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Abstract–In this paper we focus on the homogeneity of Portuguese monthly mean air 

temperature with two purposes: i) to detect and correct eventual inhomogeneities in the 

dataset; and, ii) to compare the homogenized time series with different methods. The 

dataset used in this study comprises time series of minimum (TN) and maximum (TX) 

monthly mean air temperature recorded in weather stations located in the northern region 

of the continental part of Portugal, from 1941 to 2010. MASH and HOMER were the 

methods used in this study to homogenize the Portuguese air temperature database. The 

former was selected for being one of the most widely used by the homogenization 

community, while the latter was selected because it is one of the most recent 

homogenization methods, and the combination of detection methods resulted in that, 

along with MASH, HOMER exhibited the best results in the comparative analysis 

performed within the COST Action ES0601 (HOME). A high number of break points 

were identified in both minimum and maximum air temperature time series, but 

differences in the number, size and temporal location of the breaks detected by both 

methods must be underlined. The homogenization process was assessed by comparing 

results obtained with correlation, trend, and principal component analysis using non-

homogenized (NH) and homogenized datasets with both methods. Correlation analysis 
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reveals a higher increase in the similarity in homogenized TX than in TN in relation with 

NH time series. Decrease in the amplitude of the tendencies and in the number of 

statistically significant trends is higher in homogenized TX than in TN, independently of 

the homogenization method. On the other hand, the number of statistically significant 

principal components tend to decrease with the application of homogenization 

procedures, while the explained variance by the first principal components of 

homogenized datasets is tendentiously higher than for non-homogenized datasets.  

 

Key-words: Homogenization, temperature, MASH, HOMER, Portugal. 

 

 

1. Introduction 

The existence of long and reliable instrumental climate records registered in a 

sufficiently dense network is fundamental to assess climate variability and 

climate change and to validate climate models. Climate research results are also 

dependent on the quality of the datasets, in particular on its homogeneity 

(Venema et al., 2012). A homogeneous climate time series can be defined as the 

one whose variability is only caused by changes in weather and climate (Aguilar 

et al., 2003). However, long instrumental records are rarely homogeneous 

because they include non-climatic signals which must be removed. Results from 

the homogenization of Western Europe climate records points to the existence of 

inhomogeneities in mean temperature series every 15 to 20 years (Venema et al., 

2012). In fact, any weather observation network, that operates for a long period 

of time, undergoes changes in its functioning due, for example, to 

instrumentation failure or damage, changes on its surrounding (e.g., 

urbanization), relocation and substitution of weather stations. For these reasons, 

it is expected that the Portuguese maximum and minimum air temperature 

datasets present heterogeneities that need to be detected and corrected. 

In the last decades, inhomogeneity detection techniques have been 

developed based on classical statistical tests (Alexandersson, 1986; Gullett et al., 

1990), regression models (Vincent, 1998), or Bayesian approaches (Perreault et 

al., 2000). More recently, new procedures were particularly developed to detect 

and correct multiple change-points using reference series (Szentimrey, 1999; 

Mestre, 1999; Caussinus and Mestre, 2004; Menne and Williams, 2005) and 

changes in the mean and variance (Toreti et al., 2012). Review papers and 

comparison studies of homogenization methods have been published regularly 

(Peterson et al., 1998; Ducré-Robitaille, 2003, Reeves et al., 2007, Venema et 

al., 2012). Some authors have been focusing their interest in specific aspects of 

the homogenization procedure such as the cause of inhomegeneities (Trewin, 

2010), use of reference series (Menne and Willians, 2005, Domonkos, et al., 

2012), ability of homogenization methods (Menne and Willians, 2005), or to test 

automatic homogenization methods by the introduction of perturbed parameter 

experiments (Williams et al., 2012).  
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The inventory and evaluation of existing detection and correction methods 

and the need of an objective comparative analysis to assess their performance 

was included in the scientific programme of the COST Action HOME ES0601: 

Advances in Homogenization Methods of Climate Series: an integrated approach 

(HOME). HOME results include the publication of a comparison study, based on 

25 blind contributions and 22 contributions made after knowing the location and 

size of the heterogeneities, performed with a large number of different versions of 

9 main methods (Venema et al., 2012). This study was based on a benchmark 

dataset of monthly air temperature and precipitation and on different error metrics 

to assess the performance of the methods. Results of this comparison suggests 

that: (i) the assessment of the methods is dependent on the error metric 

considered; (ii) in general, all relative methods contribute to homogenized 

temperature data; but, (iii) only the methods with best performance are able to 

improve the quality of precipitation datasets; and, (iv) the list of methods with 

better performance includes Craddock (Craddock, 1979), PRODIGE (Caussinus 

and Mestre, 2004), MASH (Szentimerey, 2007), ACMANT (Domonkos, 2011), 

and USHCN methods (Menne and Williams, 2009).  

