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Abstract — Any transformation of a discrete variable into a continuous one is subject to 

uncertainty. Consequently, the identification and assessment of errors is essential for 

avoiding misinterpretations of models describing the spatial distribution of climatic 

parameters. Our study attempts to identify the main sources of errors affecting the 

statistical spatial models of climatic parameters and to assess their impact on the accuracy 

of these models. In particular, we focus on georeference errors, the representativeness of 

the stations network and the related extrapolation problem, the outliers problem, error 

propagation from simple to complex variables, the problems aroused by heterogeneous 

regions.  
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1. Introduction 

Our study derives from previous attempts to model the spatial distribution of 

various climate parameters, which were based, in most cases, on small samples 

of meteorological stations/rain gauges (Patriche, 2007; Patriche et al., 2008). 

Therefore, our conclusions are applied especially to outputs achieved from such 

samples, knowing that the degree of uncertainty rises significantly as the sample 

size used for statistical modeling decreases. 

There are many potential sources of uncertainty, which may be grouped 

into two broad categories: 

 Errors from data pre-processing stage (data quality)  

 Data recording errors / data series gaps; 

 Instrumental errors; 

 Changes in measurements standards; 
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 Change in the location of the station / changes in land use around the 

station. 

 Errors from data processing stage 

 Georeference errors; 

 Errors derived from the spatial representativeness of the stations 

network; 

 Errors induced by the presence of outliers; 

 Errors derived from the heterogeneity of the region; 

 Statistical errors; 

 Cumulated errors from computation of complex parameters (error 

propagation). 

Our study focuses on the errors from the data processing stage. 

2. Georeference errors 

Although simple, the georeference stage is very important. Georeference errors 

refer to errors of the x, y, z coordinates. Misplacements of stations / rain gauges 

points on the map may induce significant errors, especially in highly fragmented 

terrain, when predictors’ values are extracted from raster layers or when local 

interpolators, such as kriging, are used for spatial modeling. The former will 

lead to wrong predictors’ values and, therefore, inaccurate regression models, 

while the latter will generate locally displaced climatic fields.  

The correlation between the stations / rain gauges altitudes and the 

respective DEM (Digital Elevation Model) altitudes may be used for identifying 

possible georeference errors or errors in recording the stations / rain gauges 

altitudes. The correlation should be very good, although not perfect for several 

reasons: the DEM generalizes the altitude information according to its 

resolution; the stations / rain gauges latitude and longitude values are generally 

given in degrees and minutes. Following up the latter issue, if we suppose that 

the seconds are rounded up or down to the closest minute, it actually means that 

we may have a coordinate error of up to 30 seconds, meaning about 900 m for 

latitude and 600 m for longitude, for middle latitudes. These errors double if no 

coordinate rounding was performed and the seconds were just disregarded. 

In the example shown in Fig. 1, extracted from a study attempting to model 

the spatial distribution of mean annual precipitations in Vrancea County, 

Romania (Patriche et al., 2008), we notice one point (Groapa Tufei) situated 

outside the correlation cloud indicating a possible georeference error. The 

recorded altitude for this rain gauge is 125 m, while the DEM altitude for this 

particular location is 355 m. We can see how far the 125 m altitude isoline is, 

along which the rain gauge should be located. There are two possible 

explanations for this error: either the horizontal coordinates of Groapa Tufei are 

wrong, or the recorded altitude is incorrect. Let us now see the potential 
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negative impact of such a georeference error on spatial statistical models of 

precipitations. If the real altitude of Groapa Tufei is 125 m, so the recorded 

altitude is correct, but the horizontal coordinates are wrong, then this point may 

be used for regression analysis, provided that neither DEM altitude values nor 

other derived predictors’ values are used for models computation. In a 

geostatistical approach (ordinary kriging, residual kriging, etc.) it is not 

advisable to include such misplaced points, because they will misplace, in their 

turn, the precipitation values. Still, if the value of a misplaced point is similar to 

those of the neighbouring points, as it is in our case, the error induced by the 

georeference error may be small enough, and the respective point may be kept.  

 

 
 

Fig. 1. Revealing two georeference errors for a sample of rain gauges situated in Vrancea 

County, Romania (Patriche et al., 2008). 

