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Abstract―The aim of the research presented in this study is to elaborate a multivariate 
linear regression model that describes the spatial structure of the mean maximal 
development urban heat island (UHI) formed under favorable synoptic conditions on the 
basis of surface parameters. Temperature data were gathered in a small town, Beregszász, 
Zakarpattia, Ukraine. As a first step, a one-year-long UHI measurement campaign has 
been carried out using mobile techniques in order to obtain data for the description of the 
UHI in the study area. Two surface parameters (ratio of non-evaporating surfaces in the 
environment of the measurement sites and distance of measurement sites from the center 
of the settlement) have been selected first. The two surface parameters had to be 
quantified next. On this basis, relationships between surface parameters as independent 
variables and UHI intensities as dependent variables could be traced by performing a 
multivariate linear regression. Results have showed that the two chosen parameters have 
strong impact on UHI development in our study area. Spatial structure and intensity of 
UHI can be estimated with an accuracy of 0.4 °C within the built-up area of the town 
using our MLR model. The high resolution surface parameter database and the UHI 
estimating model enable the prediction of heat load of smaller spaces and town parts. This 
procedure helps the reduction of heat load and the determination of the location of green 
areas important for urban planning as well. 
 
Key-words: multivariate linear regression model, non-evaporating surfaces, urban heat 

island 
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1. Introduction 

Settlements differ from natural environment significantly, due to altered 
surface geometry, different composition, and structure of urban atmosphere. 
Anthropogenic heat emissions should be taken into consideration as well (Oke, 
1997). As a result, a local or meso gamma scale phenomenon, the urban 
climate develops (Arnfiled, 2003; Oke, 1973; Orlanski, 1975). Built-up areas 
are characterized by higher air and surface temperatures than close-to-natural 
areas in their neighborhood what is called urban heat island (UHI). The 
thermal difference between the town center and its rural environment 
determines the intensity of the urban heat island. UHI intensities have a special 
diurnal and annual course with maxima 3–5 hours after sunset and in late 
summer – early autumn (Landsberg, 1981). Additionally, UHI intensities 
change according to synoptic conditions as well: clear skies with calm weather 
are advantageous for the development of a strong UHI. This way, synoptic 
conditions determine the UHI intensities at a given point of time, while 
maximal (or potential) intensities can develop under favorable synoptic 
conditions. These factors are dynamic conditions of UHI development. Spatial 
pattern of the absolute or the mean maximal UHI is determined by static 
factors, the characteristics of the urban surface (Bottyán and Unger, 2003; 
Bottyán et al., 2005; Chen et al., 2011; Ginnaros et al., 2013). Therefore, for 
studying the effects of static conditions on the spatial structure of UHI, 
favorable synoptic conditions are suitable. Investigations on heat islands give 
important information for town-planning (Kuttler, 1998), because the 
phenomenon influences the comfort sense of town dwellers (negatively in 
summer, positively in winter) essentially, alters the composition of urban 
vegetation, and can cause phenologic phase shifting (Oke, 1975). 

Beyond determination of the characteristics of urban heat islands, recent 
studies focus on examination of their evolving factors in big cities. Our study 
area, Beregszász (Berehove) with its population of 26,000 belongs to the group 
of settlements which gain much less attention from this aspect. However, a high 
ratio of the population of Central and Eastern Europe live in small settlements, 
where heat islands can develop (Fig. 1), but there are much less studies in that 
field. Additionally, many rapidly growing independent suburbs of cities fall into 
that size category as well. 

The main aim of the study presented here is to analyze the relationships 
between spatial structure of UHI and its formative surface parameters. There are 
many surface parameters that have an effect on UHI development. The 
hypothesis was that the most important parameters are the distance of a given 
site in the settlement from the geometrical center and the ratio of non-
evaporating surfaces in that site. 
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Fig. 1. Relationship between maximum observed heat island intensity (Tu-r(max)) and 
population (P) for European settlements indicating the position of Beregszász from this 
aspect (modified after Oke, 1973). 

