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Abstract —Air temperature and precipitation data organized within a 10  10 km grid 

covering the whole of Slovakia were subject to analysis. The source data are produced by 

the ALADIN Climate/CZ regional climatic model. The output of the global climatic 

model ARPEGE-Climat (Meteo-France) provided the driving data for the regional model. 

The IPCC A1B scenario provides the information on the future development of 

greenhouse gas emissions. Such scenario was developed within the 6th Framework 

Programme project CECILIA (Central and Eastern Europe Climate Change Impacts and 

Vulnerability Assessment).  

Geostatistical prediction of annual mean air temperature and precipitation data was 

carried out for the reference (1961–1990) and distant future (2071–2100) climates. The 

experimental data were non-stationary and significantly correlated with elevation. 

Therefore, we used non-stationary multivariate geostatistical techniques allowing for the 

integration of such information. In particular, we used kriging of residuals, universal 

kriging with external drift, and external drift kriging in the scope of IRF-k (intrinsic 

random functions of order k). Prediction based on linear regression of elevation data was 

used as a complementary technique. Accuracy assessment was based upon the mean 

square errors produced by cross-validation in case of kriging-based predictions and upon 

the mean square residual in case of linear regression-based prediction. 
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We found that all kriging-based techniques outperformed the linear regression-based 

approach, yielding mean square error lower by 53–75%. External drift kriging in the 

scope of IRF-k produced slightly better results for most of the climate variables analyzed. 

The poorest results were achieved in the case of annual mean air temperature for the 

period 1961–1990, where the variogram of residuals was very erratic.  

External drift kriging-based techniques were found to be very efficient for interpolating 

annual mean air temperature and annual precipitation data organized in regular grids. 

Accuracy assessment indicated that the three predictors used yielded almost identical 

results for a single variable, while significant differences in mean square error were 

observed in a between-variables comparison. 

 

Key-words: mean annual air temperature, annual precipitation totals, ALADIN regional 

climatic model, external drift kriging, non-stationary modeling, Slovakia 

1. Introduction 

Maps of various climate elements produced by spatial interpolation of point-

distributed data are frequently used to improve understanding of climate’s 

spatio-temporal variability as well as for various studies of climate impacts on 

society and ecosystems (Haines et al., 2006; Trnka et al., 2004; Hlásny and 

Turčáni, 2009).  

Recent availability of large amounts of climate data produced by global and 

regional climate models (GCMs / RCMs) has drawn attention to the need for 

optimizing the spatial interpolation of such data (e.g., Haylock et al., 2008). The 

data are primarily organized in regular grids with spacing depending on the 

respective GCM / RCM. However, follow-up studies on agriculture, forestry, air 

pollution, and other areas often ask for seamless information on climate rather 

than point-distributed data. Therefore, the search for optimal interpolation 

techniques is a timely task (Mulugeta, 1996; Dobesch et al., 2007). A growing 

number of recent works comparing interpolation techniques and identifying 

optimal data- or region-specific methods is testimony to this issue’s importance 

(Goovaerts, 2000a; Haberland, 2007). 

In addition to the frequently used non-model-based techniques (not using a 

variogram, such as inverse distance weighting or spline interpolation, e.g., 

Hancock and Hutchinson, 2006), there exists a range of geostatistical techniques 

allowing for specific improvements of spatial interpolation, mainly by integrating 

heterogeneous data (Isaak and Srivastava, 1989). In this paper, we demonstrate 

the use of several external drift kriging-based techniques (EDK, hereinafter) 

(Matheron, 1973) for interpolating high resolution climate change scenario data. 

These techniques allow for flexible integration of point-distributed climatic data 

with correlated grid-distributed predictor variables, such as elevation and solar 

insolation. 

An early paper on EDK’s use for predicting air temperature and 

precipitation in Scotland was published by Hudson and Wackernagel (1994). 

Later, EDK’s ability to integrate heterogeneous data prompted many other 
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climatology studies. Carera-Hernandez and Gaskins (2007) found that the use 

of elevation as a secondary variable improves the prediction, even if the 

correlation is low. The influence of such other terrain-related parameters as 

relief slope and aspect was investigated by Attore et al. (2007), who found that 

universal kriging with external drift performed the best for 17 out of 21 climatic 

variables analyzed. Goovaerts (2000a) tested the efficiency of several approaches 

to spatial interpolation of rainfall data (linear regression, ordinary cokriging, 

kriging with external drift, simple kriging with local means) and stressed the 

benefits of incorporating the elevation data. That author found that the latter two 

named techniques yield slightly better results than did the others. 