3. Spatial representativeness of the stations network and 

the extrapolation problem 

The spatial representativeness of the meteorological stations / rain gauges 

network is an important issue which needs to be addressed in a preliminary 

stage, as it constitutes a potential source of errors. Theoretically, the spatial 

distribution of the meteorological network should be well-balanced, in order to 

grasp all the meteorological and climatological aspects of a territory. However, 

in most cases, the spatial representativeness of the stations network is more or 

less inappropriate, due to both its feeble density and its biased location, mainly 

in valley bottoms. 

The representativeness of the meteorological network in relation with the 

potential predictors may be visualized and evaluated by comparing the predictors’ 

histograms with the histograms of the same predictors, which are based on the 

predictors’ values associated to the meteorological stations / rain gauges. 

An example is given in Fig. 2 for the altitudinal representativeness for a 

sample of meteorological stations situated in eastern Romania. In an ideal 

situation, the curves of the cumulated histograms, derived from the DEM and 

the stations’ altitudes, should overlap. However, we notice the shortage of 
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stations between 300 m and 350 m of altitude. Also, we observe the lack of 

stations at lower altitudes (< 59 m) and especially at higher altitudes, where the 

highest meteorological station is situated at 391 m of altitude, while the terrain 

altitudes go as high as 1071 m. As a consequence, we are forced to extrapolate 

the altitude-based regression models in these areas. As the extrapolation may 

induce errors, we need to give a special attention to these areas and to consider 

carefully the reliability of the estimated values. 

 

 
 
Fig. 2. Assessment of spatial representativeness of stations network by comparing 

frequencies of predictors’ values for station points and for the whole region. Example 

from eastern Romania (Moldavia) for altitude representativeness for a sample of 28 

stations.  

 

Fig. 3 shows an example in which the extrapolation of the regression model 

should be avoided (Patriche et al., 2008). The mean annual precipitation – 

altitude regression model, elaborated for Vrancea County (Romania), was based 

on a sample of 34 rain gauges. The westernmost mountainous part of the region 

is uncovered by rain gauges, meaning that we must extrapolate our regression 

model there, if we want to estimate the mean annual precipitation values for this 

part as well. Performing the extrapolation up to 1770 m of altitude, we estimate 

precipitation values of up to 1463 mm. Such estimated values are, in our 

opinion, unrealistic. If the extrapolation is unreliable, then we should confine 

ourselves with the calibration area of our model. Taking into account that the 

highest rain gauge altitude is 540 m, we recommend that the study region should 

not extend over 700 m (Fig. 3, black line). Therefore, the entire westernmost 

part of our region should be excluded from the final map because of 

extrapolation uncertainty. 
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Fig. 3. Avoiding extrapolation. An example from Vrancea County (Romania) for mean 

annual precipitations. 

4. The outliers’ problem 

An outlier is a point value showing a significant deviation from the statistical 

model (therefore, marked by a high residual value), corresponding to points 

(meteorological stations, rain gauges) which mark spatial anomalies for the 

analyzed parameter’s distribution (e.g., foehnization areas, areas of orographic 

enhancement of precipitations, temperature inversion areas, etc.). Such a “rebel” 

value may be also an error value, and this possibility must be checked out. If no 

error is identified then we should proceed to the assessment of the degree in 

which this value is altering the statistical models, mainly regression models. 

This is happening in the case of the regression analysis, because it is used 

mainly as a global interpolation method, and the regression itself is incapable to 

render spatial anomalies. If such spatial anomalies exist, then the integration 

within the statistical model of values describing these anomalies may 

significantly alter the regression equations, which, therefore, become unreliable. 

From the viewpoint of their influence over the regression models, we may 

distinguish two types of outliers: 

 Outliers showing high residuals but with similar values of the real 

residuals and deleted residuals (also known as jackknife error and 

computed without taking into account the anomaly point). Because such 

outliers do not modify significantly the regression models, they can be 

included in the analysis. 
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 Outliers showing high residuals but with significant differences 

between the values of the real residuals and those of the deleted 

residuals. Such outliers modify the regression model and must be, 

therefore, taken into consideration if the induced modifications are 

proved to be significant. 

There are many statistical procedures aimed towards the identification of 

outliers. Good syntheses of these procedures are provided by Maimon and 

Rokach (2005), and Wilcox (2002). 

Our approach is a simple one. In order to identify the outliers, we should 

first inspect the configuration of the correlation cloud between the dependent 

variable and the predictor, or between the real and predicted values in the case 

of multiple predictors, looking for points situated significantly outside the cloud. 