 
 

Other aim of our studies is to build an empirical estimating model for the 
spatial pattern of the mean maximal development UHI using the before 
mentioned surface parameters. The model could make possible the description 
of the spatial structure of the mean maximal development UHI for settlements of 
that size and structure category. Results can provide basic information on spatial 
pattern of the thermal excess in a given small settlement for spatial planning, 
forming urban spaces and green areas to utilize the advantages and prevent the 
drawbacks of the heat island phenomenon.  

The examination of effects of surface parameters on UHI development 
requires high resolution spatial temperature data gathered under synoptic 
conditions what makes possible the strong development of UHI. For this reason, 
measurements were carried out under anticyclone synoptic conditions with clear 
skies and calm weather. 

While examination of satellite images (Bartholy et al., 2009) are more 
capable for heat islands of big cities (Oke, 1975; Park, 1986; Kislov and 
Konstantinov, 2011; Lee and Baik, 2010) (e.g., New York, Montréal, Moscow, 
Soul, Budapest), in the case of Beregszász, due to its size, the adaptation of a 
mobile measurement method (Elansky et al., 2012) used by researchers of the 
University of Szeged (Unger et al., 2000) and Debrecen (Szegedi, 2000) seemed 
to be adequate. The difference between the two methods is that satellite images 
make possible the determination of heat surplus in surface temperatures, while 
the latter one allows the measurement of heat excess in air temperatures. 

Our mobile temperature measurements have provided abundant data for the 
characterization of UHI in Beregszász (Berehove). On this base, a multivariate 
linear regression model can be applied to analyze the role of some surface 
parameters in development of UHI in our study area. 
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2. Study area and methods 

2.1. Location and climate of Beregszász (Berehove) 

Beregszász (Berehove) (48.1°N, 22.3°E) lies 117 m above sea level. The 
southwestern part of the town can be found on a flat, alluvial plain, only 
occasionally interrupted by small hills. The town is situated on an almost flat 
terrain without great water bodies, what is advantageous from the aspect of the 
examination of the spatial development of urban heat island. It is located in the 
Zakarpattia Oblast (province) in Western Ukraine, near to the Hungarian border. 
It is the administrative center of the Berehivskyi Raion (district) with a 
population of 26,000. 

The climate normal was calculated based on the Climate of the Carpathian 
Region Project dataset (Lakatos et al., 2013). The town and its environment 
belong to Köppen’s climate region Cfb on the basis of the climate parameters 
(Table 1.). The annual course of precipitation reaches its maximum in June and 
July. Prevailing wind direction is north-easterly. 
 

 
Table 1. Annual and monthly means and sums of meteorological parameters at the 
weather station of Beregszász (Berehove), 1961–2010 (Anon, 1992; Lakatos et al., 2013). 

Beregszász (Berehove) 

Annual mean temperature (˘C) 9.8
Temperature range (˘C) 21.8
Mean temperature in January (°C) –2.7
Mean temperature in July (˘C) 20.2
Annual mean precipitation (mm) 682
Annual mean wind speed (m s–1) 2.1
Sunshine duration per year (h) 1998

 
 

2.2. UHI measurements 

Since the spatial pattern of the heat island is influenced by different urban 
morphological types significantly (Szegedi, 2006; Unger et al., 2004; Molnár et 
al., 2006), we had to integrate the highly complex urban morphology into our 
model. Along a measurement route 42 measurement sites were selected, which 
are representative on one hand and quite smoothly cover the settlement on the 
other hand (Fig. 2). Temperature data was gathered 36 times along the route 
using mobile measurement techniques from January to December in 2005 by 
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Table 2. Observed meteorological parameters during the UHI measurements at the 
weather station of Beregszász (WMO station code is 33634; 48.19°N, 22.64°E, 122 m 
above sea level) 

Measurement 
date 

Air temperature 
(°C) 

Cloudiness 
(octas) 

Wind speed  
(m s−1) 