The purpose of this paper is to analyze the climatic data produced by the 

ALADIN-Climate /CZ regional climate model (Farda et al., 2010) for the whole 

of Slovakia in 10  10 km spatial resolution. Maps of mean annual air temperature 

(hereinafter just air temperature) and mean annual precipitation totals (hereinafter 

just precipitation) for the reference (1961–1990) and distant future (2071–2100) 

climates were to be produced. In particular, we focused on: 

(1) describing and preprocessing the data, 

(2) using several EDK-based techniques and a linear regression-based 

approach for spatial prediction of air temperature and precipitation 

data for the reference and distant future climates, and 

(3) assessing the accuracy of the maps produced and discussing the 

results. 

2. Data  

The reference and future climate data were originally calculated using the GCM 

ARPEGE–Climat V4 (Déqué, 2007) in an experiment performed by CNRM/-

Météo-France. Because of rather coarse resolution of the GCM (~50 km over 

Central Europe), the RCM ALADIN-Climate /CZ (Farda et al., 2010) was used 

for additional downscaling of the GCM data. The IPCC A1B emission scenario 

was adopted to provide information on future development of greenhouse gas 

emissions. The data were developed as part of the CECILIA (Central and Eastern 

Europe Climate Change Impacts and Vulnerability Assessment, www.cecilia-

eu.org) project under the European Union’s 6th Framework Programme. The 

RCM covers Central Europe with a resolution of 10 km. Such resolution allows 

for better representation of the driving physical processes (e.g., more accurate 

resolution of geographical features and thus, various interactions with the 

surface), thus, leading to better description of local climate and positively 

affecting the quality of the simulations. 

The data used in this study comprise a subset of ALADIN’s entire 

integration domain covering the Slovak Republic. The 10 km resolution grid, 

with rotation 6
o
 azimuth, is extended beyond the country’s borderline by 
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approximately one grid point in order to reduce interpolation errors in the edge 

locations (Fig. 1). In total, 644 grid points are used for the analysis. Source data 

statistics are given in Table 1. 

 

 
 

 

 
Table 1. Source data statistics. Abbreviations: N – number of observations, Min – 

minimum, Max – maximum, Avg – average, Med – median, SD – standard deviation, 

IQR – inter-quartile range, Skew – skewness,  Kurt – kurtosis. Variables: T – mean 

annual air temperature for the given period, P – mean annual precipitation totals for the 

given period 

 

Variable N Min Max Avg Med SD  IQR Skew Kurt 

T 1961–1990 644 0.6 10.7 7.3 7.4 2.0 3.1 – 0.32 – 0.42 

T 2071–2100 644 5.2 13.4 10.7 10.8 1.8 3.2 – 0.40 – 0.90 

P 1961–1990 644 416.5 1206.7 697.3 675.6 145.1 207.8 0.83 0.12 

P 2071–2100 644 472.5 1175.0 671.3 629.7 154.5 214.9 0.94 0.05 

 
Elevation of the study area is used as a supportive variable (Fig. 1). It is 

organized in a 180 m resolution grid, which is more than 55 times denser than 

the ALADIN grid.  

3. Methods  

The climate data used are clearly non-stationary, as they have a global elevation-

controlled trend in the south-north direction. Therefore, we describe here the 

concepts for multivariate non-stationary geostatistical modeling that are used. 

All steps of the geostatistical analysis were carried out in the ISATIS v.9 

environment (Geovariances, Centre de Géostatistique in Fontainebleau). For 

regression modeling, STATISTICA v.7 (StatSoft, Inc., 2004) was used. 