If such points exist, we should further inspect the magnitude of their residual 

values and see if they are located outside the ± 2.5 RMSE (root mean square 

error) interval. If such points exist, we should then test their influence on the 

regression models. The most common way to do this is to perform a cross-

validation, the analysis of the differences between the actual residual values and 

the deleted residuals (jackknife error). If these differences are important, then 

the exclusion of the respective points significantly changes the regression 

model, which is, therefore, unstable. Next, we should actually see these changes 

by elaborating the models with and without the outliers and finally decide 

whether to keep or eliminate the respective points. 

Fig. 4 shows the correlation between the mean annual precipitation and the 

altitude for a sample of 28 meteorological stations situated in eastern Romania 

(Moldavia). The chart indicates at least 2 suspect points situated outside the 

correlation cloud, one with a lower precipitation value than expected for the 

respective altitude (Cotnari station), another with significantly higher precipitation 

amounts than expected (Barnova station). These deviations are related to local 

terrain conditions influencing the pluviometry. Cotnari station is situated in a 

foehnization area of western air masses descending the eastern slopes of Dealul 

Mare – Harlau Hill. Here, the real mean annual precipitation value is 121.3 mm 

lower than the value predicted by the altitude regression model using all 

stations. On the contrary, Barnova station is situated in an area of orographic 

enhancement of precipitations caused by the presence of a high energy slope 

(Iasi Cuesta) facing the more humid western air masses and by the shape of the 

Barnova-Voinesti depression, which causes the convergence of the western air 

masses. Another factor is related to the location of Barnova station within a 

well-forested area. Being the only station from our sample situated within 

forested areas, it is impossible for us to assess the relative importance of these 

factors and to state which of them, the local topography or the presence of the 

forest, is more responsible for the high precipitation values recorded at this 

location. The real mean annual precipitation value at Barnova station is 172.7 mm 

higher than the predicted value. 
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Fig. 4. Correlation chart between altitude and mean annual precipitations for a sample of 

28 meteorological stations situated in eastern Romania (Moldavia), indicating the 

presence of four possible outliers. 

 

If the visual inspection of the correlation charts gives us a first guess on the 

presence of possible outliers, other methods provide more insight. Our next step 

is to inspect the magnitude of the residuals. Generally, if some value goes out 

the interval limited by ± 2.5 RMSE (equivalent with the standard deviation of 

the residuals for large samples), then it is possible that this value is an outlier. 

From Fig. 5c (left), we notice that the residue from Barnova station goes 

beyond the +2.5 RMSE, while the residue from Cotnari station is very close to 

the –2.5 RMSE limit. If we eliminate only Barnova station, we find that the 

residual value at Cotnari goes also beyond the specified limit. Thus, the 

conclusion is that both stations must be excluded to ensure stability for the 

regression model. But if we exclude these two stations and rebuild our 

regression model, we shall find that yet another station (Odobesti) displays 

residues greater than the +2.5 RMSE limit. Furthermore, if we chose to 

eliminate Odobesti station, we obtain another high residual value for Voinesti 

station, situated in the same area of orographic enhancement of precipitations as 

Barnova station, only at a lower altitude.  

So far we have established that we have some poor estimated points in our 

sample, displaying high residual values. Thus, we are certain that we have some 

points acting like the first type of outliers (referring to the above classification). The 

problem now is to decide whether it is necessary to eliminate them from the 

regression model that is, if this elimination would significantly improve the model. 
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To answer this question, one must test the influence of these outliers on the 

regression models and find out whether or not we are dealing with outliers of 

type two. 

 

 
 
Fig. 5. Correlation between observed and predicted mean annual precipitation (a), 

cross-validation (b), and comparison of residuals vs. deleted residuals with bars showing 

the ± 2.5 RMSE (c), using all stations (left) and without four possible outliers (right). 

 
One way to establish the answer is to perform cross-validation, that is, to 

compare the observed values with the predicted values obtained by successive 

elimination of the sample points. If the regression models are stable, one should 

find that the cross-validation charts are similar to the correlation charts between 

the observed and predicted values. In our case, we may notice that the 

differences between the observed vs. predicted correlations and the cross-

validation correlations decrease as the outliers are removed from the models, 

from about 11%, in the case of all stations model, to about 6%, in the case of the 

regression model obtained by removing all of the four possible outliers (Fig. 