UHI 
max 

UHI 
mean 

2005 19 : 00 01 : 00 19 : 00  19 : 00 01 : 00   

January 5 2.8 3.5 7 0 0 0.9 0.5 
January 17 –2.1 –3.1 0 0 1 5.0 1.6 
January 25 –1.3 –1.4 4 1 2 2.2 1.2 
February 4 –5.1 –5.4 2 2 3 4.1 3.0 
February 16 0.3 0.8 0 0 1 1.8 1.1 
February 21 2.6 1.1 1 1 0 4.0 1.7 
March 3 –1.4 –0.8 2 2 1 0.9 0.4 
March 15 3.5 1.6 6 1 0 2.2 1.0 
March 22 0.1 1.4 0 2 1 2.6 1.5 
April 5 9.3 8.1 0 0 1 4.9 2.7 
April 18 11.3 10.4 8 3 4 0.5 0.3 
April 27 10.4 12.6 0 0 1 2.8 1.6 
May 5 13.7 12.8 4 1 2 0.9 0.7 
May 12 8.0 5.3 0 0 1 1.7 0.9 
May 23 19.4 17.8 0 0 0 3.9 2.1 
June 07 12.8 12.2 0 1 0 1.9 1.3 
June 14 17.1 15.5 0 0 0 4.6 1.4 
June 22 20.1 19.0 7 2 3 2.0 1.1 
July 8 18.2 16.9 0 1 0 4.9 2.4 
July 18 23.4 22.3 0 1 0 2.1 1.6 
July 21 15.5 14.1 0 1 1 4.9 1.4 
August 2 23.2 22.7 0 0 1 3.3 1.9 
August 12 18.1 17.7 0 0 0 2.3 1.4 
August 22 20.2 19.6 6 2 3 0.8 0.4 
September 6 12.7 12.0 0 0 1 4.5 2.6 
September 13 18.5 16.6 0 1 0 1.7 0.9 
September 22 14.2 15.9 0 0 2 6.6 4.1 
October 04 14.9 16.7 1 0 1 3.6 1.6 
October 11 9.0 8.1 0 0 0 3.9 1.7 
October 25 14.4 13.9 7 2 3 1.7 0.3 
November 03 3.3 1.5 0 1 0 4.2 2.5 
November 15 7.7 7.4 8 3 4 1.4 0.6 
November 22 –2.2 –3.0 0 0 1 2.7 1.8 
December 07 5.1 4.3 5 1 3 0.7 0.4 
December 13 0.6 0.5 6 0 1 1.0 0.6 
December 21 –5.0 –5.9 1 2 1 3.2 2.5 
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From the numerous methods developed for urban climate examinations, 
mobile techniques were used in order to get abundant comparable data for 
Debrecen and settlements involved in the research. Sensors of a digital 
thermometer were mounted on a car (with a resolution of 0.1 °C) at a height of 
1.5 m, which is a common practice in UHI measurements. An important 
problem is that measurements should be carried out at exactly the same time in 
each grid. This is impossible using mobile techniques. The difference between 
the first and the last grid is 90 minutes, which is a considerable time span from 
the aspect of the change of temperatures in the different parts of the city. In 
order to get comparable temperature data during the measurements, we visited 
each grid two times: first on the way to the end of the route (the reference site, 
measurement site 42) and the second time on the way back. In this way we 
gained two temperature values for each grid. Since on the way back we visited 
the grids in reversed order, calculating the averages for the grids we gained 
values for the same time (the reference time). The reference time was four hours 
after sunset, since according to the literature, heat island intensity reaches its 
maximum 3–5 hours after sunset. Since the aim of the research was to trace the 
spatial pattern of urban heat island, only favorable conditions for heat island 
development were taken into consideration during the first campaign: 
measurements were carried out in anticyclone conditions. Fig. 2 shows locations 
of measurement sites. UHI intensities (∆t values) were calculated using the 
following formula: 

 
 ruralurban ttt −=Δ  , (1) 
 
where turban means temperature values measured at urban sites and trural means 
temperatures measured at the reference site outside the town. 
 