HOME main objective was to develop a general homogenization method 

for homogenizing climate and environmental datasets which was accomplished 

in 2011 with the release of a free software package (HOMER), implemented in 

R language (HOME, 2011). It should be noted that ACMANT is a modified and 

automated version of PRODIGE, and that HOMER integrates PRODIGE, 

ACMANT, and USHCN. 

Consequently, the purpose of this study is twofold: (i) to analyze the 

homogeneity of minimum and maximum air temperatures in northern Portugal; 

and, (ii) to compare the homogenized maximum and minimum air temperatures 

Portuguese datasets with HOMER and MASH. A review of the main 

characteristics of the procedures used to control the quality of the data and 

methods of homogenization will be undertaken in order to justify the options 

taken in this study and to highlight the methodological differences between 

MASH and HOMER. 

2. Dataset description 

The dataset that we analyze here is representative of the monthly mean 

maximum and minimum air temperature fields (hereafter TX and TN, 

respectively) in the northern region of the continental part of Portugal for the 

1941–2010 period. Monthly time series were calculated from daily values, 

following the WMO directives in what concerns to the existence of missing 

values in daily time series. Specifically, a monthly value should only be 

computed if no more than five consecutive daily values or less than ten daily 

values throughout the month are missing (WMO, 2011).  
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Daily values of TX and TN were recorded at weather stations managed by 

the Portuguese Meteorological Institute (IM). Location and characteristics of 

these weather stations are presented in Fig. 1 and Table 1, respectively. This 

network comprises both classical weather stations (CWS), collecting data since 

the mid-1800s, and automatic weather stations (AWS), installed in the end of the 

20th century. In cases where AWS were installed in approximately the same 

location of the CWS, the time series from both weather stations were merged, 

the type of station in Table 1 was set to CWS/AWS, and the date of the fusion 

was stored as metadata. Maximum distance between an AWS and CWS used to 

produce the merged time series was 4.7 km (in Vila Real), which is a much 

lower distance than those used in previous studies (Stepanek and Mikulova, 

2008; Vicente-Serrano et al., 2010). 

 

 

 

 
 

Fig. 1. Location of the weather stations of the Portuguese Institute of Meteorology (IM) 

network, in northern Portugal. Addition characteristics of these stations are provided in 

Table 1. 

 

 

 

In this network, weather stations are well distributed and located both in 

low and high altitude (ranging from 14 m to 1380 m), in densely populous 

coastal areas and sparsely populated inner regions within the country territory 

(Fig. 1). The northern Portugal is characterized for being the region with the 

highest density of mountains and river basins in the country as well as by a 

diverse land use/occupation (Freitas et al., 2012). Independently of the 
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proximity to the Atlantic Ocean or the altitude, all weather stations considered in 

this study are located in a region of Cs type of climate, which is a temperate 

climate with dry period in summer (AEMET-IM, 2011). In more detail, the 

climate of this northern region is essentially of Csb type, which corresponds to a 

temperate climate with dry or temperate summer, except a small part, in the 

northeast, which is of type Csa, also temperate but with dry or hot summer. The 

recently published Iberian Climate Atlas (AEMET-IM, 2011) provides a brief 

history of the complete IM network and additional description and 

characteristics of the temperature dataset. Results of the exploratory preliminary 

statistical analysis of minimum and maximum air temperature datasets for the 

1941–2010 period are presented and discussed in Freitas et al. (2012). 

 

 

 
Table 1. Characteristics of the weather stations of the Portuguese Institute of Meteorology 

(IM) network, located in northern Portugal including: identification code (ID); stations 

name; station type; altitude (m); start and ending dates; and, amount of missing values (in 

%), accounted for the 1941–2010 period. When the entire time series results from 

measurements from a CWS (or AWS), the type is simply CWS (or AWS); in the cases 

where a CWS was replaced by a AWS, the type is CWS/AWS 

 