5a,b). The slight difference is hampering us so far to state that the removal of 

the 4 stations significantly improves the regression models. 

The comparison between the observed vs. predicted values and the cross-

validation charts tells us only something about the stability of the regression 

models. In order to investigate the influence of particular values, we may find it 

useful to compare the regression residuals with those obtained by eliminating 

the suspect point (deleted residuals, jackknife error). If the suspect point is not 
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an outlier, then the magnitude of the residues should be very similar. In our case, 

we notice that the difference between the actual and deleted residuals is the 

greatest in the case of Barnova (22.5 mm), which means that its exclusion from 

the model significantly changes the altitude – precipitation relationship (Fig. 

5c). The next greatest difference can be found in the case of Cotnari station 

(7.8 mm). Even if this is not such an important difference, keeping Cotnari 

station without Barnova station generates an even poorer regression model than 

the one using all stations. This is due to the fact, that these two points, one 

above, the other below the regression line, have opposite effects, balancing the 

regression line to the extent that if one point is removed, the other will “attract” 

the line towards it. This means that if we chose to eliminate Barnova station, we 

must eliminate Cotnari station as well. 

If we construct our model without these two stations and analyze the 

residuals, we find that yet 2 other stations display high residuals, going beyond 

the +2.5 RMSE: Odobesti and Voinesti stations, the latter being situated within 

the same area of orographic enhancement of precipitations as Barnova station. 

However, the difference between the actual and deleted residuals is not very 

significant. The elimination of all these 4 stations leads to a regression model, 

where no more points display residuals outside the ±2.5 RMSE interval (Fig. 5c, 

right).  

Table 1 shows how significant is the influence of the 4 outliers on the 

regression models. We notice, that the regression quality parameters (correlation 

coefficients, standard error of estimate) improve by excluding these outliers. 

However, one should bear in mind that even if there is an overall improvement 

of the regression models excluding the outliers, these models will still perform 

poor in the case of the outliers themselves. It is necessary for us to assess if the 

altitude – precipitation relationship is significantly changing. As we stated 

before, the regression model without Barnova only is not reliable due to the 

“attraction” effect of the Cotnari station, and we can clearly see that this model 

is the most different from the others, showing the highest intercept and the lower 

pluviometric vertical gradient (regression coefficient). The other models display 

quite similar parameters: intercepts ranging from 485.6 mm to 498.9 mm and 

gradients from 30.1 mm /100 m to 36.2 mm /100 m.  

 
Table 1. Comparison of the regression models using and excluding the outliers 

 

Regression model Intercept Regression 

coefficient  

R
2
 Standard 

error of 

estimates 

All stations  489.21 0.362 0.352 54.472 

Without Barnova 501.82 0.265 0.321 41.678 

Without Barnova, Cotnari 498.90 0.301 0.450 36.190 

Without Barnova, Cotnari, Odobesti 492.72 0.315 0.547 31.697 

Without Barnova, Cotnari, Odobesti, Voinesti 485.64 0.335 0.649 27.626 
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From Fig. 6 we may see that 31% of the station sample displays the lowest 

residuals under the 2nd model (without Barnova and Cotnari stations). A similar 

percent (30%) is found for the 4th model (without all of the 4 outliers). 

To sum up, our conclusion is that in the particular case of our sample, the 

elimination of the identified 4 outliers improves the regression model even 

though the differences among the various models are not very important. 

 

 
 

Fig. 6. The optimum altitude regression model (lowest values of actual residuals minus 

deleted residuals) for each station. 

 
The problem is that we can not just exclude some real values from the 

analysis, because then we would obtain an incomplete image of the spatial 

distribution of the analyzed climatic parameter. 

Some of the possible solutions could be: 

 data transformation (logarithms); 

 derivation of new predictors to account for spatial anomalies; 

 application of robust regression methods (Wilcox, 2002); 

 application of regression as a local interpolator (e.g., geographically 

weighted regression method); 

 application of residual kriging. 