 

2.3. Determination of surface parameters 

The role of two surface parameters (presumably the most important ones) 
influencing the heat island development have been examined in the present 
study.  

These are: 
― Ratio of non-evaporating surfaces (NES) in the environment of 

measurement sites; 
― Distance between measurement sites and the geometrical center 

(48.20°N, 22.64°E) of the town. Distances between measurement sites 
and the geometrical center of the town (km) were calculated, and 
distances were determined for the grid points of the network of the 
town as well.  
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Since non-evaporating surfaces store more heat during daytime than the 
close-to-natural evaporating surfaces, the air above built-up areas is warmer than 
over their surroundings. For this reason, quantification of the ratio of non-
evaporating surfaces is necessary. 

Close-to-natural evaporating areas are surfaces covered by vegetation 
(wood, shrub, lawn etc.) or bare soil. Non-evaporating surfaces are mainly 
artificial objects (buildings, pavements, other constructions). We have found that 
satellite images are the most suitable for parameter estimation. Thus, the ratio of 
non-evaporating surfaces was assessed visually using high-resolution, true color 
images of Google Earth. A grid network of 15.4×15.4 m was set on the images 
with the measurement points at the centers of the grids, and characteristic 
surface types for each grid were determined. The land cover was determined at 
109,500 points with a spatial resolution of 15.4×15.4 m, which gives more 
detailed data than a grid network with 500×500 m resolution used by other 
researchers (Kislov et al., 2011; Unger et al., 2000). 

It was an important question to decide what size of environment of 
measurement points influences the heat island intensity most strongly. We have 
tested four variations by statistical analysis: 

― NES1 – 9 grid points represent an area of 2134 m2 around the 
measurement point; 

― NES2 – 25 grid points cover an area of 5930 m2; 
― NES3 – 49 grid points represent an area of 11,621 m2 around the 

measurement point; 
― NES4 –81 grid points cover an area of 19,210 m2. 

 
As a first step, the size of the environment, which influences the heat island 

intensity most strongly around the measurement sites was determined 
statistically. For this reason, NES values of the 4 chosen areas were correlated 
with the mean maximal heat island intensities of measurement sites, and 
significant correlation was found in every case (Table 3). 

 
 
 
 
Table 3. Connection between the ratio of non-evaporating surfaces (NES) and UHI 
intensities, r– correlation coefficient 

Period NES1 
r 

NES2 
r 

NES3 
r 

NES4 
r Sign. level 

Δt-annual 0.57 0.64 0.70 0.67 1% 
Δt/heating 0.56 0.64 0.69 0.67 1% 
Δt/non-heating 0.54 0.59 0.68 0.61 1% 
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The strongest relationship was found between NES3 and the UHI, so the 
11,621 m2 area influences heat island intensities of Beregszász most remarkably. 
Maps were completed on the basis of the ratio of non-evaporating surfaces in 
Surfer 8.0 (Fig. 3). This statistical software offers several types of interpolation 
methods, from which we have chosen the widely used Kriging-procedure. Ratio 
of non-evaporating surfaces reaches its maximum in the center of the town, 
however, there are some patches with high ratio of artificial (non-evaporating) 
surface cover around the center near the edges of the settlement. They are 
industrial areas and housing estates. The distance of the measurement points 
from the town center was determined by using the differences of coordinates of 
the previously mentioned grids. 

 
 
 

 
Fig. 3. Spatial pattern of the of non-evaporating surfaces in Beregszász: A– Vérke canal, 
B–railroad line, C– border of built-up area, D– main road line. 

