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Abstract—The cycle properties of the annual average, absolute maximum, and absolute
minimum precipitation values have been calculated from precipitation data the Matra and
Biikk regions. The cycle parameters of annual average and annual absolute maximum
precipitation values have been determined using the data of a shorter 34-year (1970-
2006) and a longer 53-year (1960-2012) period (38 precipitation measurement stations)
through the determination of the parameters of frequency, amplitude, and phase with an
analytic version of the discrete Fourier transform (DFT), and the values obtained on the
basis of the two periods have been compared. Using prognosis parameters, a prognosis
until 2025 has been made. Then, the regression function of the variation in time of
average and absolute maximum precipitation values has been determined on the basis of
actual and prognosticated data for the whole period (1960-2025).
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1. Introduction

The analysis of precipitation data in the Matra-Biikkalja region between the
years 1960 and 2012 has given the result that that both the 53-year average
values of specific precipitation and the annual absolute maximum values of the
measured values for the 38 precipitation measurement stations (settlements)
show cylicity for both the 3—5 years and longer periods (INNOCENTER, 2013a;
Kovdcs, 2014). Minimum and maximum ’local’ values recur for both annual
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average and annual maximum values. With the cyclic variation of annual
precipitation values, annual average precipitation displayed constancy around
the 600 mm/year value in both the Matra and Biikkalja regions even on the basis
of the combined set of data. With respect to annual absolute maximum and
minimum values, regarding these parameters as indicators of extreme weather,
plenty of precipitation or years of drought, the data of 53 years showed a
decreasing tendency.

In the present paper, the cycle parameters of the average and absolute
maximum precipitation values are calculated using the data sets reported in
INNOCENTER (2013a) and Kovacs (2014), analysing the precipitation data of
the region investigated (Matra-Matraalja, Biikk-Biikkalja) and developing a
calculation method of cycle parameters as a research task in the Carpathian
Basin (Sziics, 2012). Based on this, a prognosis is made for the period until
2025.

2. Theoretical basis of analysis and calculation, the Fourier transform

In the interpretation of frequency, amplitude. and phase, a 2z periodical cos(?)
function has been taken as starting point, where 7' = 2z is the period length of
the function. Next, the argument of the function has been transformed (Mesko,
1984; Turai, 1983):

cos(?) = cos(i—it) = cos(z?ﬂtj = cos(27r%tj = cos(27ft)

The rate expressing the density of periods (period density or with the
commonly used term, frequency) is

If ¢ stands for length in space, then frequency gives the number of periods
per unit of spatial length for the given direction. Spatial frequency is called wave
number.

Multiplying the cos(2xft) function with factor 4 and shifting its maximum
by At, after writing up

cos(27f [t + A]), factor A

is called amplitude. In the case of a monofrequency periodical signal, the
amplitude equals half of the difference between the maximum (Fi.x) and
minimum (F,;,) of signal value:
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A — Enax B Fmin .
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After a further transformation of the argument of the cosine function, the
following formula can be written:

AcosQaft + At]) = Acos(2aft + 2afAt) = Acos(2aft + 27[%) = Acos(2nft + @) .

The quantity ¢, thus introduced, is called phase (phase angle). the absolute
phase shows the part of the phase length (phase time or wavelength) the
maximum of the signal has shifted with in relation to the origin (z = 0). As it can
be seen in Fig. I, in the case of A¢ = 0, the maximum shifts to the, left while in
the case of 47 < 0 to the right of the origin. Absolute phase can be given in both
radians and degrees:

p=2r % [rad] Q= 360% [degrees].

Acos(2nf(t+At)),
At > 0.

Acos(2rf(t+A4r)),
At < 0.

Acos(2nft)

cos(2nft) / .
/ T/2 l:/
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b
\ \\

Fig. 1. The interpretation of the absolute phase.

Relative phase (4¢) is interpreted between two signals and shows that in
relation to the maximum of one of two signals of identical frequency, what part
of the period length the maximum of the other signal has shifted with. As it can
be seen in Fig. 2, the two signals are x(¢) and y(z) while the difference of the
maximums of the two signals At,,. The relative phase between the two signals
can also be calculated:
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Fig. 2. The interpretation of the relative phase.

