepared and provided by the following partners: the Czech Hydrometeo-
rological Institute (CHMI) for the Czech Republic, the Forest Research Institute 
(NFC) for Slovakia (40 stations), the University of Natural Resources and 
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Applied Life Sciences (BOKU) for Austria (30 stations), and the Hungarian 
Meteorological Service (OMSZ) for Hungary. The data policy of some of the 
involved meteorological services does not allow the distribution of raw station 
data. This was another reason for creating technical series from the station data 
available, which were distributed among the project participants. Technical 
series of two kinds were constructed: (i) gridded datasets covering the area 
where station data are available; this was regarded as a primary dataset; (ii) 
station technical series, which have the advantage of better homogeneity and 
completeness over the raw data.  

In the CECILIA Central European domain, about 150 climatological 
stations are available – see Fig. 1, in comparison with 832 grid points of the 
ALADIN-CLIMATE/CZ RCM – see Fig. 2. The number of stations available in 
the individual countries and meteorological elements are given in Table 2. 
 

 
 

Fig. 1. CECILIA Central European domain (shaded area) with available climatological 
stations (dark / light dots for stations inside / outside the domain). 

 
 

 
 

Fig. 2. Grid points of ALADIN-CLIMATE/CZ (dark / light dots) available 
within / outside the CECILIA Central European domain (shaded area). 
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Table 2. Number of stations, available per individual country (AT – Austria, CZ – Czech 
Republic, SK – Slovakia, HU – Hungary) and meteorological element (see Table 1 for 
explanatory notes) 

 
Element Country 

TMA TMI SRA SSV H 

AT 
CZ 
SK 
HU 
Total 

  33 
  90 
  39 
  11 
173 

  33 
  90 
  39 
  11 
173 

  35 
  90 
  39 
  11 
175 

  11 
  68 
  39 
    6 
124 

  30 
  91 
  40 
  11 
172 

 

3. Data quality control 

Before the station technical series and gridded dataset were calculated, raw 
station data had been subjected to thorough quality control using AnClim and 
ProClimDB softwares (Štěpánek, 2007; more details can be found in the 
documentation of the softwares at www.climahom.eu). Tools available in the 
softwares were designed so that they could be used for the automated finding 
of errors in datasets. The outliers were found by a combination of several 
methods: the percentage of neighbor stations which are significantly (p = 0.05) 
different from the base station (found from standardized differences between 
neighbors and base station, the limit value is more than 75%); the difference of 
the base station value and the median calculated from values of neighbors 
standardized to the base station altitude (using linear regression) divided by 
standard deviation of the base station, expressed as CDF of normal distribution 
(the limit value is more than 0.95); the coefficient (multiple) of distance of the 
base station value above (below) the upper (lower) quartile calculated from the 
standardized (to the base station altitude) values of neighbor stations (the higher 
the value, the more similar neighbor values are compared to the base station 
value, the limit value is a coefficient higher than 5); the difference from the 
expected value (details on its calculation are given in Section 4); and the median 
calculated from the original values of neighbor stations divided by the standard 
deviation of the base station values (expressed as CDF of normal distribution, 
the value should be low, otherwise it indicates that the calculation of the 
expected value is probably wrong, the limit value is less than 0.75). The 
calculation was carried out for each meteorological element and individual day 
separately (Štěpánek et al., 2009).  

Table 3 shows an example of the suspicious values found. Such values 
were found in all the available raw datasets (Austria, Czech Republic, Slovakia, 
and Hungary, their numbers are given in Table 4) and were withdrawn from 
further processing, replaced with a code for missing value.  
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Table 3. Output from the ProClimDB software with an example of suspicious values 
found in the raw dataset (gray column) compared to values of five neighbor stations (five 
rightmost columns) 

 
Station       Suspected Expected Neighboring stations 

Element
 ID Year Month Day value value 

Remark
 9900 13301  9811 15900 16000

TMIN 10000       492.0   Altitude 648.0 480.0 695.0 810.0 842.0
TMIN            Distance 22.0 43.1 50.1 56.9  62.7
TMIN 10000 1961 3 18 8.0 –1.8   –2.9 –1.7 –1.5 –1.8 –2.0
TMIN 10000 1962 4 22 10.0 2.9   1.1 3.2 3.8 3.1 4.0
TMIN 10000 1962 4 23 13.0 0.9   0.1 1.3 1.8 0.6 2.8
TMIN 10000 1962 5 22 7.0 1.1   1.3 0.8 2.9 0.7 1.4
TMIN 10000 1962 7 21 13.0 8.4   7.4 8.6 9.1 8.5 9.0
TMIN 10000 1963 5 30 10.6 3.3   3.1 3.3 4.1 2.7 3.2
TMIN 10000 1964 1 5 –10.0 –18.5   –19.7 –18.4 –16.5 –16.4 –17.0
TMIN 10000 1968 4 15 5.0 –0.6   –1.3 –0.5 0.6 –1.4 –1.4
TMIN 10000 1975 4 6 9.4 4.0     4.2 2.1 2.1 2.2
TMIN 10000 1976 2 8 –1.2 –8.9     –9.0 –7.9 –6.9 –8.3

 
 

Table 4. Numbers of suspicious values (evident errors) per country and meteorological 
element (see Table 1 for explanatory notes) 

 
Absolute numbers                                                     Relatively per number of stations 
Element Element Country 

TMA TMI SRA SSV H 

Country 

TMA TMI SRA SSV H 

AT 
CZ 
SK 
HU 
Total 

28 
36 
8 
1 

73 

  74 
157 
  37 
  10 
278 

195 
489 
  72 
  33 
789 

  309 
  910 
  975 
  374 
2568 

  118 
  498 
  346 
  201 
1163 

AT 
CZ 
SK 
HU 
Total 

0.85 
0.40 
0.21 
0.09 
0.42 

2.24 
1.74 
0.95 
0.91 
1.61 

5.57 
5.43 
1.85 
3.00 
4.51 

 28.09 
 13.38 
 25.00 
 62.33 
 20.71 

   3.93 
   5.47 
   8.65 
 18.27 
   6.76 

 
The data quality checked datasets were further used in the calculation of the 

station technical series and the gridded dataset. 