 
 
 
 

Correlations between variations of NES (NES1-NES4) and distances from 
the geometrical center of the town were determined. In this way, possible 
linear dependence between explanatory variables was traced. In the case of 
dependence between explanatory variables, one of them was ignored in order 
to create an independent system of explanatory variables. This method 
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minimized the possible multicollinearity (M) of explanatory variables 
incorporated into the model. Value of M shows the magnitude of the non-
separable effect of factor variables. In this way, the coefficient of multiple 
determination can be divided into the partial effect of each factor variable and 
the joint effect of the factor variables. In our case, the value of M was 0.37 
which cannot be regarded as significant. This value was tested using the 
variance inflation factor (VIF):  

 

 
21

1

i
i R

VIF
−

=  . (2) 

 
This factor shows how many times greater the actual variance of the 

estimated coefficient of variable i is than it would be with the complete 
exclusion of multicollinearity. Value of VIF in our case is 1.58 suggesting slight 
multicollinearity that determines the estimation strength of the model not 
significantly. 

2.4. The statistical model applied 

Beside basic statistical analysis (average, correlation), we have attempted to 
build an empirical model to investigate relationships between heat island 
intensities and surface parameters. We have applied the multivariate linear 
regression (MLR) method in the model, which is deemed to be advisable for 
solving similar kind of problems by other researcher’s (Bottyán et al., 2005; 
Hjort et al.,2011; Szymanowski and Kryza, 2012).The MLR equation is 
 

ii Xb++Xb+Xb+a=Y ...2211 , i=1,2,…,n (3) 

 
where Y is the dependent variable, a is a constant, Xi is independent variable, 
bi is the partial regression coefficient of independent variable number, and n 
is the number of independent variables taken into consideration (Ezekiel and 
Fox, 1959). 

Fitting of the multiple regression equation was performed using the method 
of least squares. Calculations were carried out using SPSS software pack. 
Establishment of the linear model was made suing the software SPSS applying 
the Enter method. Kolmogorov–Smirnov tests proved that distribution of 
dependent and independent variables involved in the model is not different 
significantly from normal distribution what is a condition of correlation and 
regression calculations. 
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3. Results and discussion 

3.1. Characteristics of the mean maximal UHI 

Mean maximal diurnal UHI intensities culminated in the center of the settlement 
of Beregszász with 2.3 °C during the studied period, while maximal observed 
UHI intensity reached 6.1°C, in accordance with the results of Oke (1973). 
Development of the UHI is supported by high ratio of non-evaporating surfaces, 
compact built-up structure with two storied buildings, and high traffic density 
beside the central part of studied area.  

A map of mean maximal UHI intensities have been prepared by calculating 
the average maximal UHI intensities for each measurement sites (Fig. 2). The 
following main characteristics of the UHI can be determined (Molnár et al., 
2006; Molnár, 2007): 

― Highest mean maximal UHI intensities over 2.3 °C form the “peak” in 
the center of the town.  

― Thermal excess decreases gradually from the center towards the 
outskirts of the town. The phenomenon “plateau” cannot be identified 
due to the small size of the settlement, presumably.  

― Thermal excess over 1 °C on the slopes of the low mountain ridge 
bordering the town from the East is linked to the UHI.  

― Low intensity fringes (around 1 °C) of the UHI of Beregszász reach 
the small, previously independent villages around the town 
(Beregardó on the north and Búcsú on the southwest) and a housing 
estate on the southeastern border of the town.  

― Mean maximal UHI intensities around the weather station of 
Beregszász reach 1.2 °C what should be taken into consideration in 
the processing of datasets measured there.  

― Low intensity borders of the mean maximal UHI reaches far over the 
borders of the built-up area of the town due to the impacts of airflows.  

 

3.2. Structure of the multivariate model 

Our main aim was to elaborate a universal model for estimation of spatial 
pattern of mean maximal heat islands on the base of meteorological and 
morphological data of Beregszász.  