The relative phase can also be calculated as the difference of the absolute
phases of the two signals:

A¢xy = ¢y - ¢x.

With the help of the Fourier transform, signals can be transferred from the
space-time domain into the frequency domain. During the process, the mappings
of signals in the frequency domain are called Fourier spectra.

Working with harmonic functions (cos(2zf?), sin(2zft)) in the analytic
Fourier transform, a complex Fourier spectrum is obtained, which can be

divided into a real and an imaginary part. The Re[F(f)] real part of the spectrum
can be written up with a real cosine transformation

Re[F(/)]= | f(¢)cosagiydt. (1)
while its imaginary part with a real sine transformation is
m[F(f)]= f S (@)sin(2nft)dt . 2)

The complex Fourier spectrum can be written up with two real spectra:
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F(f)=Re[F(f)]+ jIm[F(f)].

The real spectrum gives the weights of the cosine components falling into a
frequency band unit around any f frequency, while the imaginary spectrum gives
the weights of the sine components for the formation of the signal.

The F(f) complex spectrum can also be defined in an exponential form by
the introduction of two other real spectra:

The A(f) spectrum, thus introduced, is called amplitude spectrum, while the
@(f) spectrum is called phase spectrum. The amplitude spectrum gives the
weight in the formation of the signal of the harmonic component falling into a
frequency band unit around any f frequency, while the phase spectrum shows the
part of the period length the maximum of this harmonic component shifts with
in relation to the maximum of base function cos(2xft), taken at point ¢ = 0.

The amplitude and phase spectra are the following in the knowledge of real
and imaginary spectra with the help of the correlations yielded by Fig. 3:

ACS) =R [F()]+ (m)* [F(f)]

61 = arctg "))

Re[F(f)]

Real and imaginary spectrum values can also be calculated from amplitude
and phase spectra:

Re[F(f)]= A(f)cosl(f)]
Im[F(f)]= A(f)sin[g( /)]

Im[F(]
D)

X
v

=

)

Re[F(p]

Fig. 3. Plotting of Fourier spectra in a complex plane.
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3. Spectral analysis

In the search for the deterministic periodic components, the spectrum of the

Ay(t) deviations from the (Y) expected values has been investigated with the
following correlations:

Y(f)= TAy(t)e‘jz”ﬁdt .

The period lengths of the deterministic periodic components to be found in
the stochastic signal are given by the reciprocal values of the (fmax, fomax, - -
fnmax) frequencies belonging to the maximums of the 4(f) amplitude density
spectrum of the Y(f) spectrum:

Tl = La
ﬁ,max

Tz = La
ﬁ,max

reL,
fN,max

where N is the number of deterministic periodic components (the number of the
maximums of the 4(f) spectrum).

It can be calculated from the ¢(7;) values of the phase-density spectrum
belonging to the given period time, what A#(T;) time the maximum of the given
component of any 7; (i =1, 2, ..., N) period time has shifted in relation to the
starting year (1973) of data registration:

A(T)) =T, o), [radian],
2

or

ANT)=T, % [degree] .

The A4; amplitudes of a component of any 7; period time are given by the
values of A(f) amplitude density:
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Figure 4; gives the amplitude of the deterministic component with 7; period
time.

Let A(f)max denote the maximum of the A(f) amplitude density spectrum.
The relative amplitude density spectrum normed to maximum value (A () as
the percentage of maximum value can be calculated as follows:

oy =A?}%.100[%1

Relative amplitude density spectrum values show percentage of the
amplitude density of any given component of 7' = 1/f period time in the
maximum amplitude density.