A common solution is to derive one or more predictors (Lhotellier and 

Patriche, 2007) capable to explain the anomaly associated to the outlier point 

(e.g., the west-east aspect component combined with terrain local altitudinal 

range could theoretically explain the precipitations anomaly identified at 

Cotnari, Barnova, and Voinesti stations from the previous example). Practically, 

we are often hampered in our analysis by the poor spatial representativeness of 

the stations network, especially when we have to work with small stations 

samples, which is, in most cases, unable to fully account for all terrain aspects 

relevant for the spatial distribution of the analyzed climatic parameter. 
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The application of residual kriging is also a common approach (Lhotellier, 

2005; Dobesch et al., 2007; Hengl, 2007; Silva et al., 2007). Thus, what regression 

is unable to explain (the residuals), is interpolated using ordinary kriging, then 

the spatial trend, derived by regression, is added to the spatial anomalies, 

resulting in the final spatial model of the climate parameter. The output of this 

approach is still influenced by the quality of the regression model. If the model 

is significantly influenced by the outliers, then we can not attempt to interpret 

the predictors-predictand relations. 

An alternative solution could be the elaboration of the regression model 

without the values identified as outliers, the spatialization of the residuals by 

ordinary kriging, including the residuals associated with the anomaly points, 

followed by the addition of the spatial trend with the interpolated residuals so as 

to obtain the final spatialization. We notice, that this is a residual kriging approach, 

which eliminates the outliers during the regression stage, if these belong to the 

type two mentioned above, but includes the residuals from these points during 

the kriging interpolation stage (Fig. 7). 

 

 
 
Fig. 7. Mapping the optimum solution: residual kriging approach leaving out the outliers 

during the regression stage, but taking the outliers’ residuals into account during the 

kriging stage. 

 

A better approach consists in the application of regression as local 

interpolator (e.g., geographically weighted regression, Fotheringham et al., 2002), 

taking into account the spatial anomalies (Engen-Skaugen and Tveito, 2007; 

Maracchi et al., 2007). The local regression can be further included into a 

residual kriging approach in order to improve the quality of the output. The main 

drawback to this approach is the need of a sufficiently large stations sample in 

order to be capable to derive local regression models.  
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Let us now see a situation, in which the outliers may indicate possible data 

errors or different recording intervals. The example is extracted from a study 

attempting to model the spatial distribution of mean annual precipitations in 

Vrancea County (Romania) on the basis of 34 rain gauges (Patriche et al., 2008). 

Figs. 8 and 9 show 2 points situated significantly outside the altitude – 

precipitation correlation cloud, namely Pufesti (686.9 mm) and Slobozia 

Bradului (378.9 mm), therefore, indicating the presence of two possible outliers. 

In the case of Pufesti rain gauge, the mean annual precipitation regime is 

characterized by a secondary maximum in August. Taking into account, that all 

other rain gauges display a single maximum in June, we are inclined to believe 

that either the August data is incorrect or the Pufesti data represent a shorter 

time frame, corresponding to a more humid period. On the other hand, the mean 

annual value recorded at Slobozia Bradului rain gauge is obviously too small for 

the climatic conditions of our region. Because the monthly values display a 

normal annual distribution, we are inclined to believe, as before, that the data 

correspond to a shorter time frame from a drier period. 

 

 
 
Fig. 8. Observed mean annual precipitations in Vrancea County, Romania (a), mean 

annual precipitations regime for all stations (b), and for the two suspect points (c). 

 
From Fig. 9b, we notice that even though these two points are associated 

with the highest residuals, the difference between the actual and deleted 

residuals (jackknife error) is small, meaning that their removal from analysis 

does not significantly change the altitude regression model. This is happening 

because the points are situated on opposite sides as compared to the regression 
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line (Fig. 9a) and, therefore, they have opposite effects, balancing the regression 

line. Their removal increases the correlation coefficient but does not significantly 

change the direction of the regression line, meaning that the regression equations 

are very similar with or without these points. This can also be grasped, if one 

notices that the altitude – precipitation correlation coefficient (0.66) is quite 

similar with the cross-validation correlation coefficient (0.62), meaning that the 

one by one removal of all sample points does not significantly change the 

altitude – precipitation relationship (Fig. 9c). 

 

 
 

Fig. 9. The altitude – mean annual precipitation relationship (a) and the comparison 

between actual and deleted residuals (c) showing the presence of two possible outliers. 

Cross-validation of the altitude model using all stations (b). 