ID Station Name Type Altitude (m) Start year End year 

1 Anadia (AN) AWS 45 1941 2010 

2 Braga (BR) CWS/AWS 65 1931 2010 

3 Bragança (BG) CWS 690 1932 2010 

4 Coimbra B. (CB) CWS 35 1941 2010 

5 Coimbra G. (CG) CWS 141 1864 1996 

6 Dunas Mira (DM) CWS 14 1935 2005 

7 Mirandela (MI) CWS/AWS 250 1926 2010 

8 Montalegre (MO) CWS/AWS 1050 1880 2010 

9 Penhas D. (PD) CWS/AWS 1380 1932 2010 

10 Pinhão (PI) CWS/AWS 130 1941 2010 

11 Porto S.P. (PS) CWS 93 1863 2005 

12 Régua (RE) CWS 56 1933 2010 

13 Vila Real (VR) CWS/AWS 561 1928 2010 

14 Viseu (VI) CWS/AWS 443 1925 2010 
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3. Methodological procedures 

This section is devoted to the description of the methods used to perform the 

quality control of the data, the homogeneity analysis and to compare the 

homogenized datasets with those methods. The quality control of the datasets 

comprises a preliminary exploratory statistical analysis to characterize the 

potential and limitations of the datasets as well as to identify and correct missing 

values and outliers. Main technical features of the procedures used in this study 

will be briefly discussed to validate the followed methodology and to underline 

the major differences between the approaches of the two selected methods to 

homogenize the Portuguese air temperature dataset. 

3.1. Quality control with homogenization methods packages 

In this study two homogenization methods were used: (i) the most recent version 

of MASH, (Version MASHv3.03), initially developed in the Hungarian 

Meteorological Service by Szentimrey (1994, 1999); and, (ii) HOMER, 

developed in the framework of COST Action ES0601 (HOME, 2011). We start 

with presenting the homogenization methods because, in addition to being able 

to detect and correct inhomogenieties, these softwares comprise additional 

functions to perform fast quality control. On this subject, with MASH it is 

obligatory to use available functionalities to fill the missing values and perform 

automatic correction of outliers. On the other hand, HOMER provides a fast 

quality control of the data, which includes functions of the CLIMATOL R 

package (Guijarro, 2011), which allow the user to perform/estimate station 

density, correlogram, histograms, boxplots, and cluster analysis. With respect to 

the detection of heterogeneities, MASH relies on multiple references series 

while HOMER combines three detection algorithms: pairwise – univariate 

detection (Caussinus and Lyazrhi, 1997), joint detection (Picard et al., 2011), 

and ACMANT – bivariate detection (Domonkos et al., 2012). To correct the 

datasets, MASH uses multiple comparison techniques whereas HOMER uses 

ANOVA. MASH is provided with a user guide, while a brief description of 

HOMER can be found in Mestre and Aguilar (2011) or in Freitas et al. (2012). 

3.2. Outlier detection 

It is recommended to use different methods for outlier detection because, in 

general, one single method/criteria is not sufficient to identify real outliers nor to 

exclude false detections (Stepanek et al., 2009). Consequently, in this study, 

abnormal high and low values were only classified as outliers if two criteria 

were simultaneously verified: (i) values above/below the upper/lower thresholds 

defined as the upper/lower quartiles plus/minus the interquartile range times a 

coefficient (usually equal to 1.5 to detect outliers and equal to 3.0 to detect 

extreme values); and, (ii) pairwise comparison which is based on the difference 
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time series between candidate and best neighbor time series, which can be 

defined as the closer stations and/or those presenting higher correlation 

(Stepanek et al., 2009; Syrakova and Stefanova, 2009). This latter procedure can 

be performed in HOMER by visual inspection of the plots of the difference 

between candidate and best neighbor time series. As mentioned in the previous 

section, in addition to this analysis, MASH has an independent and automatic 

procedure to detect and correct outliers that is executed before detection 

procedures. 

3.3. Missing values correction 

The existence of missing data in climate time series can be solved with temporal 

interpolation, using data of the same time series before and after the data gap, or 

with spatial interpolation, using data from nearby weather stations (WMO, 

2011). Complex estimation methods, such as weighted averages, spline 

functions, linear regression, and kriging, which take into account the 

correlations with other elements, can also be used to complete the time series. 

Brunetti et al., (2006) adopted a procedure to fill the gaps on monthly 

precipitation and temperature Italian time series, with estimates based on the 

highest correlated reference series. For temperature, this method is based on the 

differences between incomplete and reference temperature series. Staudt et al. 

(2007), replace the missing values on monthly time series of Spanish minimum 

and maximum temperatures by weighted means of the best-correlated 

synchronous data. The method used by Syrakova and Stefanova (2009) to fill the 

gaps in Bulgarian monthly temperature is based on the stability of the 

differences between the time series at neighboring highly correlated stations. 