4. Spectral analysis of the variation of annual precipitation amount on the basis
of Matra Biikkalja precipitation data

In INNOCENTER (2013b) the cycle properties of the variation in time of
precipitation have been investigated on the basis of the territorial average values of
precipitation data in the years 1960-2012 in 23 settlements/precipitation
measurement stations in the Matra-Matraalja region and 15 settlements/
precipitation measurement stations in the Biikk-Biikkalja region. Table I shows
the average annual precipitation values and the annual absolute maximum
precipitation values on the basis of the data of the two regions and combined
data. In order to assess the effect of the registration period on results, cycle
properties have been calculated for a shorter (1973-2006, 34 years) and a longer
(1960-2012, 53 years) period. (Yearbook of the Hydrographical Service of
Hungary 1960-2005.)

4.1. The results of spectral analysis on the basis of precipitation data for the
years 1973-2006

In the spectral analysis of the precipitation data, the registration time (7;., was
33 years for end-sampling periods and the 34 years for middle-sampling periods.
The sampling rate (Af) was 1 year, while the number of samples was 34.
Analyses have been performed with an analytic version of the discrete
Fourier transform (DFT) (Turai, 1983). The complex amplitude density spectra
of the function of annual precipitation values have been determined as the
function of discrete period time values. Of the four real spectra describing the
complex spectrum (real spectrum, imaginary spectrum, amplitude spectrum, and
phase spectrum), amplitude spectra are presented. In the plotting, logarithmic
linear scale has been chosen to illustrate spectrum maximums more clearly.
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Table 1. Precipitation data in the Matra-Biikkalja region as the function of time

Number of Years

settlements /

measarement points | 1960 | 1961|1962 1963| 1964 1965 | 1966 | 1967 |1968| 1969 | 1970 | 1971|1972
Average | 727 | 506 | 568 | 681 | 747 | 868 | 814 | 538 | 478 | 737 | 861 | 455 | 636

M3

atra |Absolute |\, | seq | 724 | 923 | 1012 | 1098 | 1029 | 610 | 599 | 899 | 1080 | 559 | 789
maximum
Average | 712 | 436 | 499 | 548 | 693 | 825 | 769 | 569 | 517 | 623 | 891 | 378 | 557

Bikk |Absolute | o\ | yo0 | 535|509 | 769 | 947 | 956 | 733 | 563 | 764 | 971 | 410 | 674
maximum

it [Average | 721 [476 | 538 | 624 [ 724 | 849 | 795 | 551 | 495 | 688 | 874 | 422 [ 602

Biikk |[Absolute 0o sea | 704 [ 923 | 1012|1098 | 1029 | 733 | 599 | 899 | 1080 | 559 | 789
maximum

Number of Years

settlements /

measurement points |1973| 1974|1975/ 1976 1977|1978 | 1979|1980 1981|1982 1983 1984/ 1985|1986
Average | 509 | 804 | 607 | 709 | 620 | 576 | 691 | 659 | 504 | 444 | 425 | 655 | 674 | 453

Mat

atra Absolute | ;5 |1 0c1 | 748 | 935 | 748 | 704 | 844 | 821 | 595 | 555 | 504 | 791 | 814 | 566
maximum
Average | 453 | 698 | 675 | 659 | 691 | 585 | 652 | 697 | 524 | 423 | 504 | 535 | 594 | 399

Biikk

UKK |Absolute | o15 | 535 | 243 | 747 | 781 | 708 | 763 | 740 | 574 | 506 | 581 | 648 | 680 | 438
maximum

Viacra [Average | 485759 [ 636 [ 688 | 650 | 580 [ 674 | 676 [ 512 [ 435 | 459 | 604 | 640 | 430

Biikk Abs‘?l‘“e 712 [1061| 843 | 935 | 781 | 708 | 844 | 821 | 595 | 555 | 581 | 791 | 814 | 566
maximum

Number of Years

settlements /

casurement points | 1987 | 1988|1989 1990 1991|1992 1993 | 1994|1995 | 19961997 | 1998 1999 2000
Average | 534 | 638 | 611 | 560 | 692 | 393 | 514 | 497 | 718 | 637 | 433 | 654 | 949 | 474

MatralAbsolute | (o | o1 | 709 | 613 | 774 | 486 | 603 | 586 | 874 | 751 | 519 | 754 |1092| 563
maximum
Average | 499 | 596 | 586 | 492 | 652 | 346 | 457 | 454 | 679 | 576 | 482 | 722 | 874 | 426