4. Calculation of station technical series and gridded dataset 

Several methods can be used to calculate the values of a given meteorological 
element at a certain geographical position (e.g., at a grid point). Inverse distance 
weighting is among the more simple methods, but it still gives good results, even 
when compared to modern geostatistical methods such as kriging, co-kriging, 
and universal kriging (Kliegrová et al., 2007). As weights, inverse distance or 
correlation may be used (Isaaks and Srivastava, 1989), possibly powered to 
account for lower or higher spatial correlations of a given meteorological 
element. Applying geostatistical methods to time series is not an easy task 
(mainly due to the computational demands), but some attempts that combine 
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time and spatial analysis already exist (e.g., Szentimrey, 2002; Květoň and 
Tolasz, 2003), and such methods have recently begun to be more widely used. 

As mentioned above, daily series of several meteorological elements for 
hundreds of locations (grid points) were to be calculated. Utilizing a GIS 
environment for a task such as this would be advantageous, because it provides 
the potential for choosing from a variety of interpolation methods. Nonetheless, 
current GIS environments (e.g., ArcMap, ESRI ArcView, ArcGIS) are not 
designed for the easy retrieval of information for time series (calculation for 
each time step). This is why we needed to create our own tool with enough 
automation to carry out the task. The software ProClimDB (Štěpánek, 2007) was 
extended for the computation. This software is freely available. 

After quality control (see the previous section), the technical series of daily 
values at a particular grid point (station location) were calculated from up to 6 
neighboring (nearest) stations within a distance of 300 km, with an allowed 
maximum difference in altitude of 500 m. Before applying inverse distance 
weighting, data at the neighbor stations were standardized relatively to the 
altitude of the base grid point (station location). The standardization was carried 
out by means of linear regression and dependence of values of a particular 
meteorological element on altitude for each day, individually and regionally. 
Each standardized value was checked to ascertain it did not differ excessively 
from the original value (providing CDF did not exceed 0.99; in such a case, 
linear regression was not regarded a good model and an original, i.e., not 
standardized value, was used for further calculation). In the case of precipitation, 
neighbors with original values equal to zero were not standardized. For the 
weighted average (using inverse distances as weights), the power of weights 
equal to 1 (all meteorological elements except precipitation) and 3 (precipitation) 
were applied. In the case of temperatures, standardized neighbor values outside 
the 20% to 80% percentile range were not considered in the calculation of final 
values (i.e., trimmed mean was applied).  

Originally, the “raw” station data (but with suspicious values removed), 
i.e., series with gaps and also series not available in the whole period of 1961–
2000, were used for the calculation of technical series at both stations and grid 
points. Even if the statistical properties of the original measured data were 
preserved (like moments) in calculated technical series (calculated for each day 
separately), some of the time series showed inhomogeneities, which could be 
resulted from either the inhomogeneity of the original station data or from the 
method of calculation: if some stations measured only for a short time, the 
selection of neighbors varies in time. To avoid inhomogeneities of this kind, we 
proceeded as follows: first, missing values were filled in original station data 
series; second, for station series with filled gaps, station technical series were 
calculated, applying standardization of neighbors to base station altitude 
(estimated using linear regression for the neighboring region, for each month 
individually), thus, all stations were extended to have values in the whole period 
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of 1961–2000; third, only these equally long station technical series were used 
for the calculation at grid points.  

The altitudes applied in the calculation of grid point series were the actual 
altitudes, read from a 1 km resolution model of the terrain. However, for the 
purposes of RCM validation, it would be better to read altitudes of a smoothed 
terrain (e.g., low-pass filter smoothing for a square of 20 × 20 km or 10 × 10 km) 
to characterize the vicinity of a grid point, much the same as in RCMs. The 
same is valid for the power of weights (inverse distances). Applying the power 
of about 0.5 (square root) better characterizes a wider vicinity of a grid point. 
The goal was, however, to create technical series at a station or grid point and to 
preserve the statistical characteristic of the particular point. Thus, it is 
reasonable to say that the calculated series provide point-specific data rather 
than area-aggregated data. Another reason is that the area of aggregation varies 
among different climate models (model resolution). The technical series should 
be used for validation of RCMs with caution.  

The settings of parameters of the technical series calculation differ among 
individual meteorological elements. The next section describes the best solution 
for each meteorological element with an example of selected stations in the 
Czech Republic.  

5. The best settings in the calculation of station technical series and  
gridded datasets 

The parameter settings for station technical series and the gridded dataset differ 
for various meteorological elements. The “ideal” setting of parameters was 
determined by using four base stations in the area of the Czech Republic. 
Because stations were chosen so they would represent different climatological 
conditions, both lowland and highland stations were chosen, as well as stations 
both at the eastern and western edge of the area so as to capture differences 
between the more maritime and continental weather regimes which manifest 
across the Czech Republic. The four selected base stations, with their neighbor 
stations, are displayed in Fig. 3, the information on the base stations is provided 
in Table 5. The parameters were tuned by comparing original and calculated 
values using various verification criteria.  

Altogether, 11 various parameters were tested in ProClimDB individually 
to find the “ideal” setting for all the required meteorological elements: 
maximum and minimum temperature, relative humidity, precipitation, and 
sunshine duration. Daily values of the meteorological elements in the period of 
1991–2007 were used. The changed (controlled) parameters were: transformation 
of input values (log, square root, etc.); standardization of neighbor station values 
to monthly averages (and/or standard deviations) at a base station, standardization 
of neighbor stations to the altitude of the base station (this case can also be 
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controlled by calculating regression for the whole period – monthly, or for each 
time step individually, to set the behavior in the case of only one station being 
present in a given time, and the correction coefficient for regression to control 
the dependence on altitude); a check whether standardized values become 
outliers or not; the power of weights for calculation of a new (”expected”) value; 
applying trimmed mean when a new value is calculated (and setting the limits in 
such a case). 

 

 
Fig. 3. Four base stations (marked with an asterisk) and their neighbors (different for 
precipitation and climatological stations shown in black and grey, respectively) used for 
the verification of calculated technical series. 