More recently, Vicente-Serrano et al. (2010) tested three different procedures to 

fill missing data in daily precipitation time series: (i) the nearest neighbor, (ii) 

inverse distance weighted interpolation; and, (iii) linear regression methods, 

concluding that the nearest-neighbor method provided the best results. Both 

homogenization methods used in this study (MASH and HOMER) have 

corrected databases as final result with respect to inhomogeneities and missing 

values using multiple comparison and ANOVA, respectively. 

3.4. Reference time series 

Reference series or reference sections are used in detection procedures in many 

homogenization methods, such as ACMANT, AnClim/ProClimDB, Climatol, 

RHTestV3, and MASH (WMO, 2011). Reference series are also used to assess 

the quality of the homogenization (Kuglitsch et al., 2009). These reference series 

do not need to be homogeneous (Szentimrey, 1999; Zhang et al., 2001; Causinus 

and Mestre, 2004), but must encompass the same climatic signal as the 

candidate series (Della-Marta and Wanner, 2006) and, in this sense, are usually 

produced as weighted averages of the time series from surrounding stations 



76 

(Peterson and Easterling, 1994; Sahin and Cigizoglu, 2010). Stepanek and 

Mikulova (2008) discuss the advantages and disadvantages producing weighted 

reference series based on the distance between stations or on the correlation 

between candidate and potential time series, while Della-Marta and Wanner 

(2006) argue about the benefits of using weighted reference series in comparison 

with a single reference station. The selection procedure of the surrounding 

stations to produce the reference series can be based on the distance between 

stations or on the correlation between candidate and potential time series. Both 

criteria present advantages and disadvantages that must be underlined. Distance-

based methods preserve the geographical vicinity, but time series from near 

stations with different climatic signals (e.g., due to altitude) can be selected. 

Using high correlated neighbor time series, both the candidate and reference 

series present similar variability (which reduces differences/ratios time series 

variability), but stations affected with similar/coincident inhomogeneities with 

the candidate can be selected (Stepanek and Mikulova, 2008). Weighted 

reference series are considered more representative of the climatic region and, 

for being less prone to potential inhomogeneities in the neighbor series than 

single reference station, are more characteristic of the climate variability at 

smaller scale (Della-Marta and Wanner, 2006).  

In this study, reference time series are used in the detection procedure, 

because this is the methodology adopted in MASH and ACMANT, and to assess 

the quality of the homogenized time series. For the reasons presented before, 

weighted reference series were produced with AnClim software (Stepanek, 

2008) using difference series to evaluate the correlation coefficients as 

suggested in Alexandersson and Molberg (1997), Peterson et al. (1998), 

Stepanek and Mikulova (2008), and Domonkos et al. (2012). Since our database 

is affected by only a few number of missing values and the objective is to assess 

the quality of the homogenization process not of the data completion process, 

reference series were produced to present the same data gaps than the 

uncorrected time series. This is achieved by using uncorrected time series (with 

the data gaps) and neighbor time series without missing values (in order to 

exclude neighbor time series missing value in the reference series).  

3.5. Homogenization methods performance assessment 

In contrast to comparative studies performed with synthetic databases, when 

type, size, and location of inhomogeneities are known a priori (as in Venema et 

al., 2012), the homogenization methods performance assessment must be 

executed with real data, by comparing the results obtained with different 

techniques using non-homogenized (hereafter NH) and homogenized data with 

MASH (hereafter HM) and HOMER (hereafter HH). This section is devoted to 

present the methodology used to assess the quality of the corrected dataset and, 

consequently, methods used in the homogenization process. 
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i. Correlation analysis 

The main objective of correlation analysis is to evaluate the strength of the 

temporal linear relationship through the computation of the Spearman correlation 

coefficient, SCC (Pereira et al., 2011). In this sense, to assess potential 

improvement in the similarity between time series before and after the 

homogenization process, correlation analysis was applied to annual time series to 

compute: (i) the correlation matrix between time series of non-homogenized and 

homogenized time series with MASH and with HOMER datasets; and, (ii) the SCC 

between each candidate and corresponding reference series. Since our objective is 

to assess the quality of the homogenization process, and not of the interpolation 

procedures used in MASH and HOMER to fill the data gaps, SCC was computed 

between time series with the same missing values than in NH datasets. 

ii. Trend analysis 

The existence of trends is in the basis of climate change studies (Raj and Azeez, 

2012). In this study, the Mann-Kendal non-parametric test is used to estimate the 

existence, magnitude and statistical significance of potential trends in the NH, 

HM, and HH time series, in order to assess the impacts of homogenization 

methods. This test is suggested for trend analysis by the WMO (Sneyers, 1990) 

and has been used in many published works on climate change and climate 

variability (e.g., Moberg and Jones, 2004; Brunetti et al., 2006; Rodrigo and 

Trigo, 2007). 

iii. Principal component analysis (PCA) 

When PCA is applied on a dataset, a new set of time series is produced as linear 

combination of the original ones. The new time series are the so-called principal 

components (PC), while the coefficients used to compute them are the elements 

of the empirical orthogonal functions (EOF). From the mathematical point of 

view, EOFs are the eigenvectors of the variance-covariance or the correlation 

matrix of the original dataset, the PCs are obtained by projecting the original 

time series into the EOF, and the eigenvalues are a measure of the explained 

variance, i.e., the proportion of the total variance explained by each PC. 