Biikk

UK |Absolute | 556 | o153 | 655 | 523 | 694 | 418 | 516 | 509 | 727 | 609 | 535 | 774 | 988 | 474
maximum

Viaca Average | 519620 [ 600 [ 531[ 675373 [490 | 479 | 701 [ 611 | 454 [ 683 [ 917 | 453

Biikk [Absolute | o | o511 709 | 613 | 774 | 486 | 603 | 586 | 874 | 751 | 535 | 774 1092 563
maximum

Number of Years

settlements /

ncasarement points | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012
Average | 585 | 639 | 551 | 647 | 751 | 651 | 632 | 657 | 666 | 1054 | 404 | 434

Mitra|[ADSOIUte |yl gas 1 eon | 747 | 929 | 733 | 791 | 777 | 736 | 1195 462 | 486
maximum
Average | 653 | 591 | 517 | 749 | 741 | 631 | 599 | 625 | 624 | 1118 447 | 466

Biikk [Absolute | 10 oo | sea | 828 | 791 | 711 | 649 | 701 | 709 | 1153 | 488 | 557
maximum

Viaca Average | 614 | 618 [ 536 | 690 | 746 | 642 | 619 [ 645 | 658 [1079] 420 [ 446

Biikk [Absolute | 10| oas | 674 [ 828 | 929 | 733 | 791 | 777 | 736 | 1195 488 | 557
maximum
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In the calculation of spectra, the spectrum of Ay(z) deviations from (YY)
expected values has been determined:

Ay(t)=y(t)-Y .

The (Twin) minimum period time that can theoretically be found in the
signal is defined by the Nyquist frequency (fy).

At =1 year, fN=20,5 ! , Tmin = 2 years.

year

As in the case of all the six time series, the >sampling’ time was 1 year, the
analysis can only reveal cycles of longer period time than 2 years in the changes
everywhere.

In theory, maximum period time (7},.) is determined by the registration
time (7rep):

Tnax = Treg —in case of end sampling,

Tnax =Treg + At — in case of middle sampling.

Therefore, the maximum period time that can be revealed by analysis is 33 years
in case of end-sampling and 34 years in case of middle-sampling

With the data in Table I, both the amplitude spectra of the amplitude
density and the relative spectra have been determined. In the latter case, spectra
have been normed to maximum spectrum value. In all the six cases — annual
average and annual absolute maximum precipitation, — for Matra, Biikk, and
Matra+Biikk regions, similar amplitude and relative amplitude spectrum
functions have been obtained.

The cycle properties of annual average precipitation in the Méatra region are
the following on the basis of amplitude peaks, cycle time, and amplitude
density:

Major cycles: 1. T} = 4.9 years, 4, = 1243 mm; 2. T, = 3.5 years, 4, =
1195 mm; 3. 75 = 29.8 years, A3 = 946 mm; 4. T, = 9.9 years, 44, = 806 mm;
minor cycles: 1. T} =7.3 years, 4, =476 mm; 2. T, = 6.3 years, 4, = 440 mm.

Cycle properties revealed on the basis of Biikk data are, cycle time and
amplitude density: major cycles: 1. T} = 28.7 years, 4 = 1216 mm; 2. T, =
3.5 years, A, = 1064 mm,; 3. 75 =4.9 years, A; = 1035 mm; 4. T, = 9.5 years, A4=
929 mm; minor cycles: 1. T} = 7.3 years, 4; = 541 mm; 2. T, = 6.1 years, A, =
308 mm.