 
 

Table 5. Base stations used for the verification of calculated technical series 
 

Name ID Latitude Longitude Altitude 

Brno-Tuřany B2BTUR01 49.1597 16.6956 241.00 
Plzeň-Bolevec L1PLZB01 49.7892 13.3867 328.00 
Červená O1CERV01 49.7772 17.5419 750.00 
Churáňov C1CHUR01 49.0683 13.6131 1118.00 

 
It was more difficult to find a solution for precipitation and relative 

humidity than for the other meteorological elements. Unfortunately, it seems 
impossible to get 100% realistic values during the calculation (e.g., non-negative 
relative humidity and precipitation). The unrealistic values are caused mainly by 
poor quality of raw station data, insufficient length of series at neighbor stations 
(time gaps simultaneous at several neighbor stations diminish the number of 
values used for regression), and a greater difference in altitudes of stations used 
in the regression model. These factors can be controlled to some extent. The 
input data were controlled for quality before calculation (see previous section). 
Stations allowed for the calculation can be filtered to retain only those with a 
certain minimum length and without longer time gaps. The third factor – the 



 96 

difference in altitudes – is not easy to cope with, since we selected the nearest 
neighbours for the calculation, which, e.g. in the case of precipitation, seems to 
be the only solution (the selection of the nearest and best correlated stations is 
the same, while for temperatures, one could also select neighbor stations 
according to correlations). Problems were especially evident with the mountain 
station (Churáňov), since its altitude is higher than that of its neighbors and, 
thus, extrapolation instead of interpolation must be used. 

The setting of parameters for maximum temperature, minimum temperature, 
relative humidity, and sunshine duration is similar to some extent. For station 
technical series, the neighbor station values were standardized to the base station 
average and standard deviation using the whole period, within each month 
individually (in this case we fill gaps in station measurements and this helps to 
avoid the introduction of inhomogeneities into the series), whereas for the 
gridded dataset, values were standardized to the altitude of the base station using 
linear regression estimated for each day individually (which is a better solution, 
e.g., in case of days with inversions). During the calculation, checks were done 
to determine that standardized values do not differ too much from the original 
values. For a value larger than 0.99 (CDF), the original values were used for 
further calculations: lower settings of 0.95 or 0.90 lead to much worse results. 
The power for weights (inverse distance) was taken as 1. For maximum and 
minimum temperature, trimmed mean was applied for calculations of the 
“expected” value with quantile limits of 20% and 80%. An example of the 
difference between the original and calculated values of the maximum 
temperature is shown in Fig. 4. It is evident, that stations in lower altitudes show 
a weak annual cycle of RMSE (root mean square error applied on the calculated 
and original values). On the contrary, the mountain station of Churáňov reaches 
very high values of RMSE during winter; the different behavior can be 
explained by the frequent occurrence of temperature inversions when the 
lowland stations used for the calculation have substantially different weather 
conditions. 

For the calculation of the technical series of precipitation, a standardization 
to altitude for the whole period (station technical series), or applied individually 
for each day (gridded dataset) was again carried out. The difference from 
previous settings is that the power for weight was set to 3 to reflect lower spatial 
correlations of precipitation, and a trimmed mean is not applied. No 
transformation of input values (e.g., logarithms) was performed, since it gave 
poorer results. The average difference (bias between original and calculated 
values) for precipitation at Brno-Tuřany is 0.0 mm; in most months it does not 
exceed 0.1 mm. The highest difference occurs for June, 0.27 mm. RMSE values 
are highest for summer months as well. Precipitation is influenced by local 
effects much more than the other meteorological elements, and even at adjacent 
sites, there can be great differences (in some cases, a 30 to 60 mm precipitation 
amount is observed at two neighbor stations, while the other two stations record 
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no precipitation at all). For this reason, the correlation coefficient is lower, only 
0.875. From the scatter plot (Fig. 5, left) we can see several outliers which 
influence the value of the correlation coefficient. Looking at the histogram (Fig. 
5, right), we can see that 62% of values differ only negligibly.  
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Fig. 4. RMSE (in °C) for four base (tested) stations and maximum temperature. 
 
 

 
 

Fig. 5. Scatter plot for calculated and original values of precipitation (left) and histogram 
of differences between the calculated and original values (right) at station Brno-Tuřany. 

 
More detailed information on the optimal settings found and used in the 

ProClimDB software is contained within the ProClimDB software documen-
tation, which can be downloaded together with the software itself.  
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6. Summary 

Interpolation techniques can solve many tasks required during data processing. 
In this work we have shown their application to daily data for various 
meteorological elements. The technique described is quite general, so that it can 
be applied to different tasks, such as data quality control (finding suspicious 
values), filling gaps in the series, or calculation of a new series for a new 
location. As it can be seen from the given examples of verification results, the 
calculated station technical series and gridded datasets do very well at reflecting 
the behavior of the measured values of the processed meteorological elements 
(maximum and minimum temperature, relative humidity, precipitation, sunshine 
duration), which make the series capable of being utilized for various purposes, 
such as a development and calibration of various methods of statistical 
downscaling, usage in impact studies (since the final network density is much 
higher than that of the original station network and is, moreover, regular), for a 
comparison with national datasets (border discrepancies), where available, etc.  
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Abstract —The calculation of extreme climate indices defined by several international 
projects requires homogeneous time series. To this effect, long term daily extreme 
temperatures and daily precipitation sums were homogenized, quality controlled, and 
further processed by the method MASH (Multiple Analysis of Series for Homogenization). 
After homogenization of station observation series, a gridding procedure was performed 
on the daily observations by the method MISH (Meteorological Interpolation based on 
Surface Homogenized Data Basis). The idea behind the MISH interpolation scheme 
stems from the following principles: gridded data can be created (interpolated) at higher 
quality with respect to certain climate statistical parameters; and these parameters can be 
modeled by using the long climate data series. In the MISH procedure, the modeling of 
the statistical parameters for a given location is based on the long term homogenized 
monthly data of neighboring stations.  

In this paper, we present the computations of extreme temperature and precipitation 
climate indices for the period of 1901–2009 using datasets which were processed by the 
above homogenization and gridding algorithms. The obtained trends of several extreme 
indices as well as their spatial distributions are demonstrated on graphs and maps. 
 
Key words: extreme climate indices, data homogenization, data interpolation, climate of 

Hungary 

1. Introduction 

The study of climate extremes in a changing climate has come to the fore in 
recent years. The most common way to detect changes is the analysis of extreme 
climate indices, which are defined by several international projects (Alexander 
et al., 2006). Groups, such as the World Meteorological Organization (WMO) 
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CCI/CLIVAR Expert team on Climate Change Detection and Indices (ETCCDI), 
the European Climate Assessment (ECA), and the Asia-Pacific Network (APN) 
have aimed to provide a framework for defining and analyzing the observed 
climate extremes. Climate index calculations require quality controlled, 
homogeneous time series, and the analysis of the results requires a consistent 
approach (Wijngaard et al., 2003). The global and also the regional studies have 
focused primarily on the analysis of long term daily temperature and 
precipitation data (Frich et al., 2002; Haylock et al., 2008), as these climate 
variables are the most widely available ones. The majority of long data series is 
inhomogeneous, and often contains shifts in the mean or in the variance due to 
non-climatic factors, such as site-relocations, changes in instrumentation or in 
observing practices. Inhomogeneities can distort the true climatic signal, 
homogeneity testing is important for climate change studies (van Engelen et al., 
2008). Amongst the observation series there are good quality data as well, but 
sorting them out requires the execution of a homogenization procedure first 
(Aguilar et al., 2003). Neglecting the inhomogeneous series causes a huge loss 
of valuable information.  