Obtained PCs are uncorrelated and sorted by decreasing order of variance, while 

EOFs are orthogonal to each other and constitute a vector base. There are 

different versions of this multivariate statistical technique, but it is easy to find 

their description/characteristics (Jolliffe, 2005; Wilks, 2011). PCA has 

multidisciplinary applications and is used in data analysis as an exploratory tool 

(for outlier detection, cluster identification, data visual examination, and 

interpretation), data preprocessing (dimensionality and noise reduction), 

modeling, and to identify spatial and temporal patterns and modes of variability 

such as NAO and ENSO (Wold et al., 1987; Jolliffe, 2005; Pozo-Vazquez et al., 
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2005). PCA results are dependent on the scaling of the original matrix (Wold et 

al., 1987; Jolliffe, 2005), but statistical significance can be assessed, e.g., with 

cross-validation, bootstrap, or jackknifing techniques (Romanazzi, 1993; Jolliffe, 

2005). PCA outputs, in particular the amount of explained variance by each PC, 

are dependent on the similarity of the time series (Jolliffe, 2005). This 

characteristic of PCA will be used in this study to assess homogenization results.  

4. Obtained results 

Preliminary exploratory statistical analysis reveals the existence of a very small 

number of missing values. Time series most affected by this problem present 

multiple consecutive missing values or their last record (end date) is before 2010. 

Results for maximum temperature are very similar to that for minimum 

temperature. The great majority of the low number of outliers detected above and 

below the defined thresholds based on the quartiles of their own time series was 

not confirmed with pairwise comparison with neighboring time series. The final 

number of outliers considered in HOMER for minimum and maximum 

temperatures were 10 and 11, respectively, which corresponds to 0.1% of total 

number of monthly values in each dataset or to less than 1 missing values per time 

series in each dataset. As mentioned in Section 3.2, MASH has an automatic 

procedure to detect and correct outliers which is not controlled by the user. 

Temporal location and size of the breaks detected in minimum and 

maximum air temperature time series with MASH and HOMER are shown in 

Table 2. It should be pointed out that breaks marked with a star (*), noticeable 

only in the detection list of MASH, correspond to shifts of equal value but 

opposite sign in two consecutive years, that will most likely be an annual outlier 

than a break point and, from this point forward, will not be considered as breaks. 

Consequently, the number of breaks detected with HOMER (39 in TN and 32 in 

TX) is higher than with MASH (32 in TN and 24 in TX). Since the original data 

only have one significant decimal digit, the physical meaning of a great number 

of these breaks can be questioned. The number of shifts smaller than 0.1ºC 

detected with MASH is much higher (12 breaks in TN and 19 in TX) than with 

HOMER (5 breaks in TN and 1 in TX). On the other hand, the number of 

coincident breaks detected in TN with both methods is 18 (which corresponds to 

56% and 46% of total number of breaks detected with MASH and HOMER, 

respectively) and 9 in TX (37% of MASH and 28% of HOMER total breaks, 

respectively). If the analysis is restricted to breaks with shifts greater or equal to 

0.1ºC, the number of coincident breaks in TN is 14 (which corresponds to 70% 

and 41% of total number of breaks detected with MASH and HOMER, 

respectively) and 5 in TX (100% of MASH and 16% of HOMER total number 

of detected breaks, respectively). These results suggest that MASH could be 

able to detect smaller shifts but an overall small number of break points. 
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Table 2. Location (and magnitude) of break points detected on minimum and maximum 

air temperature during 1941-2010 period, with MASH and HOMER. Coincident 

detections with both methods, defined with utmost 18 months apart are presented in bold. 