The combined treatment of Matra+Biikk data has also revealed 4 major and
2 minor cycles in the variation of annual precipitation values (Figs. 4 and J),
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cycle time and amplitude density: major cycles 1. T; = 5.0 years, A; = 1,139
mm; 2. T, = 3.5 years, A, ==1,119 mm; 3. T5 = 29.2 years, A; = 1,080 mm; 4.
T,= 9.7 years, Ay = 860 mm; minor cycles 1. T, = 7.4 years, Ay = 508
mm; 2. T, = 6.2 years, A, = 310 mm.
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Fig. 4. Amplitude spectrum of annual Fig. 5. Relative amplitude spectrum of annual
precipitation int he Matraalja and Biikkalja precipitation in the Matraalja and Biikkalja
regions.(sampling rate = 1 year) regions. (sampling rate = 1 year)

Cycle properties that can be revealed on the basis of the amplitude spectrum
and relative amplitude spectrum detected in the variation of annual absolute
maximum precipitation values, cycle time, and amplitude density for the Matra
region are the following: 1. 77 = 3.5 years, 4; = 1561 mm; 2. 75 = 5.0 years, A, =
1434 mm; 3. 75 = 10.9 years, A; = 1352 mm; 4. T, = 31.4 years, A, = 1262 mm,;
minor cycles 1. T; = 7.5 years, A, = 741 mm; 2. T, = 6.2 years, 4, = 474 mm.

Cycle properties of the Biikk region are: major cycles 1. 77 = 27.0 years, 4,
= 1408 mm; 2. T, = 3.4 years, 4, = 1297 mm; 3. T3 = 5.0 years, A; = 1168 mm;
4. T4 =9.7 years, A4 =973 mm; minor cycles 1. T = 7.4 years, A; = 796 mm; 2.
T, = 6.2 years, A, = 362 mm.

Cycle properties of Matra and Biikk combined data on the basis of
amplitude spectra (Figs. 6 and 7), cycle time, and amplitude density are the
following: major cycles 1. 7} = 3.5 years, A; = 1482 mm; 2. T, = 5.0 years, 4, =
1413 mm; 3. 75 = 30.3 years, A3 = 1256 mm; 4. 7, =11.1 years, 44 = 1225 mm;
minor cycles 1. 7, = 7.5 years, A; = 734 mm; 2. T, = 6.2 years, A, = 298 mm.

On the basis of the above results, the following generalizations can be made:

— In the case of the six time series examined with respect to annual

precipitation variation, cycles of approximately identical period times
can be revealed.
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— In the case of all the six time series, there have been found periods of
3.5 years, 5 years, 1011 years, and 27-31 years as major cycles.

— In all the cases, 6.2-year and 7.3—7.5-year periods appear as minor
cycles. (To prove the existence of 27-31-year cycles in a more reliable
way, longer data series would be needed.)
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(sampling rate = 1 year.)

4.2. The results of spectral analysis on the basis of precipitation data in the
years 1960-2012

The registration period 1s 1960-2012, the length of the registration period (7re,)
1s 52 years with end sampling and 53 years with middle sampling, sampling rate
(Ar) 1s 1 year, the number of samples is 53. The calculation process has been
according to Section 4.1, the maximum period time that the analysis can reveal
1S Tinax = 52 years — 53 years.

On the basis of amplitude peaks, the following precipitation cycles can be
revealed for the Matra annual precipitation values, cycle time, and amplitude
density: major cycles 77 = 5.0 years, 4,=2765 mm; 2. T, = 3.6 years, 4, =
2074 mm; 3. 75 = 41.1 years, A; = 1555 mm; 4. 7, = 10.7 years, A4 = 1494 mm;
minor cycles 1. 71 = 6.4 years, A; = 1101 mm; 2. 7, = 5.7 years, A, = 1027 mm;
3. T5 = 8.6 years, A; = 675 mm; 4. T, = 14.3 years, Ay = =642 mm; 5. T5 =
7.4 years, As =577 mm; 6. Tg = 19.8 years, A¢ =456 mm.