Studying the spatio-temporal changes of extremes can be implemented 
through the analysis of observations reliable in time and space. The spatial 
interpolation of extreme indices is a difficult task as the distribution functions of 
the several derived values are unknown. However, the basic variables, such as 
temperature and precipitation can be gridded by the knowledge of their statistical 
properties, thus, higher quality gridded datasets can be constructed for further 
analysis. The main steps of creating the homogenized, gridded dataset for 
computation of extreme indices are presented in this paper. The changes of such 
indices for Hungary from the mid-20th century to present are illustrated and 
shortly analyzed on graphs and trend maps. 

2. Data and methods 

2.1. Homogenization 

The computations implemented in this work are based on long term daily data in 
the period of 1901–2009. Daily maximum and minimum temperatures of 15 
observation stations and daily precipitation sum of 58 precipitation stations were 
taken into account in the analysis. In the preparation phase, homogenization and 
quality control of the daily measurements were carried out. The homogenization 
of data was performed with the procedure MASH (Szentimrey, 1999). All the 
MASH options except the metadata information were used in this paper. 
 
2.2. The main features of MASHv3.02  

The MASHv3.02 (Szentimrey, 2007) software consists of two parts.  
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Part 1:  Quality control, missing data completion, and homogenization of monthly 
series:  

• Relative homogeneity test procedure. 
• Step by step procedure: the role of series (candidate or reference series) 

changes step by step in the course of the procedure. 
• Additive (e.g., temperature) or multiplicative (e.g., precipitation) model 

can be used depending on the climate elements. 
• Providing the homogeneity of the seasonal and annual series as well. 
• Metadata (probable dates of break points) can be used automatically. 
• Homogenization and quality control (QC) results can be evaluated on 

the basis of verification tables generated automatically during the 
procedure. 

Part 2:  Homogenization of daily series: 

• Based on the detected monthly inhomogeneities.  
• Including quality control (QC) and missing data completion for daily 

data. The quality control results can be evaluated by test tables generated 
automatically during the procedure. 

The importance of homogenization is demonstrated in Fig. 1 which show the 
annual number of frost days (daily minimum is below zero) for Szeged station 
using original and the homogenized daily minimum temperatures. Both the 
magnitude and the sign of the estimated linear trend are different in the two cases. 
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Fig. 1. Annual number of frost days for Szeged station with the fitted linear trend as well 
as the 10-year moving average in the period of 1901–2009 using the original (left) and 
homogenized (right) data. 

 

2.3. Gridding 

To obtain the high quality, good resolution dataset, a gridding procedure was 
performed on the homogenized daily series. According to the representativity 
examinations in the interpolation section, which were performed during this 
work, the expected interpolation errors may be accepted with using the predictor 
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network of 15 temperatures and 58 precipitation station data series. The MISH 
interpolation method is a proper choice for this purpose. The MISH procedure 
was developed at the Hungarian Meteorological Service especially for interpolation 
of meteorological data (Szentimrey and Bihari, 2007a). It is based on the 
principles that the gridded data can be derived (interpolated) at a higher quality 
if we know certain climate statistical parameters. For example, in the case of 
normal distribution the means and the covariance structure unambiguously 
determine the optimal interpolation formula. Long climate data series allow 
modeling of these statistical parameters. Thus, the modeling for a given location 
is based on the statistical features of the long term homogenized monthly data of 
neighboring stations.  
 
2.4. The main features of MISHv1.02  

The software MISHv1.02 (Szentimrey and Bihari, 2007b) consists of two units, 
the modeling and the interpolation systems. The interpolation system can be 
operated on the output of the modeling system. The attributes of the MISHv1.02 
software can be summarized as follows: 
Modeling system for climate statistical parameters in space: 

• Based on long homogenized data series and supplementary deterministic 
model variables, e.g., topography.  

• Cross-validation test for interpolation error or representativity.  
• Modeling procedure must be executed only once before the interpolation 

applications! 
Interpolation system:  

• Additive (e.g., temperature) or multiplicative (e.g., precipitation) model 
and interpolation formula can be used depending on the climate 
elements. 

• Daily, monthly values and many years’ means can be interpolated. 
• Few predictors are also sufficient for the interpolation.  
• The interpolation error or representativity is modeled too.  
• Capability for application of supplementary background information 

(stochastic variables), e.g., satellite, radar, forecast data. 
• Capability for gridding of data series. 

Gridding system: 

• Interpolation, gridding of monthly or daily station data series for given 
predictand locations. In case of gridding, the arbitrarily chosen 
predictand locations are the nodes of a relatively dense grid. 

Contrary to geostatistical methods, the values of variograms must be 
modeled for each interpolating processes (Szentimrey et al., 2007). One of the 



 103

most important advantages of the MISH is that the modeling part must be 
executed only once before the gridding of the data on different timescales, such 
as daily, monthly, seasonal, or other. Additionally, different station networks 
can be used in the modeling and in the gridding parts. The modeling part of the 
MISH procedure is executed on a relative dense, 0.5’× 0.5’ resolution grid.  

In order to calculate extreme indices, the MISH gridding part was performed 
on homogenized daily observations for a 0.1° × 0.1° grid. The implementation of 
the MISH gridding procedure resulted in a high quality, homogenized, gridded 
daily maximum and minimum temperature and daily precipitation datasets with 
a ~10 km spatial resolution (1104 grid points) in the period of 1901–2009 for 
Hungary.  

3. Climate indices calculations on the gridded dataset 

The extreme indices used in this study are based on the CECILIA (Central and 
Eastern Europe Climate Change Impact and Vulnerability Assessment) project 
definitions. In the framework of CECILIA project, numerous indices were 
defined (74 temperature and 55 precipitation indices) on different time scales, 
i.e., yearly, seasonal and monthly (Hirschi, 2008). All of them were implemented 
for Hungary on homogenized data for observation stations and also for gridded 
datasets for the whole examined long period. A few selections of the CECILIA 
extreme indices are presented in this work on yearly scale (Table 1).  
 

