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Abstract—Regional climate models are popular and efficient tools for the assessment of 

the regional aspects of the past and future climate. The application of such models is 

indispensable for the provision of climate simulations over a smaller region, such as 

Hungary. The ALADIN-Climate regional climate model was adapted by the Hungarian 

Meteorological Service in order to derive a regional climate model which can be used 

efficiently for climate change simulations over Hungary. In this paper three different 

recent past (1961–2000) regional climate simulations are examined and evaluated: the 

ERA-40-driven 10 km and 25 km resolution simulations and the ARPEGE-driven 10 km 

resolution simulation. Based on these investigations, the strengths and weaknesses of the 

simulations are analyzed in detail in order to understand the behavior and reliability of the 

ALADIN-Climate model for the past climate. Also, some examination regarding the 

sensitivity of the model with respect to the domain size and resolution was undertaken. It 

was demonstrated to what extent the model is capable of simulating the statistical 

characteristics of the climate for a 30-year period. The results obtained suggest: (1) the 

ALADIN-Climate model driven by ERA-40 “perfect” lateral boundaries is colder and 

wetter than reality for the period of 1961–1990, (2) the integration driven by the 

ARPEGE model slightly improved the results and, furthermore, (3) provided added value 

to the global model’s results. Additionally it was found that (4) the 25 km simulation on a 

larger domain provided better results than the 10 km one using a smaller domain, which 

can be attributed to the fact that 10 km domain is overly small. The results also (5) justify 

the application of the ALADIN-Climate model for climate change scenario experiments 

for Hungary.  
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1. Introduction 

The demand for more spatially and temporally detailed weather and climate 

information is continuously increasing. This requirement, together with the 

increased availability of computer power, led to the application of more highly 

resolved models from the nowcasting to the climate ranges. As far as climate 

modeling is concerned, global and regional climate models are widely used for 

the simulation of the past and the future evolution of the climate system. There 

are three tools that have been successfully applied to bridge the gap between the 

low resolution global climate models and the regional and local characteristics: 

variable-resolution global models, statistical downscaling, and dynamical 

downscaling with regional climate models (RCMs). The first method allows the 

production of higher resolution climate information without too much additional 

investment in computer power with respect to the “usual” global simulations 

(Brankovic and Gregory, 2001; May and Roeckner, 2001; Duffy et al., 2003; 

Coppola and Giorgi, 2005). Statistical downscaling consists of establishing 

statistical relationships between large scale (global) parameters as predictors and 

regional (local) parameters as predictands. These relationships are then applied 

to the global model outputs (Kattenberg et al., 1996; Hewitson and Crane, 1996; 

Wilby et al., 2004) and results in information on a regional scale. RCMs, as 

limited area models, cover only a portion of the planet, typically a continental or 

even smaller domain (Giorgi and Mearns, 1991; McGregor, 1997; Giorgi and 

Mearns, 1999; Wang et al., 2004). They require lateral boundary conditions 

(LBCs) obtained from “observations”, such as atmospheric analyses (Uppala et 

al., 2005), or global simulations. The principal reason for performing regional 

simulations is to successfully simulate such regional characteristics which are 

“out of the reach” of the global models, therefore, providing added value 

through more precise representation of the different surface features, the 

application of the higher resolution dynamics and improved physical 

parameterizations. 

The ALADIN limited area numerical weather prediction model (Horányi et 

al., 1996; Horányi et al., 2006) has been developed through an international 

cooperation and is one of the widely used limited area models in Europe. The 

ALADIN spectral model family is a very useful tool not only for short range 

weather prediction, but also for climate range simulations because of its 

particularly high computational efficiency. Firstly, the original short range 

version of the model was studied in order to check whether any spurious 

accumulation of systematic errors (biases) could be detected for longer 

integrations – it was found not to be the case (Janisková, 1994). Later the 

ALADIN-Climate model had been created by merging the physical 

parameterization package of the ARPEGE-Climat global climate model and 

the dynamics of the ALADIN model. This model was successfully adapted by 

the Hungarian Meteorological Service in 2005, and it has been used for 
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various climate experiments. Within that framework some shorter time range 

(3–5 years) experiments have been carried out in order to establish the most 

appropriate model version, the model domain, the horizontal resolution, and 

the spin-up time before committing to the first longer time period 

experiments. This first long-term experiment (1958–2000) has been performed 

by the Hungarian National Climate Dynamics Programme 

(www.met.hu/palyazat/nkfp_klima2005.php), and the second one, at a higher 

horizontal resolution, within the framework of the CECILIA (Central and 

Eastern Europe Climate Change Impact and Vulnerability Assessment) project 

(www.cecilia-eu.org). 

In Section 2 a brief description of the ALADIN-Climate model is given. 

Section 3 introduces the model experiments, the evaluation methods, and the 

observational data used in the present work. Results are presented in Section 4 

and the conclusions are drawn in Section 5. 

2. The ALADIN-Climate model 

The ALADIN-Climate model has been created with the combination of the 

ALADIN model’s dynamics and the ARPEGE-Climat global model’s physics. 

The ARPEGE-Climat global model has been constructed with the relevant 

modifications of the physical parameterization package of the ARPEGE/IFS 

global model (Courtier et al., 1991). The ALADIN model is a spectral limited 

area model developed for short-range regional weather forecasting (Horányi et 

al., 1996). Likewise the “mother” system of the ALADIN model is ARPEGE/IFS, 

the ALADIN-Climate’s one is ARPEGE-Climat. 