In the Biikkalja region, the following cycles can be revealed in the variation of
annual precipitation values on the basis of amplitude spectrum and relative

amplitude spectrum, cycle time, and amplitude density: major cycles 1. 7| =
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5.0 years, 41 = 2567 mm; 2. T, = 38.6 years, A, = 1759 mm; 3. T3 = 10.5 years, 4;
= 1747 mm; 4. T, = 3.6 years, A4 = 1719 mm; minor cycles 1. 7} = 5.7 years, A; =
1413 mm; 2. 75, = 6.5 years, A, = 1220 mm; 3. 73 ==14.2 years, A3 =753 mm; 4. T
=77.5 years, A4 = 552 mm; 5. T5 = 8.4 years, As = 504 mm; 6. 75 = 19.8 years, A¢ =
323 mm.

The combined treatment of Matra and Biikk data also reveals 4 major and 6
minor cycles on the basis of annual precipitation values (Figs. 8§ and 9), cycle
time and amplitude density: major cycles: 1. 7} = 5.0 years, 4, = 2685 mm; 2.
T, = 3.6 years, 4, = 1928 mm; 3. 75 = 40.4 years, A; = 1635 mm; 4. T, = 10.6
years, A4, = 1587 mm; minor cycles 1. T} =5.7 years, A; = 1188 mm; 2. 7, = 6.4
years, A, = 1151 mm; 3. 753 = 14.2 years, 435 = 669 mm,;4. T, = 8.5 years, A4 =
592 mm; 5. T5 =7.4 years, As = 577 mm; 6. Tg = 20.0 years, A¢ = 383 mm.

3.6¥ & E
A £
g _ H 401 é 2 dha | 6év
E:,_ e‘..% r] ’ E_ v v Y
z bl z
gt P B | £ 18 ﬁ% :
¥ o | IR B
1 i i | 4
2 s 24 | E -
B et S & £ / T s §
£ Jli s < e 1] S 1
e | ¥ |
S .
Y .
Period tir:e [year] - Period’ t;;e [year] ) ) o
Fig. 8. Amplitude spectrum of annual Fig. 9. Relative amplitude spectrum of annual
precipitation in the Matraalja and Biikkalja precipitation in the Matraalja and Biikkalja
regions (sampling rate = 1 year). regions (sampling rate = 1 year).

The analysis of the absolute maximum values of annual precipitation
reveals the following cycle properties on the basis of Matra data, cycle time, and
amplitude density: major cycles 1. 77 = 5.0 years, 4, = 3306 mm; 2. 7, = 3.6
years, A, = 2656 mm; 3. 75 = 45.6 years, A3 = 2119 mm; 4. T, = 10.8 years, A, =
1806 mm; minor cycles 1. 77 = 5.6 years, A; = 1319 mm; 2. T, = 6.4 years, 4, =
1191 mm; 3. 75 = 13.9 years, A; = 1044 mm; 4. T, = 7.3 years, A, = 1046 mm;
5. Ts=8.6 years, As = 814 mm; 6. Tx = 19.8 years, A¢ = 722 mm.

Similarly, 4 major and 6 minor cycles can be revealed on the basis of the
Biikk-Biikkalja absolute maximum precipitation data, cycle time and amplitude
density: major cycles 1. 71 = 5.0 years, 4| = 2646 mm; 2. T, = 38.6 years, A, =
2138 mm; 3. 75 = 10.5 years, A3 = 2024 mm; 4. T, = 3.6 years, A4 = 1758 mm;
minor cycles 1. 77 = 5.6 years, 4| = 1434 mm; 2. T, = 6.4 years, A, = 1351 mm;
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3. T3 = 14.0 years, A5 = 885 mm; 4. T, = 8.4 years, A, = 883 mm; 5. 75 = 7.3
years, As =445 mm; 6. Tx = 19.4 years, A = 454 mm.

Cycle properties of absolute maximum precipitation values cycle time,
and amplitude density in the combined assessment of the Matra+Biikk region
(Figs. 10 and 1) are the following: major cycles 1. 7 = 5.0 years, A; = 3,168
mm; 2. 7, = 3.6 years, 4, = 2468 mm. 3. 75 = 46 years, A3 = 2271 mm; 4. T, =
10.7 years, A4, = 1842 mm; minor cycles 1. 7|, = 5.7 years, 4, = 1273 mm; 2. T,
= 6.4 years, A, = 1127 mm, 3. 75 = 13.7 years, 43 = 982 mm. 4. T4 = 8.5 years,
Ay=7T721 mm.5. Ts = 7.3 years, 45 = 726 mm. 6. Tc = 19.6 years, A¢ = 714 mm.
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Fig. 10. Amplitude spectrum of annual Fig. 11. Relative amplitude spectrum of the
precipitation in the Matraalja and Biikkalja  absolute maximum of annual precipitation in
regions (sampling rate = 1 year) . the Matraalja and Biikkalja regions (sampling

rate = 1 year) .