Table 1. Extreme indices used in this study 
 

Index Unit 

Summer days: Tmax > 25 °C  % 
Hot days: Tmax ≥ 30 °C % 
Frost days: Tmin < 0 °C % 
Warm nights: Tmin > 20 °C % 
Number of wet days: daily precipitation > 1 mm days 
Percentage of days > 20 mm precipitation % 
Greatest 1-day total rainfall mm 
Greatest 5-day total rainfall mm 
Simple daily intensity: precipitation sum/number of wet days  mm/day 
Consecutive dry days: maximum number of consecutive days  

when the daily precipitation  < 1 mm days 

 
The computational techniques used in the course of index calculations can 

lead to differences in the results. To obtain comparable results for larger regions, 
we have to make sure to use the same definition and algorithm. It is particularly 
important in the case of indices based on percentiles (Alexander and Arblaster, 
2009). 
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With the help of homogenization, gridding, and extreme index calculation 
procedures, a high quality, good resolution dataset of the long-term series of 
indices can be generated and stored. These index datasets can form the basis of 
further examinations, such as trend estimation and mapping of changes. 

4. Graphs and maps based on homogenized gridded data 

The course of several temperature and precipitation extreme indices, from the 
beginning of the 20th century can be followed up in Figs. 2– 4. Grid point 
averages represent the countrywide average. The increasing warm temperature 
extremes coincide with the warming tendencies in the region (van Engelen, 
2008). The percentage of hot days and that of the warm nights have intensely 
increased since the early eighties. The presence of more warm nights is also 
obvious from 1901. The greatest 5-day total rainfall and the days with above 
20 mm precipitation show a slight increasing in the last intense warming from 
eighties. The simple daily intensity index indicates that the rate of the intense 
rainfall events has increased in summer. The length of the longest dry spell 
became shorter recently, but considering the whole period, some increase is 
apparent. 

The IPCC Fourth Assessment Report (IPCC, 2007) established the 
features of recent trends of extreme weather events from the late 20th century, 
in some cases typically after 1960. The trend maps in Figs. 5 –10, which 
illustrate the changes of some extreme indices in Hungary, cover the time 
period 1961–2009 to allow the comparability with other well-known international 
studies like IPCC. The estimated grid point changes are depicted by linear 
trend fitting on the corresponding maps. The fitted linear trends were tested on 
station data and grid point series data as well. In extensive regions of the 
country, the number of frost days decreased (Fig. 5). White areas in Fig. 5 
represent the regions where the changes are not significant at 0.1 probability 
level. The obvious warming trend is indicated in the percentage of summer 
days (Fig. 6). Beside the point estimation of the slope, confidence intervals 
were constructed to the estimated trend at different significance levels. Fig. 7 
consists of two maps, according to the bounds of the 0.1 significance 
confidence interval. The lower bound illustrates the minimum change and the 
upper bound signifies maximum change occurred in the examined period. 
Maps of Figs. 8 –10 show the spatial trend of some extreme precipitation 
climate indices. The number of wet days decreased in Hungary, except for a 
small region of the country in the northeast (Fig. 8). The change in the greatest 
1-day total rainfall varies from –15 mm to +10 mm. Regions with growing 1-day 
precipitation lie mainly to the East from the Danube. The daily precipitation 
intensity increased in summer. It means that the proportion of the heavy 
precipitation events in the total rainfall increases over most areas in Hungary 
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(Fig. 10). Regarding the past 50 years the precipitation changes were not 
significant in extensive regions of the country, according to the applied 
hypothesis testing. 
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Fig. 2. Grid point average of the yearly percentage of hot days (left) and warm nights 
(right) with the fitted linear trend as well as the 10-year moving average in the period of 
1901–2009 for Hungary. 
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Fig. 3. Grid point average of the yearly percentage of days with above 20 mm (left) and 
the greatest 5-day precipitation (right) with the fitted linear trend as well as the 10-year 
moving average in the period of 1901–2009 for Hungary. 
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Fig. 4. Grid point average of the daily precipitation intensity index in summer (left) and 
the maximum number of consecutive dry days (right) with the fitted linear trend as well 
as the 10-year moving average in the period of 1901–2009 for Hungary. 
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Fig. 5. Change (%) in the number of frost days in the period of 1961–2009. White color 
indicates no significant change on 0.1 confidence level. 

 

 
 

Fig. 6. Change (%) in the number of summer days in the period of 1961–2009. 
 

 
Fig. 7. Change (%) in the minimal (left) and maximal (right) number of summer days 
according to the 0.1 confidence interval bounds in the period of 1961–2009. 
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Fig. 8. Change (%) in the number of wet days in the period of 1961–2009. 
 

 
 

Fig. 9. Change (mm) in the greatest 1-day total rainfall in the period of 1961–2009. 
 

 
 

Fig. 10.  Change (mm/day) in the summer simple daily precipitation intensity in the 
period of 1961–2009. 
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5. Conclusions  

The preparation of a high quality, homogenized, and gridded daily datasets was 
presented in this study. Long term daily temperature extremes and precipitation 
data were quality controlled, homogenized, and gridded in the period of 1901–
2009, in order to analyze the extreme climate indices. Instead of the interpolation 
of extreme indices, the gridding of the basic variables (daily maximum and 
minimum temperatures and daily precipitation) is recommended, as the probability 
distributions of the indices are unknown. Time series of the grid point averages 
for a few selected indices are demonstrated from 1901. The spatial distribution 
of changes from the mid-20th century is illustrated on trend maps.   