Detections in two consecutive years with symmetrical shifts are marked with a star (*) 
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Correlation matrices between non-homogenized time series of maximum 

(minimum) air temperature, TXNH (TNNH), as well as between homogenized 

time series with MASH, TXHM (TNHM) and with HOMER, TXHH (TNHH) 

were computed. Boxplots of the Spearman correlation coefficient (SCC) values 

obtained for homogenized time series with HOMER are higher having lower 

dispersion in relation to non-homogenized and homogenized with MASH 

(Fig. 2). In general, SCC values between homogenized TX and TN time series is 

higher than those obtained between non-homogenized times series. Median 

value of the difference between TXHH and TXNH correlation matrix is higher 

(0.09, which corresponds to an increase of 9%) than the difference between 

TXHM and TXNH correlation matrix (0.02, which corresponds to a general 

increase of 2%). For minimum temperature, the median of the difference 

between TNHH and TNNH is equal to 0.13, while between TNHM and TNNH 

it is equal to 0.05.  

Spearman correlation coefficient values obtained between reference series 

and non-homogenized and homogenized with MASH and HOMER 

corresponding time series (Fig. 3) reveals: (i) higher SCC values between 

reference and homogenized time series with MASH in every stations and for 

both TX and TN than between reference and non-homogenized time series; (ii) 

higher SCC values between reference and homogenized time series with 

HOMER for TX than between reference and non-homogenized time series but 

lower values for TN in 6 weather stations. Median of the SCC values obtained 

for maximum and minimum air temperature homogenized time series with 

HOMER are similar (94.3% and 89.3%) to those obtained with MASH (91.8% 

and 88.8%) but higher than for non-homogenized time series (88.2% and 

86.4%), in particular for maximum air temperature. At this respect, the increase 

in the SCC can be underlined computed between the reference and one of the 

corresponding series: (i) TXHM and TXHH time series in Vila Real and Viseu 

(of 14.7% and 13.0%, respectively); and, (ii) TNHH and TNHM time series in 

Vila Real (of 13.7% and 8.4%, respectively).  

Trend analysis for TN performed with Mann-Kendal test assuming a 

statistical significance level of 99% (Table 3) reveals that: (i) only a small 

number of non-homogenized times series presents statistically significant trends 

(5 in TNNH and TNHM datasets and only 1 in TNHH dataset); (ii) almost all 

time series present positive trends except Mirandela and Dunas de Mira; (iii) a 

reduction in the number of statistical significant trends is only verified for 

TNHH dataset; and, (iv) with the homogenization procedures, the trend of two 

time series, after being homogenized, became statistically significant (time 

series of Bragança, with MASH and of Montalegre with HOMER). Results 

obtained for TX shows that: (i) there is a lower number of statistically 

significant trends (2 in TXNH and only 1 in TXHM); (ii) the number of non-

homogenized and homogenized time series with negative and positive trends are 

similar; but, (iii) all statistically significant trends are positive; and, (iv) 
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homogenization procedures lead the loss of statistical significance of the trends 

in one homogenized time series with MASH and in two homogenized time 

series with HOMER. 

 

 

 

 
 

 
 

 
 

Fig. 2. Boxplot of Spearman correlation coefficient (SCC) between annual time series of 

non-homogenized (NH), homogenized with MASH (HM) and with HOMER (HH) 

maximum (top panel) and minimum air temperatures (bottom panel), from weather stations 

located in northern part of the continental Portugal (Table 1 and Fig. 1), for 1941–2010 

period. SCC was evaluated taking into account missing values of NH time series. The 

bottom/top indicates the lower/upper quartiles, and the band near the middle of the box is the 

median. The lower/upper end of the whiskers represents the minimum/maximum values. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AN BR BG CB CG DM MI MO PD PI PS RE VR VI

S
p

ea
rm

a
n

 c
o

rr
el

a
ti

o
n

 c
o

ef
fi

ci
en

t

TXNH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AN BR BG CB CG DM MI MO PD PI PS RE VR VI
S

p
ea

rm
a

n
 c

o
rr

el
a

ti
o

n
 c

o
ef

fi
ci

en
t

TNNH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AN BR BG CB CG DM MI MO PD PI PS RE VR VI

S
p

ea
rm

a
n

 c
o

rr
el

a
ti

o
n

 C
o

ef
fi

ci
en

t

TXHM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AN BR BG CB CG DM MI MO PD PI PS RE VR VI

S
p

ea
rm

a
n

 c
o
rr

el
a
ti

o
n

 c
o
ef

fi
ci

en
t

TNHM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AN BR BG CB CG DM MI MO PD PI PS RE VR VI

S
p

ea
rm

a
n

 c
o

rr
el

a
ti

o
n

 c
o

ef
fi

ci
en

t

TXHH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AN BR BG CB CG DM MI MO PD PI PS RE VR VI

S
p

ea
rm

a
n

 c
o

rr
el

a
ti

o
n

 c
o

ef
fi

ci
en

t

TNHH



82 

Results obtained with PCA performed on non-homogenized and 

homogenized datasets (Table 3) can be summarized as follows: (i) only a small 

number of PCs are statistical significances (1 PC for TXHM, TXHH, and TNHH 

and 2 PCs for TNNH, TXNH, and TNHM); (ii) the explained variance by the 

first PC of homogenized datasets is greater than the explained variance by the 

first PC of non-homogenized ones; (iii) explained variance of first PC are higher 

for homogenized datasets with HOMER than with MASH. 