From the cycle properties determined on the basis of the data of
precipitation time series of 53 years, the following generalizations can be made:

— Cycles of nearly identical period time can be revealed on the basis of
the six time series investigated with respect to annual precipitation
variation.

— In the case of all the six time series, the 3.6-year, the 5-year, the 10.5—
10.8-year and 38.6—46-year periods appear as major cycles.

— In all the cases, the 5.6-6.7-year, 6.4-year, 7.3—7.5-year, 8.4-8.6-year,
13.7-14.3-year and 19.4-20-year periods appear as minor cycles.

The comparison of the cycle time data of the major and minor cycles
revealed on the basis of the two time series of different lengths (34 years and 53
years) has yielded the following results:
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— With all the three data groups, the number of major cycles that can be
revealed on the basis of both time series is the same: four.

— In the case of the shorter time series, 2 minor cycles have been found
for all the three data groups, while for the longer time series (53
years), 6 minor cycles have been revealed.

—  With the shorter, generally maximum 10-year cycle times, practically
identical/equivalent cycle time has been revealed for both the major
and minor cycles, namely, in Matra: 3.5-3.6 years, 4.9-5.0 years, 9.9—
10.7 years, 6.3—6.4 years, 7.3—7.4 years,in Biikk: 3.5-3.6 years, 4.9—
5.0 years, 9.5-10.5 years, in Matra+Biikk: 3.5-3.6 years, 5.0-5.0
years, 9.7-10.6 years, 6.2—6.4 years, 7.4-7.4 years.

— In all the three areas, it has been identically found for longer cycle
times (above 30 years) that on the basis of the 34-year time series, a
shorter major cycle time, while on the basis of longer time series, a
longer major cycle time has been revealed, namely, in Matra: 29.8
years, 41.1 years, in Bilikk: 28.7 years, 38.6 years, in Matra+Biikk:
29.2 years, 40.4 years.

The differences found in the latter case confirm the former observation that
for a long-time prognosis, a time (data) series longer than 50 years is required.

5. Determination of prognosis values

On the basis of Sections 2 and 3, including the summary of the basics of spectral
data processing, the y(z) time series of precipitation values can be restored
through the 'use’ of the A(f) amplitude density and ¢@(f) phase density spectra,
defined in the previous analyses:

+fy

0 — Y + J'A(f)ej[ZwW(f)]df’

Ty
where fy is the Nyquist frequency and it equals to 0.5 year '

As the Fourier spectrum is even, the former equation can also be written up
in the following form:

+ /v

y(t) = Y + J' A(f)ej[wﬂmf)]df ‘

With the use of the 7; (i = 1,2,..., N=10) period times of major and minor
cycles, the 4; (i = 1,2,..., N = 10) amplitude, and the ¢(T}) (i = 1,2,..., N =10)
phase values, it is possible to define the [y(#)*“] time series of the amount of
precipitation attributable to deterministic causes:
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2z

I 10
Y(t)* =Y+Tiz/1i cos T”(z—1960)+¢(z) .

i=1
reg

Using the {R./F(T;)]} and {l,/F(T);]} values calculated for given T; period
times of real and imaginary spectra, the ¢(T;) phases of the specific components
can be defined with the following correlation:

I |F(T
T)=arctg —"+——-.
o(T)) e

The difference between the y(#) actual time series and y(#)* represents the
accidental (stochastic) impact.