The gridded dataset introduced in this work is updated by homogenization 
and interpolation on the beginning of the new calendar year regularly to serve as 
an ’as long as possible’ time series for climate change studies. The WMO 
statement on the status of the global climate in 2009 (WMO, 2010) underlined 
that peer reviewed scientific methods for quality control, homogenization, and 
interpolation to constitute high-quality global climate datasets should be used in 
the examinations. The created datasets could be relevant contribution to the 
expected high quality global system of datasets. 
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Abstract — Recent developments in GIS techniques have produced a wide range of 
powerful methods for capturing, modeling, and displaying of climate data. The main aim 
of the study was to identify an optimal interpolation method to describe the spatial 
differentiation of the climatic water balance in Poland based on meteorological data 
(temperature, precipitation, solar radiation) collected at 15 weather stations from 1986 to 
2006. A climatic water balance index (CWB) was created based on a simplified definition, 
where it is interpreted as the difference between the precipitation total (P) and potential 
evapotranspiration (PE). The latter was calculated using the so-called Turc Equation. 
Four different spatial interpolation methods were used: (1) inverse distance weighting 
(IDW), (2) local polynomial (LP), (3) radial basis function (RBF), and (4) ordinary 
kriging. A subjective visual analysis of maps, root mean square error values, and 
coefficients of correlation indicated that the best CWB interpolation methods are the 
radial basis function method and the ordinary kriging method. However, spatial 
interpolation results suggest that the problem is more complex. Calculations performed 
for selected points of reference suggest that local geographic factors play an important 
role in the shaping of CWB. Such results also confirm the need to perform spatial climatic 
water balance analysis with special attention being paid to local conditions. Further 
research is needed that takes into account different temporal and spatial scales and aims 
to test established methods in other regions in Europe.  
 
Key-words: spatial analysis, GIS, interpolation methods, climatic water balance, Poland  

1. Introduction 

Recent developments in GIS techniques have produced a wide range of 
powerful methods for capturing, modeling, and displaying of climate data. 
Advanced data processing methods allow for detailed analysis of climate 
elements on different temporal and spatial scales. GIS techniques designed to 
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map temperature and atmospheric precipitation fields have received the most 
attention thus far. However, researchers are often interested not in the 
meteorological elements themselves but in the information that can be extracted 
from them in the form of various indices, which are useful in the environmental 
and social sciences (Tveito et al., 2008).   

The CWB is a complex index that shows a climate-based assessment of the 
water resources in a given area. It focuses mainly on the difference between 
precipitation and potential evapotranspiration. Values of the index depend on 
many different variables such as solar radiation, relief, land use, and urban 
development. Spatial distribution of the climatic water balance appears to be 
very important in spatial management, agriculture, and hydro-climatological 
modeling. Since 2007, the Drought Monitoring System for Poland has been 
provided by the Institute of Soil Science and Plant Cultivation – State Research 
Institute in Pulawy. In the system, meteorological conditions that are causing 
drought are evaluated by the climatic water balance expressed by the difference 
between the precipitation and potential evapotranspiration (by Penman 
formulae). Nevertheless, it has not been the subject of detailed analysis thus far. 
Data covering any longer period is not readily available – especially evapotran-
spiration data – which creates the problem of index interpretation, especially due 
to its reliance on spatial differentiation. Therefore, the main aim of the study 
was to identify an optimal interpolation method to describe the spatial 
differentiation of the water balance in Poland taking into account a number of 
scale-based variables.  

2. Source material and methods 

Analyses of the climatic water balance are usually developed for regions where 
input data, mainly air temperature and precipitation, can be readily obtained 
from meteorological stations. The research presented herein is based on mean 
monthly values of air temperature as well as monthly solar radiation and 
precipitation totals. The data were obtained from 61 meteorological stations 
(temperature and precipitation) and 23 actinometric stations (solar radiation) for 
the 1951–2006 and 1986 –2006 time periods, respectively.  Not all meteorological 
stations collect actinometric data, which is why data was obtained from only 15 
stations and covers the period from 1986 to 2006 (Fig. 1). 

The climatic water budget was introduced into the research literature in the 
middle of 20th century by Thornthwaite (1948). He described the budget as the 
balance of precipitation, potential evapotranspiration, and actual evapotran-
spiration, taking into account both soil moisture utilization and soil moisture 
recharge (Oliver and Fairbridge, 1987). According to Thornthwaite and his 
colleagues (Thornthwaite and Mather, 1957), an average climatic water budget 
model can be expressed using two interrelated equations:  
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,, DETPESETP +=+=                                      (1) 
 
where P is the precipitation, ET is the evapotranspiration, PE is the potential 
evapotranspiration, S is the moisture surplus, and D is the moisture deficit. The 
first equation describes water inflow, outflow, and storage, and the second 
equation describes energy demands. The procedure designed by Thornthwaite 
and Mather (1957) to calculate climatic water balance parameters is still widely 
used in CWB research (e.g., Kar and Verma, 2005; Tateishi and Ahn, 1996).  
 

 
 

Fig. 1. Locations of the meteorological stations used in the research study. 
 

Evapotranspiration process is the principal component of the climatic water 
balance, as it returns 60% to 80% of precipitation back into the atmosphere. In 
order to determine the value of the CWB index, the magnitude of evapotran-
spiration must be properly estimated. Owing to the difficulty of obtaining 
accurate field measurements, evapotranspiration is commonly computed from 
weather data using empirically derived formulas. A large number of more or less 
empirical methods have been developed over the last 50 years and are designed 
to estimate actual and potential evapotranspiration from different climatic 
variables. Some of the methods are only valid under specific climatic and 
agronomic conditions and cannot be applied under conditions different from 
those under which they were originally developed (Allan et al., 2004). As a 
result, the FAO Penman-Monteith Method is now recommended as the standard 
method for the definition and computation of the reference evapotranspiration, 
ETo. The reference evapotranspiration provides a standard to which 
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evapotranspiration at different periods of the year or in different regions can be 
compared (Allan et al., 2004). 

The subject of CWB spatial interpolation is very complex. It is, first and 
foremost, a subject associated with the problem of the spatial interpolation of 
evapotranspiration, which varies considerably with changes in the natural 
environment. The second complexity has to do with the availability of data. Given 
the complicated nature of the subject, it is no wonder that there exist many 
methods that attempt to model the spatial differentiation of evapotranspiration 
(e.g., Nováky, 2002; Xinfa et al., 2002; Kar and Verma, 2005; Loheide and Gorelick, 
2005; Fernandes et al., 2007). Remote sensing is becoming more commonly 
used to address this research issue and often supplements ground-based 
observations (Woolhizer and Wallace, 1984; Rosema, 1990; Kalma et al., 2008).  

In Poland, most evapotranspiration and climatic water balance research is 
focused on the identification of a model that would best suit weather conditions 
in Poland. The following formulas were used in existing research: Turc (1961) 
method for potential evapotranspiration, Bac (1970) reference evaporation 
formulae for local index, and Penman modified to Polish conditions (Sarnacka 
et al., 1983). All three methods were applied to the analysis of the measurements 
data (Wild scale and GGI-3000 pan evaporimeter). Although the Turc method 
produced the largest differences between evapotranspiration totals measured in 
situ and values derived empirically (also shown by Hungarian research by 
Nováky, 2002), the method proved to be useful because of data availability 
issues. It was also selected because of other research that has shown that it is 
best at determining relationships with elevation (Kowanetz, 1998, 2000).   