 

 

 
 

 
 

Fig. 3. Spearman correlation coefficient (SCC) between annual reference series and time 

series of non-homogenized (NH), homogenized with MASH (HM) and HOMER (HH) of 

maximum air temperature (top panel) and minimum air temperature (bottom panel), for 

the 1941–2010 period. 
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5. Discussion and conclusions 

The IM network analyzed here includes stations located near the coast and a few 

meters above sea level and inland stations at higher altitude. Moreover, all weather 

stations are located in the same climatic region (temperate with dry and hot 

summer), which is a necessary condition to perform homogenization analysis. 

Results of the preliminary exploratory data analysis reveals time series with no 

extremes and only a small amount of outliers and missing values except in cases 

where times series does not cover the entire analysis period of 1941–2010. This is 

an important characteristic of the dataset, because missing values can have 

profound impact on reference series and, consequently, in the detection procedures 

(Menne and Williams, 2005; Syrakova and Stefanova, 2009). In addition, since 

missing values are treated differently in MASH and HOMER, a small number of 

data gaps cannot be associated with potential significant differences between 

homogenized datasets with both methods. On the other hand, heterogeneities are to 

be expected in TX and TN datasets, since this network is in operation for a long 

time, and during this period experienced adjustments were carried out on its 

structure (e.g., replacement of instruments), on its type (changes from classical to 

automatic sensors), and spatial distribution (e.g., relocation, cessation, and 

installation of new stations). For these reasons, we may conclude that maximum 

and minimum air temperature datasets in northern Portugal are examples of 

databases in good position to be analyzed for homogeneity. 

MASH and HOMER were the methods used to perform the homogeneity 

analysis of TX and TN datasets. The selection criterion was, primarily, the high 

performance shown by these two methods during the comparison study 

performed in the framework of the COST Action HOME, using monthly 

temperature benchmark databases but also the large methodological differences 

between these two methods, discussed in previous sections. In fact, HOMER 

was not compared with other methods in Venema et al. (2012), because it 

became available later, but its results from the combination of the methods had 

the best performance. Craddock method was also included in the list of 

algorithms with best performance, but because it is a subjective method (uses 

visual detection of breaks), was not used in this study.  

Time series were corrected with both methods from the most recent 

observations to the oldest. This procedure is consistent with the general believe 

that current sensors and data acquisition systems are more reliable than previous 

ones. Both methods uses interpolation to produce homogenized time series 

without missing values, but MASH also uses extrapolation to fill the data gaps 

in the extremes of the time series. MASH identifies the location of the break 

with the year of the shift, while HOMER is able to estimate the month of the 

change also (not shown in Table 2). 

The total number of breaks detected in TN with both methods is higher than in 

TX, and the number of breaks detected with HOMER is higher than with MASH, 
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in both climatic elements. The same conclusion is supported by considering the 

number of breaks with amplitudes above increasing thresholds. In addition, the 

amplitude of the breaks detected with HOMER is, in general, higher than the 

amplitude of the breaks detected with MASH (Table 2). The weather stations of 

Vila Real and Coimbra B were selected as examples of inland and coastal weather 

stations, located at higher and lower altitudes, respectively (Fig. 4 and Fig. 5), to 

illustrate the differences between the non-homogenized and homogenized time 

series with MASH and HOMER. It should also be mentioned that maximum air 

temperature time series in Mirandela is the only one without inhomogeneities. 

 
 

 
 

 

Fig. 4. Non-homogenized (NH) and homogenized time series (with HOMER and MASH) 

of maximum air temperature (TX) recorded in Vila Real and Coimbra B weather stations. 

Coimbra B is an example of weather station located in near the coast at low altitude, while 

Vila Real is an example of weather station located at mountainous region of the interior. 

15.0

16.0

17.0

18.0

19.0

20.0

21.0

22.0

1941 1951 1961 1971 1981 1991 2001

M
a

x
im

u
m

 t
em

p
er

a
tu

re
(0

C
)

Year

Vila Real 

NH HOMER MASH

18.0

19.0

20.0

21.0

22.0

23.0

24.0

1941 1951 1961 1971 1981 1991 2001

M
a

x
im

u
m

 t
em

p
er

a
tu

re
(0

C
)

Year

Coimbra B 

NH HOMER MASH



85 

 

 

 

Fig. 5. As in Fig. 4, but for minimum air temperature (TN). 