Fig. 1. Spatial arrangement of 10  10 km grid of the ALADIN-Climate /CZ regional 

climate model in Slovakia. 
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3.1. Stationary spatial models 

Stationarity of spatial data, i.e., the presence of a stable mean for an analyzed 

variable, is the simplest and most frequently documented case of geostatistical 

analysis. This allows for straightforward modeling of the variogram, which 

measures the spatial correlation of the studied variable, as well as for an optimal 

estimation using kriging. In a stationary case, where drift )(xm  is a constant, 

the variogram   for distance h is estimated as:  
 

2)]()(E[ )(2 xhxh ZZZ  .                                     (1) 

 

For a regionalized variable, as one realization of a random function, the 

variogram is estimated by forming the average dissimilarities for all )(hN  pairs 

of data )( xz  and )( hx z  available at sample points x  that are linked by 

the vector  xxh   (Hudson and Wackernagel, 1994): 
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Usually, we observe that the average dissimilarities between the couples of 

values increase when h is increased, up to a value of the variable autocorrelation 

(range of influence). Beyond this value, the dissimilarities become more or less 

constant around an upper asymptote (sill of the variogram) that is approximately 

equal to the data variance. 

3.2. Non-stationary spatial models 

In a non-stationary case, there is a definite trend in the data, being a gradient in a 

given direction (Hayet et al., 2000). The non-stationary approach to spatial 

modeling considers the phenomenon under study as a sum of two terms:  
 

)()()( xxx mYZ  ,                                             (3) 

 

where )(xY  describes the local variation of )(xZ , and it is assumed to be 

stationary with constant mean. The term )(xm  describes a large-scale variation 

of )(xZ  (drift). It is assumed that the drift can be represented by a polynomial 

of order L:  


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l
ll fam

0

)()( xx ,                                              (4) 

where la  are unknown coefficients of known functions )(xlf  of the spatial 

coordinates. Note that for 1L , Eq. (4) reduces to a constant term, 0a , which 
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indicates no trend in the spatial coordinates. The term )(xY  in Eq. (3) represents 

the residual, i.e., the amount of variability remaining after the drift has been 

removed. The residuals have a stationary covariance (variogram) function 

between any pairs of random variables )}(),({ hxx YY . The drift is essentially 

the mean value of the variable as a function of the location at which the variable 

is measured. In a non-stationary case, we can rewrite Eq. (1) as follows: 
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where the trend values )(xm  and )( hxm  are unknown. The second term on 

the right side of Eq. (5) provides the drift estimate in a particular direction. The 

most straightforward approach to non-stationary modeling is based on 

computation of a residual variogram )(2 hY . A proper use of this technique is 

documented by Dowd (1984) and Goovaerts (2000b), who suggested several 

ways for coping with certain shortcomings of this technique, as discussed, for 

example, by Hayet et al. (2000). 

Another approach to non-stationary modeling used in this paper is the 

method of increments based on the theory of intrinsic random function of order 

k (IRF-k) (Matheron, 1973). It defines a linear combination of Z data that filters 

out the drift component )(xm . In a stationary case, the first order difference, or 

increment )]()([ xhx ZZ  , filters out the constant drift m. In a non-stationary 

case, higher order differentiation is required to filter out the higher orders of the 

polynomial drift. This approach leads to a so-called generalized covariance 

model )(hK  instead of a variogram )(h . The most widely used models for 

generalized covariances are polynomial in form (Matheron, 1973):  
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More information on this technique can be found in Dowd (1984) or Chiles and 

Delfiner (1999). 

3.2.1.  Case of external drift(s) 

In case of a non-stationary spatial model, we consider the trend )(xm  of the 

variable )(xZ  to be a function of spatial coordinates. For some applications, 

exhaustive data for one or more regionalized variables )(xjs  may be available 
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in the studied domain (representing, e.g., elevation). If such data are available, it 

is worthwhile to use them as additional constraints to the interpolation.  

If we assume that )(xZ  is on average equal to )(xjs  up to linear way and 

with coefficients 0a  and 1b , then: 

 



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0 )()()](E[ xxx .                                 (7) 

 

Because variables )(xjs  are exhaustively available, they reflect the average 

shape of )(xZ , where just the scaling is different (Hudson and Wackernagel, 

1994).  

3.3. Interpolation techniques 

In this study, we include several techniques under the term external drift kriging. 

Their common feature is that the elevation acts as an external drift correlated 

with the primary climatic variables. In addition, a linear regression of the 

elevation data was used to predict the climate data.  