If t>2012 values are put in the former equation, the amount of
precipitation that can be expected in the given years can be estimated (forecast)
with extrapolation. It must be added, however, that this estimation would only
yield a prognosis of 100% reliability by using spectra calculated from an
infinitely large y(#) registratum (annual data), which, of course, cannot be
expected in the case of the 53 years long time series investigated.

Furthermore, there is a possibility of estimating periodicity with modern
statistical methods (analysis with autocorrelation functions, factor and cluster
analysis), although these tools would only give similarly precise results as the
spectral analysis applied on the basis of data series of several hundred years.

Using the spectrum data in Fig. 8, taking into account the impact of the
four deterministic major cycles (5, 3.6, 40.4, and 10.6 years) and taking into
consideration the impact of the further 6 minor cycles in Fig. 12 as well as
that of the two cycles (2.1 years and 2.8 years) earlier omitted due to aliasing
distortion, the prognosis values in Figs. 13, 14 are obtained. According to
Fig. 4, the two short cycles are present in the prognosis of annual
precipitation values with a relatively high amplitude, above 55%, there has
been a spectacular improvement in classic statistical indicators. Deviation
(RMS) has decreased from 16.1% and 15.7% to 12.6%, while the correlation
coefficient (r) has increased from 0.78 and 0.79 to 0.89.
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The amplitude data in Fig. /0 and relative amplitude data in Fig. /] have
been used in the calculation of annual absolute maximum precipitation
prognosis. Taking the four deterministic and the further 6+2 cycle properties
into account, the absolute maximum precipitation prognosis in Figs. 15, 16, and
17 has been obtained.
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On the basis of the classical statistical parameters (RMS = 16.2%, r = 0.77)
it can be concluded here, too, that between 1960 and 2012, the four deterministic
major cycles decisively determined absolute maximums (Fig. 15). Taking the
six minor cycles into account hardly improves classical statistical parameters
(RMS = 15.6 %, r = 0.79) 1n this case, either, but the prognosticated sections in
Figs. 15 and 16 are significantly different here, too. Taking into account the two
short cycles (2.1 years and 2.8 years), also appearing here with a high amplitude,
has considerably improved classical statistical indicators (RMS = 12.5%,
r=0.87) (Fig. 17).

On the basis of the data in Fig. 14, for the purpose of practical utilisation it
can be underlined in the prognosis, that the exceedingly high, 1079 mm/year
amount of precipitation of 2010 — a uniquely high value in the last 53 years —
will not recur in the next 12-15 years. The 850-900 mm/year annual
precipitation, having occurred several times in previous years (1965, 1970,
1999) may ’probably be expected’ in 2016. On the other hand, it is good news
that in the coming 12—15 years, no annual precipitation below 500 mm/year,
causing severe drought, may be expected.

The 1100 mm/year maximum precipitation prognosticated for 2016 (see
Fig. 17), remains 100 mm/year below the round 1200(1195) mm/year value of
2010 but may reach the 1100 mm peak data of the years 1965, 1970, 1974, and
1999.

6. Variation in time of precipitation properties between the years 1960 and 2025

With the combined handling of the actual data for the years 1960-2012,
presented in Table I and Figs. 14 and 17, and the prognosis data in Figs. /4 and
17 related to the Matra+Biikk region, the time function of the variation of annual
precipitation, and the absolute maximum precipitation values for the years
1960-2025 have been determined with the conventional statistical method.

The function in Fig. 18 shows a constancy of 620-605 mm/year of annual
(average) precipitation with 0.23=23% empirical deviation (Dgeg/Y average)- The
correlation coefficient characterizing the closeness of the function determined
from the data of the 65-year time series is r° = 0.00048, which indicates the
independence of the two variables of annual precipitation (average) and time
(years) according to conventional statistical interpretation.

Fig. 19 shows the regression function determined on the basis of actual and
prognosed annual absolute maximum precipitation data between the years 1960
and 2025. With an acceptable (reliable) 19% corrected empirical deviation and a
r* = 0,00027 regression coefficient, the function predicts the constancy of the
annual absolute maximum in the statistical sense while, for example, it predicts
a 1100 mm precipitation maximum for 2016.
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