For the sake of completeness it has to be mentioned here that in most 

applications of the ALADIN model the initial and lateral boundary conditions 

are obtained by interpolation from the ARPEGE analysis and forecast fields. 

Horizontally, the model domain represents a rectangular area with uniform 

spacing between the grid points in both horizontal directions. Usually the 

tangent version of the Lambert conformal projection is used. The vertical 

coordinate system is a pressure-based hybrid-eta – terrain-following near the 

ground and converging towards a pressure-type system close to the model top 

(Simmons and Burridge, 1981). The model dynamics are based on the non-linear 

hydrostatic primitive equations. The time integration of the model includes a 

semi-implicit treatment of fast-propagating waves combined with the application 

of a semi-Lagrangian advection scheme. All of this allows a significantly larger 

time step to be used due to the weakened numerical stability criteria obtained in 

the two-time-level semi-implicit semi-Lagrangian scheme. The large scale 

meteorological information is imposed on the inner model solution by a classical 

relaxation scheme (Davies, 1976). With the application of an additional 

relaxation zone, the method is also capable of damping the artificial reflection 

http://www.met.hu/palyazat/nkfp_klima2005.php
http://www.cecilia-eu.org/
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and transmission of small scale waves on the boundaries of the domain of 

interest. Model prognostic variables are zonal and meridional wind components, 

temperature, specific humidity, and surface pressure. 

The physical parameterization package of the ALADIN-Climate model 

largely corresponds to the physics of the ARPEGE-Climat global model. It uses 

the Fouquart and Morcrette radiation scheme (FMR), which follows the concept 

of Morcrette (1989) and is based on the ECMWF model including the effects of 

the greenhouse gases and direct effects of aerosols based on Tegen monthly 

climatology. As for the land-scheme, the ALADIN-Climate model applies the 

ISBA (Interaction of Soil Biosphere Atmosphere) scheme (Noilhan and Planton, 

1989), which involves four soil temperature layers without a deep relaxation, 

two soil moisture layers, and a single layer snow model with variable albedo and 

density based on Douville et al. (1995). The deep convection scheme follows 

Bougeault (1985), but unlike the short range version of the model, it excludes 

the entrainment and detrainment profiles from the description of convective 

precipitation processes. Ricard and Royer’s scheme (1993) is used for 

cloudiness and Smith’s scheme (1990) for large scale precipitation. 

3. Experiments and evaluation 

The basic objective of the recent work is to understand and assess the behavior 

of the ALADIN-Climate model regarding its ability to represent the climate of 

the recent past. Without such thorough testing the model cannot be used for 

providing climate simulations for the future (although the validation information 

based on the simulations of the past cannot be directly and explicitly applied for 

the “bias correction” of the scenario integrations). For this kind of evaluation, 

the most common approach is to integrate the model over a recent, sufficiently 

long period (e.g., 40 years) using “perfect” lateral boundary conditions, such as 

the ERA-40 dataset derived at ECMWF (Uppala et al., 2005). It is noted here 

that the ERA-40 data are certainly not perfect in every sense – they have their 

own deficiencies as well (Simmons et al., 2004; Hagemann et al., 2005). 

However, they do provide one of the best estimates of the past and present 

climate. Furthermore, during the ERA-40-driven model integrations (due to the 

differences between the derivation of the ERA-40 data and the internal 

dynamics and physics of the ALADIN-Climate model) some unbalances might 

occur, arising from the boundary conditions. Nevertheless, in spite of these 

deficiencies, the ALADIN-Climate model integration driven by the ERA-40 

data is considered to be a reliable solution for the application of the model in 

reproducing the recent past climate over our domain of interest.  

Two model domains and resolutions were defined: a larger domain with 

25 km horizontal resolution and a smaller one with 10 km resolution, both with 

31 vertical levels. The domains and their orography are shown in Fig. 1. Both 
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domains were used for model integrations between 1958 and 2000, where the first 

three years were considered as the spin-up period, therefore, the results were 

evaluated only for the period 1961–2000. The smaller 10 km resolution domain 

was used to assess the impact of the resolution increase and domain changes as 

compared to the coarser resolution and larger domain integrations. A third 

simulation was carried out with the smaller domain for the period of 1960–1990. 

This integration was driven by the ARPEGE-Climat model. It is noted here that 

the ARPEGE-Climat boundary conditions are in much better physical and 

dynamical consistency with the ALADIN-Climate model, than the ERA-40 data. 

The ARPEGE-Climat model has a variable resolution being around 50 km over 

Southern Europe, decreasing to 300 km at the antipode (Table 1).  

 

 
 

Fig. 1. The ALADIN-Climate model domain and orography for the 25 km (left) and 

10 km (right) integrations. 