Residual kriging, known also as regression kriging (Odeh et al., 1994) or 

kriging after detrending (Goovaerts, 2000b), predicts the residuals at all nodes 

of the interpolated grid ox , )( o
* xY . Residual kriging uses the drift )(* xm  

calculated by a polynomial of a selected degree by the least squares method. 

Residuals )( xY  are calculated as the differences between )( xZ  and 

)(*
xm  at all sample points. Using the variogram of residuals, the kriging 

system for weights )(  x , n ..., ,1  includes 1n  linear equations: 
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The residual kriging estimator is a linear combination of available n data )( xy  

for only n random variables )( xZ :  
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Finally, the estimated drift, Eq. (4) and kriged residuals, Eq. (9) are added 

together.  
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Universal kriging provides an unbiased estimation, which considers drift 

)(xm  as a continuous and regular function (Eq. (4)), usually restricted to 

polynomials up to the order of 2. It uses a model representing both local and 

global variability of the variable in space. It determines the underlying 

variogram of )(xY  and estimates the degree of drift. We modeled the drift by 

Eq. (4), including elevation as the external drift. The simultaneous system of 

equations for the universal kriging estimator, considering both internal and 

external drift, is as follows:  
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The kriging system for IRF-k is similar to the universal kriging system, 

Eq. (10). The only difference is that it uses the generalized covariance model 

)(hK  (Eq. (6)) instead of the variogram )(h  (Eq. (2)). More details about 

IRF-k can be found in Dowd (1984) or Chiles and Delfiner (1999). 

3.4. Linear regression-based estimation 

The generally recognized relationship between the climate variables addressed 

and elevation allows for a simple prediction of climate data at all positions for 

which elevation data are available. There exists a set of collocated climate 

)( xz  and elevation )( xs  data nαsz  ..., ,1 )];(),([  xx , where n is the 

number of observations. The prediction )( o
* xz  is based on a linear relation-

ship: 

 

)()( *
1

*
0o

*
xx sbaz  ,                                         (11) 

 

where coefficients *
0a  and *

1b  are estimated from the collocated climate and 

elevation data. A major shortcoming of this type of prediction is that the climate 

data at a particular grid node are derived only from the collocated elevation, 

regardless of the surrounding observed climate data (Goovaerts, 2000a). 
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3.5. Accuracy assessment 

Two techniques were used to assess the accuracy of the maps produced and the 

performance of the predictors used. A cross-validation procedure was used in 

case of geostatistical predictions (Isaaks and Srivastava, 1989; Clark, 1986). 

The technique temporarily removes one observation at a time from the data set 

and “re-estimates” this value from the remaining data using a given predictor. 

Such procedure produces couples of values, the differences between which yield 

cross-validation residuals. The main criterion for assessing accuracy is mean 

square error (MSE), which measures the average squared difference between the 

observed )( xz  and predicted )(*
xz  values: 
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where n is the number of observations. 

Correlation coefficients of observed versus predicted values, normality of 

residuals distribution, mean value of residuals (criterion that the mean is 

approaching zero), and degree of randomness of spatial distribution of residuals 

can also be used. 

Another approach was used in the case of linear regression-based 

prediction. The MSE was computed as the average square residual value for the 

linear model fitted using all observations: 
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4. Results 

4.1. Drift identification 

To identify an optimal global trend, the polynomials of order one (linear) and 

two (quadratic) plus one external drift (elevation) were tested by the cross-

validation procedure for the lowest mean square error. Other criteria, such as 

mean of residuals approaching zero, minimal variance, normal distribution, and 

well-structured directional experimental variograms, were used as well. We 

found that the linear drift along the x and y coordinates (internal drift), together 

with the elevation (external drift), 

 

)(yx)( 1210
* xx sbaaam  ,                                   (14) 

 

performed the best for all climate variables. 
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4.2. Kriging-based predictions 

To perform the residuals kriging, we used the trend functions described above to 

filter out the residuals )( xy  from the regionalized variable )( xz , then 

estimated the residual variogram models )(hY  for all the climate variables 

analyzed (Fig. 2). Estimation of the variogram model for the variable T 1961–

1990 was problematic, because there were erratic directional experimental 

variograms without clear spatial structure. Therefore, an omnidirectional model 

was fitted to the experimental variogram values in this case. The variogram’s 

origin was estimated from the directional variogram constructed in the azimuth 

6
o
 that rises from the variogram’s value at about 0.1 (

o
C)

2
. Directional experimental 

variograms are presented in Fig. 2 to demonstrate that no anisotropy can be 

modeled in this case.  