The input parameters of the multivariable model are 
― heat island intensity as a dependent variable (°C), 
― ratio of non-evaporating surfaces as an independent variable (NES – 

given in %), and 
― distance of measurement sites from the geometrical center of the town 

as an independent variable (D – given in meters). 
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The following model equation has been created for the spatial structure of 
annual mean maximal heat island intensity using multivariate regression process 
of SPSS software: 

 
 NES+D=tannual ××−Δ 54.000026.0642.1 . (4) 

 
It has been proved that the two parameters play an important role in 

development of the temperature excess (r2 = 0,766). The value of D partial 
correlation coefficient is prominent in the model (r2 = 0,766), since it is much 
higher than the other parameter (NES – r = 0.477), which means that it may play 
much more important role in the formation of UHI. Spatial structure of UHI in 
Beregszász has been described on the base of UHI intensities calculated by the 
model. It can clearly be seen in the map that ratio of non-evaporating surfaces 
determines the alteration of air temperature much obviously in the built-up area 
than on the outskirts (Fig. 4). Where NES values are above 40%, isotherm lines 
run parallel with them, otherwise isotherm lines diverge. The reason for this is 
the irregular shape of the borderline between the built-up and close-to-natural 
areas in the town, probably.  

 
 
 

 
 
 

 
Fig. 4. Spatial structure of non-evaporating surfaces, measured (A) and estimated (B) mean 
maximal UHI intensities (difference between isotherms is 0.2 °C) for the studied period. 
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Empirical estimation model equations were created for the summer period 
(April 16 – October 15), winter period (October 16 – April 15), and sunny 
(under 4 octas) and cloudy days (over 4 octas). 

Differences can be found in the empirical model of heat island intensities in 
the heating and non-heating periods. Values of r2 indicate that the two built-up 
factors determinate the „strength” of heat excess developed in the town 
relatively weakly in the winter period. Table 4. presents the multivariate linear 
regression equations created for heating and non-heating periods. The disparity 
of partial correlation coefficients emphasizes the higher importance of distance 
from the center probably in the cold season, since decreasing evaporation rates 
weaken the impact of evaporating surfaces on the energy balance in the heating 
season.  
 
 
 
 

Table 4. The multivariate regression equations of heat island intensities at measurement 
sites, the surface parameters influencing them, and the partial correlation coefficients 
built in the equations for Beregszász. r2 is the coefficient of multiple determination, the 
other applied notations are the same as in Table 3. 

 Equation of multivariate linear regression r2 
Partial correlation 

coefficients 
D NES 

Δt/heating NESD ×+×−= 709.0000274.0652.1  0.650 –0.665 0.513 
Δt/non-heating NESD ×+×−= 319.0000273.0679.1  0.732 –0.737 0.309 

 
 
 

 
Correlation analysis was carried out to verify our model. Mean maximal 

UHI intensity values estimated by the model were correlated to mean maximal 
UHI intensities calculated on the base of results of a campaign of ten 
measurements carried out in 2010. There is a significant connection between the 
two datasets (r = 0.86, n = 41) at a level of significance of 0.1. Maximal error of 
the model was 0.4 °C, standard deviation of error was under 0.2 °C. 

4. Conclusions 

Our attempt to elaborate a model describing the spatial pattern of UHI in a small 
town has proved to be successful from methodological aspects. The multivariate 
linear regression model created by the integration of two surface factors as ratio 
of non-evaporating surfaces and distance of measurement points from the 
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settlement center describes the structure of UHI in our study area well. A part of 
spatial pattern of thermal excess developed in the built-up area could not be 
interpreted by the regression model, what can be a result of measurement bias on 
one hand and factors not taken into consideration in the model on the other 
hand. A continuation of this research for this reason could be to integrate new 
surface parameters into the model like sky view factor (SVF) and aspect ratio 
(H/W), which can have a significant impact on UHI formation as well. 

According to literature and our previous examinations, the limit of the 
development of urban heat island is under 1,000 inhabitants. Our results provide 
better knowledge on spatial structure of UHI in small settlements. It is 
important, since small settlements have different structures from cities making it 
impossible to study the spatial and temporal characteristics of those heat islands 
on the basis of simple extrapolation of results for big cities. 

Most advantageous location of new buildings and green areas can be found 
using UHI maps. Human comfort conditions of public spaces could be improved 
by the establishment of smaller parks in central areas of the town, while heating 
energy demand could be decreased by more compact built-up in residential 
areas. This way our results could be applied in spatial planning. 
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