 

Let us see the effects on other predictors. We must mention that, apart from 

altitude, we also used latitude and longitude as predictors, and at first we 

obtained a good regression model using both altitude and latitude. Looking 

further into details, we noticed that the latitude – precipitation correlation is a 

false correlation, induced by the presence of the two outliers (Fig. 10), one with 

a higher precipitation value situated in the northern part of our region (Pufesti), 

the other one with a lower precipitation value situated in the south (Slobozia 

Bradului). If one eliminates these two points, the latitudinal correlation is no 

longer statistically significant. 

For this reason and because of our intention of using also kriging for 

spatialization, in which case the great residual values of the two suspect points 

would be represented on the map, we decided to eliminate them from analysis. 
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Fig. 10. An unwanted effect of outliers: false precipitation – latitude correlation. 

5. Error propagation 

Statistically based spatial models are usually computed for elementary variables, 

such as temperature or precipitations. In order to describe the climate of a 

region, we also need to compute complex variables, derived from the elementary 

ones, such as the de Martonne index, potential and real evapotraspiration, etc. 

Spatial models of complex variables may be achieved either by computing 

the complex variable at stations’ locations and then interpolating the results or 

by integrating the spatial models of the elementary variables in order to obtain 

the complex one. Using the first approach, we are able to quickly compute the 

errors as well. In this case, we cannot speak of error propagation. Still, in our 

opinion, this approach is conceptually less appropriate, because the computation 

of the complex variable is deterministic, according to a physical model. For 

instance, computing the potential evapotranspiration according to Penman-

Monteith approach involves the computation of the net shortwave radiation, 

which depends on terrain slopes and expositions and on land use. If one 

computes this parameter at stations’ locations and then interpolates the results, 

neither of these control factors will be taken into account. 

The second approach, namely the integration of elementary variables, each 

of them displaying certain errors, has the disadvantage of inducing invariably in 

the propagation of these errors to the derived, complex variable. Knowing these 

errors is important for the assessment of the accuracy of the derived variable’s 

spatial distribution. 

A simple example is presented in Table 2. The example refers to the 

derivation of the de Martonne aridity index, for the territory of Moldavia 

(eastern Romania), on the basis of the mean annual temperatures and 

precipitations statistically modeled by regression. The mean annual temperature 
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model uses altitude and latitude as predictors, the computed standard error of 

estimate is ± 0.215 
o
C, meaning that the real temperature differs from the 

estimated one with ± 0.215 
o
C in about 68% of the cases. If we consider, for 

exemplification, an estimated mean annual temperature of 10 
o
C, then the real 

temperature will most probably be found within the interval of 9.8 –10.2 
o
C. On 

the other hand, the mean annual precipitation model uses altitude as predictor 

and has a standard error of estimate of ± 54.472 mm/year, which means that, for 

an estimated value of 500 mm, the real precipitation values will most probably 

lie within the interval of 445 –554 mm/year. Considering the two estimated 

temperature (10 
o
C) and precipitation (500 mm/year) values, it results an aridity 

index of 25. Taking into account the possible errors for the estimated input 

parameters, it results that the real value of the aridity index will be most likely 

found between 22 and 28. 

 
Table 2. Exemplification of error propagation 

 

Statistical parameters Mean annual 

precipitation 

Mean annual 

temperature 

Aridity index 

 Real values 

Exemplification values 500 10 25 

Mean 561.95 8.90 29.21 

Standard deviation 66.395 0.734 3.136 

Standard error 54.472 0.215 – 

Confidence 

interval 

Lower limit 445.528 9.785 22.039 

Upper limit 554.472 10.215 28.025 

Range 108.944 0.431 5.986 

 Standardized values 

Standardized standard error 0.820 0.294 – 

Confidence 

interval 

Lower limit –1.754 1.206 –2.287 

Upper limit –0.113 1.793 –0.378 

Range 1.641 0.587 1.909 

 
We are, however, unable to compare these confidence intervals, because 

the 3 parameters are expressed in different measurement units. One solution is to 

compute the regression models using the standardized values of the input 

parameters. We find that the size of the confidence intervals is 1.641 for mean 

annual precipitation and 0.587 for mean annual temperature. The resulting 

aridity index distribution for the stations sample is characterized by a mean 

value of 29.21 and a standard deviation of 3.136. Therefore, the lower limit of 

the confidence interval (22) corresponds to a standardized value of –2.287 and 

the upper limit (28) corresponds to a standardized value of – 0.378, resulting a 

range of 1.909. This value is greater than the ones of the input parameters, 

indicating the propagation and enhancement of the errors, from the elementary 

variables to the derived, complex variables. 
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6. Homogeneous vs. heterogeneous regions 

Another issue we address in our study is that of heterogeneous regions. 