 

 
 

Fig. 2. Directional experimental residual variograms (thin lines) and respective 

variogram models (thick lines). The numbers on the right side indicate the angles at which 

the variograms were calculated. Abbreviations: P 1961–1990 – mean precipitation totals 

during the period 1961–1990, P 2071–2100 – mean precipitation totals during the period 

2071–2100, T 1961–1990 – mean annual air temperature during the period 1961–1990, 

T 2071–2100 – mean annual air temperature during the period 2071–2100. 
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The estimation of kriging weights )(  x  was based on Eq. (8). Estimation 

of residuals )( o
* xy  was based on the linear combination of available data 

according to Eq. (9). Finally, the kriged residuals were summed with the trend 

model according to Eq. (3). 

In case of universal kriging, the trend component is directly included into 

the kriging system according to Eq. (10) for the drift estimation (Eq. (14)). The 

final estimation was performed directly using the raw variable )(xZ . 

In case of IRF-k, the automatic fitting procedure of the ISATIS 

environment was used to determine both the degree k of the drift and the 

generalized covariance. For all variables, the degree of the drift was 1 (linear in 

X and Y directions) plus the external drift represented by the elevation. The 

generalized covariance of order 1 (similar to the linear model of the variogram) 

without nugget effect was used for all climate variables.  

For interpolation neighborhood definition (Isaaks and Srivastava, 1989), 

we used a so-called unique neighborhood, i.e., all available data were used to 

estimate a value at a particular grid node. We also tested several designs for a 

moving neighborhood, such as a first ring neighborhood (4 adjacent samples), 

second ring neighborhood (16 adjacent samples), and third ring neighborhood 

(36 adjacent samples). The cross-validation tests indicated that the unique 

neighborhood was performing the best for all climate variables. In addition, the 

use of moving neighborhoods resulted in “radial” artefacts in the maps 

produced, due to the resolution of the estimated grid which is more than 55 

times higher than that of the ALADIN grid.  

The maps of both variables for both time slices produced by EDK in the 

scope of IRF-k can be seen in Fig. 3. We can see that the elevation pattern is 

much stronger in the case of temperature than in that of precipitation data due to 

the different correlation of climate variables with elevation (Table 2).  

4.3. Linear regression-based prediction 

Linear regression-based prediction was used to provide the reference value for 

assessing the accuracy of the kriging-based techniques. Regression parameters 

from elevation and the respective climatic variables are based on all 644 

observed values (Table 2). Mean square error was calculated using Eq. (13). 

4.4. Accuracy assessment 

Accuracy assessment was based on comparison of the MSE yielded by kriging-

based predictions (Table 3) with that from the linear regression-based prediction 

(Table 2) (Goovaerts, 2000a). The latter technique provided the MSE reference 

value for evaluating the performance of kriging techniques. Proportional values 

of MSE are illustrated in Fig. 4. Such an approach allows for evaluating the 

performance of respective predictors for a single variable as well as for between-

variable comparison. The results are discussed below.  
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Fig. 3. Maps of mean annual air temperature and mean annual precipitation totals for the 

reference (1961–1990) and distant future (2071–2100) climates produced using external 

drift kriging in the scope of IRF-k. 

 
Table 2. Linear regression parameters between elevation (X) and respective climatic 

variables (Y). Abbreviations: 
*

0a  – intercept, 
*

1b  – slope, R – correlation coeficient, R
2
 – 

coefficient of determination, MSE – mean square error 

 

X Y 
*

0a  *

1b      R R
2
 MSE 

Elevation P 1961–1990 526.86 0.39180 0.75 0.563 9141 

Elevation P 2071–2100 488.27 0.42060 0.76 0.578 10123 

Elevation T 1961–1990 10.26 – 0.00688 – 0.95 0.903 0.394 

Elevation T 2071–2100 13.34 – 0.00606 – 0.94 0.887 0.359 

 
Table 3. Results of the cross-validation based accuracy assessment. Abbreviations: KR – 

residuals kriging, UK – universal kriging with external drift, IRF-k – external drift 

kriging in the scope of IRF-k, R – correlation coefficient between observed and predicted 

values, R
2
 – coefficient of determination, MSE – mean square error of prediction, AVG 