The climatic water balance index (CWB) was created based on a simplified 
definition where it is interpreted as the difference between the precipitation total 
(P) and potential evapotranspiration (PE). The final formula was the following: 
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tPCWB                                               (2) 

 

where P is the monthly precipitation totals, t is the monthly average air 
temperature [°C], and I is the monthly sum of total solar radiation [cal cm–2 day–1]. 

Given the limited nature of the source data (15 data points only) and the 
existence of strong relationships between potential evapotranspiration and 
geographic factors (the same is true for CWB), geographic parameter regression 
models were used to produce grid data consisting of annual CWB totals (CWByr) 
and vegetation period (April – September) CWB totals (CWBveg) at a 0.2 degree 
spatial resolution (latitude and longitude). The resolution was chosen as the best 
for regional scale studies. Moreover, the DTM resolution of 250 × 250 meters 
was available for calculations. Simple and multiple regression models were 
used, taking into account the dependence of CWB on elevation above sea level 
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(H), longitude (λ), and latitude (φ). The following formulas were used to 
perform calculations:  

 
,)()()(,)( bffHfCWBbHfCWB +++=+= ϕλ               (3) 

 
where b is the constant value. 

Table 1 includes coefficients of correlation between geographic coordinates 
and CWB values on an annual as well as seasonal basis. The coefficients are 
very large – generally above 0.9 – and statistically meaningful at α = 0.05. The 
coefficients of correlation tend to be somewhat larger when a multiple 
regression model is used. The value for the growing season is 0.95 and the value 
for the entire year is 0.94 (Table 1). The large size of the coefficient of 
correlation made it possible to use the regression method in order to calculate 
CWB for individual grids. The calculated values were then used in spatial 
analysis based on a variety of interpolation (spatialization) methods.   

 
Table. 1. Coefficients of correlation (CC) between geographic parameters (H, φ, λ) and 
climatic water balance values (CWB) for the growing season (April – September) and for 
an entire year 

 
CC (simple) Apr May Jun Jul Aug Sep Apr – Sep Year 

H  vs.  CWB 0.95 0.91 0.91 0.90 0.90 0.86 0.92 0.92 
         
CC (multiple) Apr May Jun Jul Aug Sep Apr – Sep Year 

H + φ + λ  vs.  CWB 0.97 0.94 0.92 0.92 0.91 0.89 0.95 0.94 

 
There is a dearth of publications on optimal spatial CWB analysis methods, 

which has led to the testing of a variety of methods based on experiences with 
the interpolation of individual climate elements (Dobesch et al., 2007; Tveito et 
al., 2008). RMSE (root mean square error) analysis was used to assess the 
influence of interpolation methods on the analysis of spatial CWB differentiation. 
The source material available – 15 data points – was used as a source of reference. 
The relationship between results obtained during the spatialization process and 
values calculated based on field measurement data were also investigated.   

3. Results and discussion 

Four different spatial interpolation methods were used: (1) inverse distance 
weighting (IDW), (2) local polynomial (LP), (3) radial basis function (RBF), 
and (4) ordinary kriging. The first three are so-called deterministic methods. The 
fourth method, kriging, is used the most often and it is a geostatistical method.  
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Spatial interpolation was performed for different seasons and for the entire 
year, for Poland as a whole, using all four methods. RMSE values and coefficients 
of correlation as well as a subjective visual analysis of maps produced results 
that do not differ very much. However, the coefficient of correlation and RMSE 
suggest a somewhat more accurate interpolation based on RBF and kriging 
(Table 2).  
 

Table 2. Validation results for different interpolation methods used in CWB calculations 
 

Year Vegetation period Interpolation method 
(simple regression) r RMSE σ r RMSE σ 

IDW 0.79 602   78 0.83 122  67 
LP 0.83 683 207 0.87 186 177 
RBF 0.84 641 145 0.88 147 125 
Kriging 0.84 637 138 0.87 143 118 
Interpolation method 
(multiple regression) 

r RMSE σ r RMSE σ 

IDW 0.77 637 102 0.79 122 95 
LP 0.83 710 196 0.75 177 174 
RBF 0.84 673 144 0.86 141 131 
Kriging 0.84 669 139 0.85 138 127 

 
The CWB maps generated using the above methods can be found in Figs. 

2a,b. The maps present annual CWB  values as well as CWB values for the 
growing season (April – September). Differences between the annual spatial 
distribution and the growing season distribution are readily apparent. Annual 
CWB values range from 430 mm to 1200 mm, with maxima in the southern part 
of the country (mountains and uplands) and minima in the central part of the 
country (Figs. 2a,b).  CWB fluctuates the most during the growing season 
(April – September), with positive values being recorded only in the mountains 
(up to 200 mm) and negative values (moisture deficit) across the rest of the 
country – as low as –230 mm in central Poland.  

At the same time, Figs. 2a,b also show differences in spatial distribution 
resulting from the interpolation of input data using the simple regression method 
and the multiple regression method. Table 2 shows validation results for the 
interpolation methods used in the study.  

The interpolation results generated for Poland as a whole may be considered 
good, as the differences produced by different methods are small. However, a 
closer look at the problem on a local scale points to a great deal of complexity. 
Calculation results for different locations indicate that geographic influence is a 
factor that does affect CWB.   
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Fig. 2a. Spatial distribution of the CWB (mm) in Poland according to different 
interpolation methods: radial basis function (RBF) and ordinary kriging (OK) (simple 
regression model); a – annual values, b – vegetation period (April – September) values. 

 

 
 
Fig. 2b. Spatial distribution of the CWB (mm) in Poland according to different 
interpolation methods: radial basis function (RBF) and ordinary kriging (OK) (multiple 
regression model); a – annual values, b – vegetation period (April – September) values. 
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Decidedly larger differences between values calculated based on field 
measurements and those produced by the model in question can be observed for 
the growing season. Using the simple regression model, errors exceed 100% of 
values calculated for the Jelenia Góra Basin and the Kłodzko Basin (Fig. 3). The 
multiple regression model performs the worst for coastal locations (Łeba, 
Kołobrzeg) and points near the eastern border of Poland – Lesko (Fig. 3). The 
uncertainty of the results obtained suggests that it is necessary to use supplemental 
descriptive variables. 