 
The drawback in applying the ARPEGE-Climat model as lateral boundary 

condition is that it is also a simulation, which might have biases with respect to 

the real climate. Therefore, it is worth checking how the “perfect, but 

inconsistent” and the “simulated, but consistent” boundary conditions compare 

for the same limited area model integration. Two factors should be kept in mind 

while considering the length of the spin-up period for the ALADIN-Climate 

simulations driven by the ARPEGE-Climat model: the global lateral boundary 

conditions are already in good dynamical and physical balance; and there are 

similarities (in terms of dynamical core and physical parameterizations) between 

the global and limited area models. Therefore, the spin-up period for this 

integration was shorter than was the case for the ERA-40 run. In practice, this 

means that for the 1960–1990 integrations just the first year was considered as 

spin-up time and the 1961–1990 classical reference period was used for the 

evaluation. In spite of the difference in spin-up periods, it is believed that the 

different model simulations are fully comparable. 
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Table 1. Basic characteristics of the different integrations analyzed 
 

Short name 

referred to in 

this paper 

Domain Horizontal 

resolution 

(km) 

Vertical 

levels 

Timestep 

(minutes) 

Initial and lateral 

boundary 

conditions 

ALADERA_25 lat: 35.8 – 59.3ºN 

lon: 4.8 – 44.1ºE 

25 31 15  ERA-40 

ALADERA_10 lat: 44.6 – 50.0ºN  

lon: 12.4 – 25.2ºE 

10 31 6  ERA-40 

ALADARP lat: 44.6 – 50.0ºN 

lon: 12.4 – 25.2ºE 

10 31 6 ARPEGE-Climat 

ARPEGE global model 50 31 30  –  

 

During the evaluation the different integrations are inter-compared to each 

other and also compared to different observational datasets (Table 2). These 

observational data comprise both the widely used Climatic Research Unit 

(CRU) dataset (New et al., 2000; Mitchell and Jones, 2005) and the Hungarian 

gridded dataset (HUGRID). The CRU data (www.cru.uea.ac.uk, produced by 

the University of East Anglia) were applied at a resolution of 10 arc minutes 

(CRU10, Mitchell et al., 2004). HUGRID was created at the Hungarian 

Meteorological Service by the Meteorological Interpolation based on Surface 

Homogenized Data Basis (MISH) method (Szentimrey et al., 2005), which was 

developed for the spatial interpolation of different conventional meteorological 

observations. These data are available for the Hungarian territory with 0.1 

degree latitude-longitude resolution.  

 
Table 2. Characteristics of the different observational data used 

 

 Domain Resolution 

CRU10 lat: 34.0 – 72.0ºN 

lon: 11.0ºW – 32.0ºE 

10 arc minutes 

HUGRID lat: 45.7 – 48.6ºN 

lon: 16.0 – 23.0ºE 

0.1 degree 

 
It is important to note that for the production of the ARPEGE-Climat 

model driving fields for the ALADIN-Climate model, an interpolation has been 

done from the global resolution to the resolution of the ALADIN-Climate model 

(10 km). This interpolation is performed on anomaly values, where explicitly the 

differences between the ARPEGE-Climat model and the surface climatic values 

(for instance orography, albedo, emissivity, land-sea mask, etc.) of the global 

model are considered. After interpolation to the target grid (in this case to 10 km), 

the interpolated anomaly values are added to the higher resolution surface 

climatic values provided for the regional climate model. Based on this method, 

the information of the coarse resolution (50 km) global model (projected to the 

http://www.cru.uea.ac.uk/
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regional one) also reflects high-resolution surface properties, such as higher 

mountains or the areas around big lakes, for example.  

The evaluations are carried out through the assessment of deviations from 

the observations, and additionally, systematic errors and root mean square errors 

(RMSE) are computed. With reference to RMSE it is already anticipated here 

that the RCMs cannot be expected to simulate the time series of annual or 

seasonal means if the driving data are given by global climate model – and not a 

re-analysis database – since the global models are unable to provide information 

on individual years. The global and regional climate models are expected to 

simulate only the long term inter-annual variability and the average behavior of 

the climate system on a longer time scale (30
 
–

 
40 years). Consequently, it is not 

expected that results in terms of RMSE, the frequency distributions of the 

parameters or the temporal evolution charts, would be as good as those from the 

ERA-40-driven cases. It is also noted that the 2D-map evaluations (patterns) are 

computed over the domain of the 10 km resolution model, and all the other 

evaluations (tables, time evolution and frequency distribution figures) are made 

on the Hungarian territory. 

4. Results 

4.1. 2m temperature 

It can be clearly seen (Fig. 2) that the models have systematic underestimation 

with respect to the CRU10 dataset. This temperature underestimation is 

generally 1–3 ºC in the ERA40-driven cases (ALADERA_25 and ALADERA_10) 

and around 1 ºC in the ARPEGE-driven (ALADARP) case and in the ARPEGE-

Climat (ARPEGE) global model itself. 

Looking at the results in detail, the simulations are always closer to the 

observations in the area of the Carpathian Basin – which is a relatively flat 

terrain – than in the higher mountains. Additionally, for the 10 km simulations 

the biggest systematic errors arise near to the model boundaries. The errors in 

the Alpine region are considerable in all simulations. This is attributed not only 

to the impact of the model boundaries (though the error is largest in the case of 

the 10 km simulations, where the model boundaries are near to the high 

mountains) but also to the orography mis-representation within both the models 

and the observational data sets. 

Focusing only on the basin area, particularly over Hungary, the global and 

the ARPEGE-driven simulations are the closest to the observations – the 

underestimation remains under 1 ºC over the largest part of the Hungarian territory. 