– average value of residuals 

 

Variable Interpolator R R
2
 MSE AVG 

T 1961–1990 KR 0.978 0.956 0.17457    0.000286 

T 1961–1990 UK 0.978 0.957 0.17165    0.000286 

T 1961–1990 IRF-k 0.976 0.953 0.184628    0.000410 

T 2071–2100 KR 0.990 0.981 0.056014 – 0.000449 

T 2071–2100 UK 0.991 0.981 0.055269 – 0.000327 

T 2071–2100 IRF-k 0.990 0.981 0.054161 – 0.000306 

P 1961–1990 KR 0.954 0.909 1588.9 – 0.1220 

P 1961–1990 UK 0.954 0.910 1564.6 – 0.0280 

P 1961–1990 IRF-k 0.955 0.912 1536.9 – 0.0099 

P 2071–2100 KR 0.939 0.881 2329.5 – 0.0180 

P 2071–2100 UK 0.940 0.884 2273.9    0.0470 

P 2071–2100 IRF-k 0.943 0.889 2163.9    0.0660 
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Fig. 4. Results of accuracy assessment for predictions produced by three interpolation 

techniques for mean annual air temperature and mean annual precipitation totals for the 

periods 1961–1990 and 2071–2100. The figures indicate the proportions of the MSE 

(mean square error) yield by cross-validation in the case of EDK-based techniques to 

MSE yield using the linear regression approach.  

5. Conclusions and discussion 

We performed a series of analyses of high resolution RCM data covering 

Slovakia. Both air temperature and precipitation data are well correlated with 

elevation (Table 2), and thus, we focused on the integration of that variable into 

the interpolation. Such supportive variable is presumed to reduce the amount of 

uncertainty in the maps produced. We used three external drift kriging-based 

techniques: residuals kriging, universal kriging with external drift, and external 

drift kriging in the scope of IRF-k. We described in details the particular steps of 

the geostatistical analysis to allow for a deeper understanding of those 

techniques used.  

All kriging-based techniques produced comparable results for a single 

climate variable. The reason for this evidently lies in the high correlation of 

climate data with elevation, which covers the impact of different interpolation 

algorithms. In the cases of the variables T 2071–2100, P 1961–1990, and P 

2071–2100, EDK in the scope of IRF-k yields slightly better results than do the 

remaining kriging-based techniques. This can reflect the benefit of using an 

automatized procedure in generalized covariance calculation for regularly 

distributed data in comparison to manual variogram fitting (the case of residuals 

kriging). The poorest results were reached in the case of the variable T 1961–

1990, where the residuals were very erratic, and thus, they influenced the shape 

of the respective variograms (Fig. 2). This applies also for the remaining 

techniques, because drift parameters remain more or less stable. 
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Subsequently, we tested the ratio of mean square errors produced by 

kriging-based techniques to those from linear regression-based estimation. All 

kriging techniques significantly outperformed the linear regression-based 

estimation, which yields a mean square error 15 – 47% higher (depending on the 

variable). This means that, despite high correlation between climate data and 

elevation, information about the configuration of the surrounding data significantly 

improved the estimation. The accuracy assessment indicated that the three 

predictors used yielded almost identical results for a single variable, while 

significant differences in mean square error were observed by between-variables 

comparison. 

Geostatistical techniques, in general, require a certain extent of user 

intervention and cannot be fully automatized. In any case, large amounts of 

climate data produced by various instruments require at least a semi-automatized 

approach when producing series of climate maps for various time slices. 

External drift kriging in the scope of IRF-k is a candidate technique for this. It 

yielded slightly better results than did the remaining EDK-based techniques for 

three out of four variables analyzed, and the underlying generalized covariance 

may be calculated automatically (see implementation in the ISATIS environment 

used in this paper). By contrast, residuals kriging requires a series of user 

interventions, which were not, however, compensated by improved accuracy of 

the prediction.  
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