 

 
 

Fig. 3. Mean percent error of estimated and calculated CWB values for the meteorological 
stations used in the research study. 

 
Component variables such as atmospheric precipitation and potential 

evapotranspiration make the climatic water balance strongly dependent on local 
conditions. Any analysis of data must take into account local relief and land 
cover (biological and soil factors). Elevation above sea level and geographic 
coordinates are not enough to perform an accurate spatial analysis of climatic 
water balance.  

As elevation above sea level is a key component of spatial differentiation 
analysis of atmospheric precipitation (Bac-Bronowicz, 2003; Łupikasza et al., 
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2007), the choice of descriptive variables is a key factor in spatial CWB analysis. 
Errors may also occur as a result of poor spatial coverage provided by weather 
stations as well as the interpolation and mapping techniques used. Regarding 
evapotranspiration estimates mapping, it is usually affected by modeling errors 
resulting from the derivation of ET values (Climatic Atlas…, 2001). Hence, the 
complexity of the evapotranspiration process demands the consideration of local 
conditions.  

The state of current understanding of microclimate differentiation, 
especially that in mountain areas, suggests that other geographic variables 
should be taken into consideration. In order to accurately describe the spatial 
distribution of CWB, it is necessary to take into account slope, aspect, land use, 
and soil type – all of which determine how much solar radiation is available and, 
consequently, the value of the air temperature (Ustrnul and Czekierda, 2005). 
Both solar radiation and air temperature affect the degree of evapotranspiration. 
Furthermore, the parameters must be calculated independently for smaller 
regions – especially regions characterized by specific mesoclimate conditions 
such as those found in coastal or mountain areas. 

4. Conclusions 

The spatial interpolation results presented herein, based on four different 
interpolation methods, prove the hypothesis that spatial differentiation analysis 
of the climatic water balance should take local conditions into account. The 
validation results are sufficient to fully assess results obtained on a national 
scale (Poland only), but insufficient with respect to individual geographic 
locations, where local differences can be quite significant.  

Reducing the size of the research area appears to be a reasonable next step. 
A solid understanding of the causes and effects of particular component 
elements, such as the natural environment, on the CWB index should help in the 
process of selecting descriptive variables. Existing research suggests the use of 
distance from a body of water, land cover, and relief as supplemental factors. 
Another key factor is the selection process of the evapotranspiration (potential 
and/or actual) calculation method, as this appears to be the main source of 
possible CWB errors.  

Given the difficult nature of the analytical process involved, the accuracy 
of the spatialization method is less important. The most important objectives 
for further research are validation of the obtained results using different 
evapotran-spiration formulas and the optimization and testing of spatialization 
techniques. A few other descriptive variables should also be considered (e.g., 
circulation types, air masses). Further research will be designed to focus on 
different temporal and spatial scales as well as the validation in other areas of 
Europe.   
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 NEWS 
 

 
 
 

Farewell to the Executive Editor, Margit Antal 
 
IDŐJÁRÁS (Weather in English) is one of the oldest meteorological journals in 
Europe. Since the end of the nineteenth century it has published papers on 
meteorology as well as other news in the Hungarian language. After the Second 
World War it was felt that other languages must also be used in order to make 
publication for foreign authors possible. However, this caused a rather chaotic 
situation since the language of the publication was not determined. Thus, papers 
of quite different quality were published in at least five languages.  
 At the end of the seventies and at the beginning of the eighties it became 
clear that papers should be accepted only in one language, namely in the world-
common language of natural sciences: in English. One also believed that the 
manuscript reviewing procedure must be similar to that applied in leading 
scientific journals. The philosophy was to publish papers of Hungarian specialists 
and other scientists from the neighboring countries in a way that would be 
understandable all over the world. Further, we believed at that time, that an 
international forum on atmospheric science was necessary for strengthening the 
relationship between scientists behind and outside the iron curtain.  
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 As the chairman of the editorial board (later the Editor-in-Chief) I needed a 
new board consisting of internationally well-known scientists and, also very 
important, a secretary for fulfilling the administration necessary. It was an 
obvious solution to choose for this purpose my own secretary, Ms Margit Antal 
(her married name is Dr Antal Emánuelné), called by everybody “Pimpi”, who 
had already proved that she is a very good person to arrange correspondence and 
typing not only in Hungarian, but also in English, French, and German. It turned 
out later that this choice was an excellent one.  
 I have to emphasize that Pimpi did not finish any course to be secretary. 
She began to work at the Department on Solar Radiation of the Hungarian 
Meteorological Service in 1963. After some years she continued similar activity 
at the Department on Heat and Water Balance. Her bosses were always very 
satisfied with her work (mostly calculations and observations), she quickly 
became famous because of her accuracy and precision. This was obviously the 
reason why the executive editor of IDŐJÁRÁS at that time (J. Kakas) used 
Pimpi’s ability to help him in editing of the journal. And, more important for 
myself, this motivated me to ask her to be my secretary, when I was appointed 
director of the research institute (Central Institute for Atmospheric Physics) of 
the Hungarian Meteorological Service. In the life of anyone among us there are 
good and bad decisions. Anyway, this was a good one for me. Pimpi, as 
secretary, helped my work in an excellent and correct way until leaving the 
service in 1992.  
 In the same year Pimpi became officially the technical editor of the journal.  
In 1996 the president of the Hungarian Meteorological Service nominated her to 
the post of executive editor. By this time she already knew everything concerning 
the editorial work. She played a decisive role in introducing the up-to-date 
computerized journal production, giving to IDŐJÁRÁS the present attractive 
aspect. IDŐJÁRÁS has been indexed and abstracted in Science Citation Index 
Expanded and Journal Citation Reports/Science Edition since 2007. This milestone 
could not be reached without her perfect editorial activity. She has executed the 
editorial work to the satisfaction of everybody, including members of the editorial 
board, authors, and readers. For acknowledging her work during decades for 
IDŐJÁRÁS and the Hungarian Meteorological Service, the Minister of the 
Environment Protection and Water Management rewarded her in 2006 with the 
medallion “Pro Meteorologia”.  
 Dear Pimpi! On the occasion of your retirement, on behalf of all the Editor-
in-Chiefs with whom you worked, I want to thank you for your efforts to make 
this journal an international forum. I wish you further health and a long and 
peaceful life after almost fifty years of professional work! 
 

Ernő Mészáros 
Former Editor-in-Chief 

Member of the Hungarian Academy of Sciences 
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