On the other hand, slight overestimation seems to occur in the eastern part of the 

basin, on the Great Hungarian Plain (see Fig. 3, where the eastern part of 

Hungary is zoomed and another color palette is used). This characteristic feature 

of the global model, as can be seen later, remains the same in the different 



 

 162 

seasons, i.e., the ARPEGE global model is relatively warm in the Great 

Hungarian Plain, compared to the observations. Surprisingly, the results of the 

ERA-40-driven simulations are rather different from each other; the higher 

resolution results are more biased in general, particularly near the edges of the 

high resolution model domain but also over Hungary, where the underestimation 

is more conspicuous for the 10 km simulation. The difference between the two 

simulations is around 1 ºC in the Hungarian territory.  

 

 
 
Fig. 2. Difference of annual mean temperatures (model simulation – CRU10 [

o
C]) for the 

period of 1961–1990 for ALADERA_25, ALADERA_10, ALADARP, and ARPEGE. 

 

 
 

Fig. 3. Difference of annual mean temperatures in the case of ALADARP and ARPEGE 

(model simulation – CRU10 [
o
C]) for the period of 1961–1990 – zoomed over the eastern 

part of Hungary. 
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Regarding the seasonal mean temperature difference fields (Fig. 4) in 

general, the simulations are colder than the observations in the transitional 

seasons (spring and autumn), and are, with some exceptions, rather near to the 

observations in summer and winter. The systematic underestimation exceeds 

5
 
ºC in some mountainous regions and even 7–10 ºC in the Alps during the 

transitional seasons. 

 

 
 
Fig. 4. Difference of seasonal mean temperatures (model simulation – CRU10) [

o
C]) for 

the period of 1961–1990 (from the top to the bottom: ALADERA_25, ALADERA_10, 

ALADARP and ARPEGE). 

 
Probably due to the deficiencies of the observation datasets in the high 

mountains and the negative impact of the model boundaries, as in the annual 

case, the estimations are always closer to the observations in the fairly flat 

Carpathian Basin, than in the higher mountainous areas. Moreover, the biggest 

errors occur again near to the model boundaries in the 10 km simulations. 

Curiously, in the case of the ARPEGE-Climat global model (which does not 

suffer from any lateral boundary problem), similar large errors can also be seen 

at the edges of the 10 km domain, mainly in the high mountains. This is 

probably due to the inaccurate description of the orography. 

Concentrating only on the basin area, all of the simulations give similar 

results in spring: the underestimation of temperature is higher than the annual 

systematic error; it is between 1 and 2 ºC on the plains and 2–3 ºC in the hills. 

The 25 km simulation in autumn shows relatively similar results to spring but, 

unexpectedly, the 10 km simulations have an even bigger negative bias. These 
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significant underestimations in the transitional seasons cause a slight annual 

negative bias in the majority of the model versions examined, even if the other 

seasons show positive biases. The ERA-40 forced versions are fairly unbiased 

during the summer – the underestimation exceeds 1
 
ºC only in the Hungarian 

mountains. However, 1–2
 
ºC overestimation can be seen in the ARPEGE and 

ALADARP integrations. Due to this summer overestimation, the ARPEGE-

driven case and the global model have smaller annual systematic errors (almost 

unbiased) than the ERA-40-driven versions. While the ERA-40-driven versions 

are closer to the observations in summer than in winter, the ALADARP is 

almost perfectly unbiased in winter, and it has a relatively big overestimation in 

summer. The disagreement between the ARPEGE-driven ALADIN-Climate 

model and its driving model is largest in the coldest season. While the regional 

model has practically no bias, the systematic errors of the ARPEGE-Climat 

model exceed 2–3 ºC in the eastern part of Hungary. If the difference maps of 

the ARPEGE-Climat model are studied more carefully, it can be seen that it has 

relatively large systematic errors throughout the year; however, these biases 

have different signs (as will be shown later, where the systematic errors are 

quantified) and compensate for each other during the year resulting in a rather 

good annual performance (Fig. 2). On the other hand, the “always relatively 

warmer” Great Hungarian Plain in the driving model decreases the bias of the 

model over the domain in spring and autumn, and increases it, by about 2–3
 
ºC, 

in summer and even more in winter. 

The systematic errors given in Table 3 objectively quantify the evaluations 

based on Figs. 2–4 for the Hungarian area. Annually, the ERA-40-driven model 

versions have bigger systematic errors than the global and the ARPEGE-driven 

ones. As mentioned above, the smallest annual bias can be found in the 

ARPEGE-Climat model. Although it has the coarsest horizontal resolution and 

the systematic errors are relatively large in every season, the biases with 

different signs compensate each other. The ERA-40-driven cases are better, 

particularly during the summer. Surprisingly, the performances of the two ERA-

40 simulations are rather different in terms of bias especially in autumn, when 

the ALADERA_10 simulations are systematically worse than those of the 

ALADERA_25. The global model has a bias one order of magnitude larger than 

that of the driven ALADIN-Climate version for winter. As indicated earlier, the 

global model, throughout the year, simulates the temperature field of the Great 

Hungarian plain with a much larger warm bias than in other areas of the domain. 