Generally, the greater a region, the more heterogeneous it is. A certain level of 

heterogeneity is necessary for the spatialization of climate parameters. For 

instance, within a small region, in which the altitudinal range does not exceed, 

for example, 100 –200 m, the spatial variation of the climate fields may be too 

feeble for us to correctly infer the spatial variation rules. On the other hand, 

within a large region, the climatic heterogeneity may be too high for a single 

statistical model to explain it.  

 

 
 

Fig. 11. Changes of the relationships between the mean annual temperatures and the 

altitude, latitude, and longitude for Europe (a) and for two different subregions: the Alps 

(b) and the Russian Plain (c). Source of data: FAO, 2003. 

 

An example is shown in Fig. 11 for the relationship between the mean 

annual temperature (FAO, 2003) and 3 predictors: altitude, latitude, and 

longitude. At continental scale, the territory of Europe is very heterogeneous. 

We may notice, that the altitude – temperature relationship changes form one 

region to another to such an extent that a single regression equation for the 

whole European territory cannot be constructed. A region like the Alps displays 

a very good altitude – temperature correlation, while the temperature variation 

within the flat relief of the Russian Plain is statistically independent of the 

altitude, as temperature inversions are frequent. Here, the latitude comes 

forward to explain a good part of the temperature spatial distribution. 
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In such situations, when we deal with large heterogeneous regions, it 

becomes necessary to divide it into smaller, more homogeneous sub-regions, for 

which the predictors-predictand relationships do not change. A possible approach 

could consist in the examination of regression parameters and residuals as we 

extend or reduce the area of our region and establish the sub-regions limits 

according to the most stable regression model (maximum correlation, minimum 

residuals). Another possible approach could be the application of regression as a 

local interpolator. 

7. Conclusions 

When applying statistical methods for deriving digital spatial models of climatic 

variables, one must take great care in identifying and assessing the sources of 

uncertainty, especially in the case of small stations samples. There are many 

such sources of different nature, which can easily mislead us towards wrong 

unrealistic conclusions. Consequently, a good knowledge of data quality, statistical 

methods, and, needless to say, climatology is imperative for the achievement of 

sound results. Although simple, the georeference stage is very important. The 

misplacement of one or more meteorological stations on the map may generate 

an unwanted chain of errors, because the predictors’ values are automatically 

drawn from the raster maps in GIS environment. The representativeness of the 

stations network is another important issue, which needs to be analyzed in a 

preliminary stage of climate parameters spatialization. Theoretically, the spatial 

distribution of the stations network should be in agreement with terrain 

complexity, so as to be able to account for all climatic aspects. The extrapolation 

problem is tightly related to this issue. Unfortunately, in most cases, the stations 

network is biased, therefore, not sufficiently representative for the terrain. The 

extrapolation of the spatial models is correct as far as the predictors-predictand 

relationships do not significantly change outside the calibration area. The 

outliers problem, meaning the problem of values evading a certain spatial 

variation rule, is another aspect we analyzed in our study. This is another aspect 

of the representativeness of the stations network in respect to predictors, which 

needs to be preliminary addressed in order to minimize the potential errors. 

Statistical modeling is generally performed on simple, elementary variables, 

such as temperature or precipitation. For a more thorough investigation of a 

region’s climate, we need to dispose of complex variables, derived from the 

elementary ones, such as the de Martonne aridity index, potential evapotran-

spiration, etc. The integration of elementary variables, each having its own 

statistical errors, into complex variables leads to error propagation. Knowing 

these errors is very important in order to assess the accuracy of the modeled 

spatial distribution of the complex variable. Another issue we address in our 

study is that of the heterogeneous regions. Generally, the greater a region, the 
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more heterogeneous it is. A certain level of heterogeneity is necessary for the 

spatialization of climate parameters. On the other hand, within a large region, 

the climatic heterogeneity may be too high for a single statistical model to 

explain it. In such a situation, it becomes necessary to divide our large region 

into smaller, more homogeneous sub-regions, for which the predictors-

predictand relationships do not change. 
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