 

 

Correlation, trend, and principal component analysis were used to assess 

the homogenization process performance by comparing the results obtained with 

using non-homogenized and homogenized datasets. Boxplots of the Spearman 

correlation coefficient (SCC) statistical values obtained between homogenized 

time series with HOMER are higher and have much lower dispersion than those 

obtained between homogenized with MASH and non-homogenized time series 

(Fig. 2). For maximum air temperature, the homogenized time series of Dunas 

de Mira weather station (with both methods) presents the lowest values of the 

statistics, and it is responsible for the high dimension of the lower whisker. This 

result is more perceptible in homogenized time series with HOMER than with 
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MASH as boxplots for other time series are much more alike. For TN, the 

dispersion is much higher than for TX, and Dunas de Mira time series is also 

among those presenting lower statistics values. Results obtained with correlation 

analysis between reference, non-homogenized, and homogenized time series are 

also consistent with the increase of the similarity of the datasets with the 

application of both homogenization procedures. Values of SCC increases for all 

homogenized time series with MASH, but for a few time series (both in TX and 

TN), SCC values obtained for homogenized time series with HOMER are 

smaller than for non-homogenized. Notwithstanding this fact, an overall small 

increase in the median SCC values is conspicuous. 

Trend analysis performed on TX and TN time series reveals a small 

reduction in the number of statistically significant tendencies after 

homogenization, but a general decrease in the slope, more significant for 

homogenized time series with HOMER than with MASH, must be underlined. 

Results obtained using different statistical significance levels (97.5% and 95%) 

are similar except for the expected higher number of statistically significant 

trends. 

Results from PCA are consistent with those previously obtained with other 

methodologies and also suggests that homogenization leads to an increase of the 

resemblance in the spatial and temporal variability of both TN and TX. This 

behavior is more evident for TX than for TN. In general, the first EOF presents 

elements with equal sign, which reflects similar behavior in the entire region. 

Then, the following EOF represents small scale features of variability (e.g., 

contrast between north and south or between east and west). The magnitude of 

each feature can be measured by the explained variance of the corresponding 

mode of variability. In this study, the explained variance by the first PC is higher 

for homogenized than for non-homogenized datasets, independently of the 

climatic element (Table 3). This difference is higher for homogenized time 

series with HOMER than with MASH.  

 

 

 
Table 3. Explained variance of the statistically significant principal components of non-

homogenized (NH), homogenized with MASH (HM) and with HOMER (HH) minimum 

and maximum air temperature datasets, for the 1941–2010 period 

 

 N NH HM HH 

Maximum 

temperature 

1 78.6% 81.0% 89.4% 

2 8.6% – – 

Minimum 

temperature 

1 75.2% 76.3% 84.8% 

2 9.7% 8.3% –  
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In resume, the most important conclusion from this study is that both methods 

contribute to correcting the inhomogeneities detected in both TN and TM datasets, 

and that there is no clear evidence of the better performance of one method relative 

to one another. Results obtained from the correlation analysis, trend analysis and 

principal component analysis point to a general increase on the spatial and temporal 

similarity of the time series as should be expected in datasets of the same climatic 

region. Apparently, these results are independent of the location and altitude of the 

weather stations. However, these conclusions should be taken with caution, 

because earlier studies reveal that the evaluation of methods performance is 

dependent on the metrics used for this purpose (Venema et al., 2012) and on the 

quality and characteristics of databases (Freitas et al., 2012). 

Finally, it should be noted that, to the best of our knowledge, this study is 

the first effort to compare HOMER with other homogenization methods using 

observed datasets. The other known study assessing HOMER performance was 

recently presented in the 7th seminar for homogenization and quality control on 

climatological databases, but using the HOME benchmark datasets (Domonkos, 

2012). Furthermore, besides the study of Freitas et al. (2012), to assess HOMER 

potential and limitations, this is the first consistent attempt to homogenize 

maximum and minimum air temperature Portuguese datasets, using more than 

one method, MASH and HOMER in particular. The other known 

homogenization study performed with Portuguese data, was performed by 

Soares and Costa (2009), which used precipitation data from stations located in 

the southern part of the country, as a case study, to compare the potential 

advantages of geostatistical techniques. As a final point, it should also be 

emphasized the number of different methods/measures used to compare the 

homogenized Portuguese air temperature datasets. 
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