This is also true when compared to the other model versions. These relatively 

large positive errors during summer and winter in the eastern part of Hungary 

cause bigger biases for the ARPEGE than in the case of ALADARP. Though it 

can be expected that the limited area model improves the simulations of the 

global model by the coupling, it is not certain that the desired “added value” is 

the only answer for this significant difference. While the size of the errors is 

bigger in the transitional seasons in all of the model cases examined, the 
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differences between the simulations are much larger in summer and winter; on 

the other hand, the models are very close to each other in spring and autumn. 

The results of the models compared against CRU10 are similar to those 

against the Hungarian gridded dataset. The small differences can be explained by 

the different resolution of the two observational datasets. The differences between 

the two datasets are particularly emphasized in the mountainous areas, where the 

temperatures are lower in the HUGRID data. Consequently, when the models 

have negative systematic errors compared to the CRU10 dataset, the absolute 

values of the errors are slightly decreased with respect to the HUGRID data. 

 
Table 3. Systematic errors of annual and seasonal simulated temperature fields against the 

CRU10 and the HUGRID data in the case of ALADERA_25, ALADERA_10, ALADARP, 

and ARPEGE experiments, in the area of Hungary for the period of 1961–1990 

 

Temperature bias [
o
C] Annual Spring Summer Autumn Winter 

 

ALADERA_25 – CRU10 –1.05 –1.99 –0.25 –1.61 –0.66 

ALADERA_10 – CRU10 –1.50 –2.12 –0.60 –2.66 –0.88 

ALADARP – CRU10 –0.80 –2.01 1.06 –2.69 0.11 

ARPEGE – CRU10 –0.37 –1.91 1.29 –2.27 1.11 
 

ALADERA_25 – HUGRID –0.89 –1.84 –0.13 –1.14 –0.36 

ALADERA_10 – HUGRID –1.41 –2.05 –0.56 –2.28 –0.72 

ALADARP – HUGRID –0.72 –1.94 1.10 –2.31 0.27 

ARPEGE – HUGRID –0.29 –1.83 1.32 –1.89 1.27 

 
Table 4. Root mean square errors of annual and seasonal simulated temperature fields 

against the CRU10 and the HUGRID data in the case of ALADERA_25, ALADERA_10, 

ALADARP, and ARPEGE experiments, in the area of Hungary for the period of 1961–

1990 
 

Temperature RMSE [
o
C] Annual Spring Summer Autumn Winter 

 

ALADERA_25 – CRU10 1.12 2.05 0.80 1.71 1.71 

ALADERA_10 – CRU10 1.55 2.17 0.89 2.71 1.26 

ALADARP – CRU10 1.15 2.34 1.80 3.22 2.33 

ARPEGE – CRU10 1.06 2.26 1.85 2.95 2.74 
 

ALADERA_25 – HU 0.97 1.90 0.78 1.26 1.01 

ALADERA_10 – HU 1.46 2.09 0.83 2.33 1.17 

ALADARP – HU 1.13 2.31 1.82 2.95 2.37 

ARPEGE – HU 1.08 2.23 1.89 2.72 2.82 

 
In order to get a deeper insight into the behavior of the regional climate 

simulations, it is not sufficient to focus only on the systematic errors, since large 

errors of opposite sign may compensate each other resulting in a perfectly unbiased 

– though far from accurate – model. For instance, within the ALADERA_25 and 

ALADERA_10 simulations, underestimation (negative bias) occurs in every 
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season and, therefore, the annual bias is a relatively large negative value. On the 

other hand, for ALADARP the bias is changing its sign across the seasons 

resulting in a smaller annual bias value. Indeed, if the root mean square errors 

(RMSE, Table 4) are examined, then (for instance) the ALADERA_25 and the 

ALADARP annual values are rather near to each other, in spite of the fact that 

the bias characteristics were better for ALADARP.  

 

 
 
Fig. 5. Frequency distribution of seasonal temperature differences with respect to CRU10 

data for ALADERA_25, ALADERA_10, ALADARP, and ARPEGE simulations. X axis: 

temperature difference [
o
C] in the range of [–10, +10]. Y axis: frequency [%] in the range 

of [0, 50] (gray: positive bias, black: negative bias). 

 
Fig. 5 shows the relative frequency distributions of the seasonal temperature 

systematic errors, specifically, the distribution of the different amplitudes of the 

systematic errors, measured year by year and gridpoint by gridpoint in the 

different seasons. These plots indicate the amount of the positive (gray) and 

negative (black) biases during the 30 years in the different seasons. For these 

kinds of diagrams the bias is optimal if the histograms are symmetric around the 

zero line (the total area of the gray and black columns are the same). In those 

model cases, where the graph of the distribution function of the frequency is 

relatively narrow and high, and naturally the peak is not too far from the zero x 

coordinate, the RMSE is reasonably low. Where the graph is wide and low, even 

if the area of the positive and negative biases are the same (that is the bias of the 

whole period is close to zero), the RMSE is considerably high. 
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These kinds of charts are based on the year by year biases. The global 

model driven cases (and the global models themselves) are not expected to 

simulate the time evolution of the atmosphere during the examined period (see 

explanation above). Therefore, unsurprisingly, the range of the differences is 

much wider in the case of ALADARP and ARPEGE, than that in the ERA-40-

driven cases.  

 

 
 
Fig. 6. Temporal evolution of the seasonal mean temperature of the examined models and 

observational data (CRU10: light green; HUGRID: yellow; ALADERA_25: red; 

ALADERA_10: orange; ALADARP: blue; ARPEGE: purple). 

 
Correspondingly, studying the temporal evolution of the mean temperature 

during the 30 years examined (Fig. 6), the main variability features for the ERA-

40-driven cases (red, orange) are naturally in good agreement with the 

observations (yellow and green). On the other hand, for the ARPEGE and 

ARPEGE-driven ALADIN-Climate (purple and blue, respectively) simulations 

of the variability characteristics can be evaluated only by considering the entire 

30 years without any direct links to the individual years. This arises from the 

fact that only the global external forcing, and not the initial conditions, 

constrains the limited area model simulation; consequently the climate 

adaptation process is realized over a longer time scale. 
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For spring and autumn, all models underestimate the temperature in the 

entire period of 1961–1990. As the average distances between the different 

models and the observations are comparable, the models have roughly similar 

bias and RMSE values. On the other hand, while ARPEGE and ALADARP 

overestimate, the ERA-40-driven simulations underestimate the summer 

temperature throughout most of the years and, as in the transitional seasons, the 

model biases have essentially the same sign during the entire period. Therefore, 

smaller bias seems to indicate smaller RMSE (and vice versa) in all of the 

seasons except for winter. In the coldest season the ALADARP values are 

situated randomly under or over the observations, therefore, the systematic error 

is small in spite of the fact that the difference in errors between individual years 

can even exceed 5 ºC, providing a large RMSE. 

Summarizing the results for the temperature, it can be said that annually 

and in winter the systematic errors of the ARPEGE-driven ALADIN-Climate 

model seem to be lower than the reanalysis-driven models’ errors. However, the 

results are comparable in the transitional seasons, and the ERA-40-driven 

versions have smaller biases than the other models in summer. As far as the 

RMSE and the year-by-year variability characteristics are concerned, the 

correlation between the ERA-40-driven cases and the observed data are 

obviously higher than is the case between the observations and ARPEGE or 

ALADARP. This fact corresponds to our initial expectations, indicating that the 

global model and the limited area model driven by the global one are unable to 

simulate the time series of annual or seasonal means. Subsequently, the 

frequency distributions are reasonably high and narrow in the cases of the ERA-

40-driven simulations (low RMSE), and rather low and wide in the case of the 

ARPEGE and ALADARP ones (high RMSE).  

4.2. Precipitation 

From hereinafter only the ALADERA_25, ALADERA_10, and ALADARP 

simulations are evaluated.  

Looking at the annual relative differences (the deviations between the 

simulations and the observations normalized by the corresponding values of the 

observational data), generally a 10–50% overestimation can be seen in the 

Carpathian Basin for all of the models investigated (Fig. 7). The systematic 

errors are much larger outside the basin, especially for the ALADERA_10 

simulation. There is also an underestimation pattern appearing in the south-

western part of the domain for every experiment, which is more pronounced 

within the high resolution model versions. The biggest errors are near to the 

model boundaries indicating spurious precipitation patterns originating from the 

lateral boundaries: it is especially true for the two 10 km integrations. Moreover, 

the lower resolution ALADIN-Climate model, due to the smaller biases at the 

edges of the visualization domain (which are not the physical boundaries in that 



 

 169 

case), has the smallest spatial variability in terms of model bias. The best 

simulation for the Carpathian Basin is the ARPEGE-driven one, which 

obviously indicates the importance of the proper dynamical and physical balance 

between the coupling and coupled models. The systematic error in the southwest 

part of Hungary is around zero, and basically, with some small exceptions, the 

errors remain under 30% throughout Hungary. A patchy picture can be seen in 

the results of ALADERA_25, which shows slightly worse results than 

ALADARP, but considerably better than the high resolution ERA-40-driven 

run. Although the largest systematic errors can be seen in the ALADERA_10 

simulation, the errors are rather small in the southwest part of the Carpathian 

Basin. All of this means that the resolution increase for the ERA-40-driven 

models does not automatically improve the performance of the simulation. It 

might be attributed to the difference between the resolutions of the driving and 

the driven models. The increase in resolution is causing more discrepancy 

through the lateral boundaries and furthermore the proximity of the boundaries 

(which are situated over mountainous regions), which might cause unrealistic 

precipitation fields near to them.  

 
 
Fig. 7. Relative difference of annual mean precipitation for the period of 1961–1990 for 

ALADERA_25, ALADERA_10, and ALADARP (model simulation – CRU10)/CRU10 [%]). 

 
Regarding the seasonal features in general, spring and summer are more 

humid than the observations in all of the simulations, and a relatively variable 

pattern with locally significant over- and underestimations can be seen during 
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autumn and winter. While the relative difference of precipitation is around zero 

in winter in the Carpathian Basin, very extreme positive and negative values can 

be seen outside the basin, near the model boundaries. The autumn features are 

extremely different and the best results (as for the annual situation) are in the 

low resolution model case. The ALADERA_10 and ALADARP simulations are 

rather similar, except for summer, when the ARPEGE-driven integration 

performs significantly better than the ERA-40-driven one. It can also be seen 

that all of the models (even ALADERA_25) have very variable results outside 

the Carpathian Basin. Inside the Basin, all simulations give similar results in 

spring with a general significant overestimation pattern. This positive bias is 

also typical for the summer for all of the models. However, there is a significant 

difference between the worst version (ALADERA_10) and the best one 

(ALADARP). During the autumn very low bias (overestimation) can be seen in 

the Carpathian Basin in the 25 km resolution ERA-40-driven model. The other 

two models have larger negative systematic errors all across the domain. 

Regarding the winter season, while the ALADERA_25 results are rather similar 

to its autumn ones, the maps of the ALADERA_10 and ALADARP models 

have very different features. While the models underestimate the precipitation in 

the southwest and overestimate it along the other parts of the domain edges, the 

bias in the majority part of Hungary remains reasonably good. The biggest 

differences between the two model results are the (positive) extremes in the 

eastern part of the domain.  

As far as the bias values are concerned, Table 5 reflects the Hungarian 

situation as can be also derived from Figs. 7 and 8. These values help to quantify 

those small differences, which are otherwise difficult to interpret subjectively. 

Table 5. Systematic errors of annual and seasonal simulated precipitation fields against 

the CRU10 and the HUGRID data in the case of ALADERA_25, ALADERA_10, and 

ALADARP experiments in the area of Hungary for the period of 1961–1990 

 

Precipitation bias [mm/months] Annual Spring Summer Autumn Winter 
 

ALADERA_25 – CRU10 15.31 31.11 22.06 3.56 4.50 

ALADERA_10 – CRU10 18.72 33.36 49.91 –8.53 0.14 

ALADARP – CRU10 9.33 31.72 15.12 –10.20 0.83 
 

ALADERA_25 – HUGRID 15.60 30.34 23.35 4.76 4.55 

ALADERA_10 – HUGRID 18.69 32.14 50.96 –7.43 –0.26 

ALADARP – HUGRID 9.30 30.49 16.17 –9.11 0.44 

 

Taking into account the fact that the global models and the global model 

driven simulations are able to simulate only the long term inter-annual 

variability, as in the case of temperature, a short review of the results of the 

RMSE, the frequency distribution and temporal evolution charts of precipitation 

is given below. 
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Fig. 8. Relative difference of seasonal mean precipitation for the period of 1961–1990 

(model simulation – CRU10)/CRU10 [%]) (from top to the bottom: ALADERA_25, 

ALADERA_10, and ALADARP, respectively). 

 

 
Table 6. Root mean square errors of annual and seasonal precipitation against the CRU10 

and the HUGRID data in the case of ALADERA_25, ALADERA_10, and ALADARP 

experiments in the area of Hungary for the period of 1961–1990 

 

Precipitation RMSE 

[mm/months] 
Annual Spring Summer Autumn Winter 

 

ALADERA_25 – CRU10 18.00 34.23 30.80 13.54   9.99 

ALADERA_10 – CRU10 20.91 35.61 54.10 14.72 11.22 

ALADARP – CRU10 15.58 37.12 35.58 22.09 18.25 
 

ALADERA_25 – HUGRID 18.54 33.91 32.23 14.05 10.65 

ALADERA_10 – HUGRID 21.19 34.68 55.57 14.81 12.78 

ALADARP – HUGRID 16.39 36.36 37.04 22.75 19.89 

 
As already explained and demonstrated for temperature, the small bias may 

not indicate small RMSE values due to the possible cancellation effects arising 

from the bias computations. In order to illustrate this feature for precipitation as 

well, the winter values of ALADARP and ALADERA_25 are considered. While 

the ALADARP experiment possesses a rather small bias value (0.83), the 

ALADERA_25 is characterized by a larger one (4.5). On the other hand the 

RMSE of ALADERA_25 is significantly lower (9.99) than in the case of 

ALADARP (18.25). Essentially, small bias corresponds to large RMSE (Table 6) 

and vice versa. That is because the ALADERA_25 integration has significant 

systematic overestimation – which is present for a large part of the domain in the 

majority of the years and in basically all the seasons –, but it does not manifest 
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itself in big RMSE values because the overestimation values are not too big. In 

contrast, ALADARP results have very small systematic error, but significant 

RMSE values, at the same time, because there are significant errors of different 

signs across the domain and throughout the different seasons during the period 

studied.  

 

 
 
Fig. 9. The frequency distribution of seasonal precipitation differences with respect to 

CRU10 data for ALADERA_25, ALADERA_10 and ALADARP. X axis: difference of 

precipitation [mm] in the range of [–150, +150 ]. Y axis: frequency [%] in the range of [0, 

30] (black: negative bias, gray: positive bias). 

 
The same issue can be also seen, while looking at the frequency 

distribution of seasonal precipitation differences (Fig. 9). The two histograms 

for ALADERA_25 and ALADARP in winter are rather different: narrow, high, 

and asymmetric for ALADERA_25 and lower, wider, and more symmetric for 

ALADARP. There is an annual variation of the frequency distribution in every 

experiment; the histograms are relatively high and narrow in winter and low and 

wide in summer. This fact confirms that the general predictability of 

precipitation is much higher in winter than in summer. Although, the histogram 

of ALADARP is slightly lower and wider than the ALADERA_10’s one in the 

warmest season, its RMSE remains smaller than that of the ALADERA_10. 

This is because the systematic errors of ALADARP are around zero and the 

errors are not extremely big, and in the case of ALADERA_10 the absolute 

errors are rather high and they are mostly realized in overestimations. 

Regarding the seasonal mean precipitation variation (Fig. 10), it can be 

seen that, as expected, the two kinds of observations (CRU10 and HUGRID in 

green and yellow) run together. Also the trends of the ERA-40-driven cases (red, 

orange) are similar to the observational ones. Particularly, the maximum and 

minimum values are roughly at the same places, although the correlation, 
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particularly during summer, is not as good as was the case for temperature. As 

ALADARP cannot represent the observed series of year (see Sect. 3), the 

behavior of the ALADARP simulation (blue) is rather different to the ERA-40- 

driven cases. During spring, all models overestimate the precipitation for every 

year of the period 1961–1990. For summer, the picture is more chaotic: the high 

resolution ERA-40-driven results are relatively far from the observations, while 

the lower resolution version is closer to reality. Nevertheless, the two curves are 

still basically parallel. In autumn the ERA-40-driven versions have some bias – 

the low resolution model overestimates and the high resolution one 

underestimates the precipitation. However, the differences are smaller than in 

spring and summer, hence the RMSE and bias values are lower. The 

correspondence between the different experiments and the observations is best 

during winter. This fact is also apparent on the rather high and narrow (i.e. small 

errors) distribution functions in that season (Fig. 9).  

 
 
Fig. 10. The temporal evolution of the seasonal mean precipitation of the examined 

models and observational data (CRU10: light green; HUGRID: yellow; ALADERA_25: 

red; ALADERA_10: orange; ALADARP: blue). 

 

In summary, the results of the simulated precipitation over the Carpathian 

Basin show that ALADARP is the best annually and in the extreme seasons. 

Regarding the RMSE and the inter-annual characteristics, the correlation 
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between the ERA-40-driven cases and the observed data is unsurprisingly higher 

than is the case for the ARPEGE-driven simulation. On the other hand, the low 

resolution ERA-40-driven case (ALADERA_25) has better verification 

characteristics than that of the high resolution re-analysis-driven case 

(ALADERA_10). 

5. Conclusions 

The aim of this paper was to give a comprehensive analysis of temperature and 

precipitation fields of the ALADIN-Climate model “family” integrated at the 

Hungarian Meteorological Service. Four different kinds of simulation have been 

investigated in the case of temperature, and three in the case of precipitation. 

These simulations are the 25 km resolution ALADIN-Climate (LBC: ERA-40), 

the 10 km resolution ALADIN-Climate (LBC: ERA-40), the 10 km resolution 

ALADIN-Climate (LBC: ARPEGE-Climat) and, only in the case of temperature, 

the ARPEGE-Climat model. It was considered essential to explore the behavior 

of the available climate models for the recent past, since valuable information 

can be expected from the simulations of the future only if the main 

characteristics of the models are well known and its strengths and weaknesses 

are explored. This statement is true in spite of the well-known fact that the error 

characteristics for the past might not have any relation with those for the 

scenario runs. Moreover, it is also generally accepted that changes in the future are 

computed with respect to the same model simulations for the past. This technique 

implicitly assumes that the same error characteristics occur in the past as for the 

future (this fact cannot be verified and most probably is not true), hence the 

difference between the absolute fields automatically neglects those errors. 

It was largely illustrated that the global climate models, and those regional 

climate models that are driven by global models, are not expected to simulate 

the time series of annual or seasonal means (only the long term inter-annual 

variability), since the global models do not provide any information on real 

years. Nevertheless, it is expected from all of the model versions that the 

average behavior of the atmosphere is reasonably well simulated for a longer 

time period (typically 30 years). 

The figures and tables in this paper illustrated that the ARPEGE-driven 

version and even the driving model, in general, give better results in the 

Carpathian Basin for the whole period (1961–1990), than the ERA-40-driven 

versions. These results are certainly due to the much better physical and 

dynamical consistency between the ALADIN-Climate and ARPEGE-Climat 

models than between the limited area model and the ERA-40 data. Moreover, 

the coupled ALADARP gives better results than its mother model (the 

ARPEGE-Climat global model), providing the anticipated “added value” by the 

application of the higher resolution regional climate model. 
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The examination and comparison of the two “observation-driven” cases 

helps to draw some conclusions about the sensitivity of the simulations with 

respect to the domain size and resolution. The realization, that the lower 

resolution model (in a bigger domain) gives better results than the higher 

resolution one (in a smaller domain), points to the fact that the domain of the 

10 km resolution model is too small, and the errors appearing at the edges of the 

model domain have a strong effect on the simulation of the inner area as well. 

Finally, based on all of these results, we are tempted to conclude that the 

results of the ARPEGE-driven regional model – even in this small domain – 

might be used for making reasonably good projections for the future. If this 

“climate shift” or “climate transformation” of the investigated regional model is 

fairly comparable to other models known from different projects (e.g., 

ENSEMBLES (ensembles-eu.metoffice.com), PRUDENCE (prudence.dmi.dk), 

etc.) in low resolution, then this provides some reassurance that the model 

examined will probably provide reliable results and can be used in the future at 

higher resolution as well. 

The future work will concentrate both on the issue of the optimal domain 

size and resolution for the Central-European climate simulations and on the 

scenario runs together with their evaluations for the determination of climate 

scenarios for the Hungarian territory. 
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