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Abstract― Research of future climate tendencies is a precondition for appropriate 
climate change adaptation strategies in forestry and agriculture. The aim of this paper is 
to investigate the expected probability and magnitude of threatening climate conditions 
that are of primary importance in terms of forest management. Until 2100, precipitation 
and temperature results of an ensemble of 12 regional climate model simulations as well 
as derived indicators (e.g., Forestry Aridity Index and Ellenberg’s climate quotient) have 
been analyzed for the A1B emission scenario. For the case study area in Southwest 
Hungary (Zala County), projections indicate an increasing tendency of warming and 
drying of summers towards the end of the 21st century. In the period 2071–2100, 
decrease of summer precipitation sum may exceed 25% compared to 1981–2010. Both 
extreme droughts and heavy precipitation events are expected to be more frequent. 
Consequently, the already observed climate change impacts and damages in forestry are 
very likely to occur with higher probability and severity. Including these results, a GIS-
based “Agroclimate” decision support system is under development that contains a 
coherent data chain from climate change simulations, through impact assessments to 
adaptation support in order to provide quantified information on the possible yield 
potential and production risk for sustainable forest management.  
 
Key-words: regional climate modeling, climate change impact, forest ecosystem, 
adaptation, decision support  
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1. Introduction 

1.1. Climatic extremes threatening forests in the Carpathian Basin 

The Carpathian Basin is considered to be highly sensitive and vulnerable to 
climate change and the related increase of the probability and intensity of 
extreme events. Droughts are recurrent features in the climate of the region, and 
relatively high amounts of precipitation is required to recover from a severe dry 
period (Antofie et al., 2015). For the high drought risk, climate change, land 
cover changes, and intensive land use jointly are responsible (Spinoni et al., 
2013). 

Precipitation is the determining and limiting factor of the distribution of 
climate dependent tree species in the forest/grassland transition zone (“xeric 
limits”; Mátyás, 2009) in Eastern-Central Europe and Southeast Europe. 
Primarily consecutive drought periods threaten the survival and adaptation of 
forest ecosystems (Mátyás, 2009; Mátyás et al., 2010). In the last 50 years, the 
frequency, severity, and duration of extremely dry and warm weather events 
have increased (Szinell et al., 1998; Spinoni et al., 2013), their impacts on the 
most sensitive tree species are already visible.  

Summer droughts of the last decades (especially in 1983–1995 and 2000–
2003) have led to vitality loss of beech forests and to the drastic reduction of 
their climatically suitable niche in Hungary (Berki et al., 2009). Health status 
decline has been observed also in sessile oak stands (Berki et al., 2014). Under 
drier climate conditions, Führer et al., (2013) found less organic matter 
production of above-ground dendromass. Climatic extremes are being observed 
to affect the water uptake of forests from groundwater and the whole water 
balance of forested catchments (Gribovszki, 2014). As result of a drought 
induced damage chain, increasing number of pests and diseases has been 
detected in beech and oak forests (Lakatos and Molnár, 2009; Csóka and Hirka 
2011). Lack of adaptation may lead to increasing forest die-back and mortality 
(Mátyás et al., 2010; Czúcz et al., 2011; Rasztovits et al., 2014; Hlásny et al., 
2014). 

1.2. Projected climate tendencies  

Regional climate change projections largely agree in a statistically significant 
warming in all seasons over Europe (Christensen et al., 2007; Jacob et al., 2008; 
van der Linden and Mitchell, 2009). The annual precipitation sum shows an 
increase in the northern and a decrease in the southern regions towards the end 
of the 21st century. In the transition zone, changes are smaller and statistically 
not significant (Kjellström et al., 2011). This zone is projected to shift 
northwards in summer resulting in a decrease of the precipitation amount in the 
Carpathian Basin, whereas the southward shift of the transition zone in winter 
may lead to precipitation increase (Bartholy et al., 2007, 2008; Jacob et al., 
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2008). Projected increase of warm extremes as well as of drought frequency, 
magnitude, and length are statistically the most significant in the Southern 
European regions, whereas the risk of wet extremes is the most pronounced in 
the northernmost areas of the continent (Heinrich and Gobiet, 2011). In the 
Carpathian Basin, more irregular rainfall can lead both to more frequent heavy 
precipitation events and severe droughts (Gálos et al., 2007; Szépszó, 2008; 
Pongrácz et al., 2014). Recently, in the frame of the World Climate Research 
Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) 
initiative, new regional climate projections have been provided for Europe in 
higher horizontal resolution (Jacob et al., 2013). The results of the multi-model 
ensemble confirm the above introduced tendencies, the magnitude and the main 
spatial patterns of the expected climate change, however, they show more spatial 
details (Jacob et al., 2013; Vautard et al., 2013, 2014). 

1.3. Decision support system development  

In Hungary, silvicultural technologies and species preferences are prescribed by 
binding regulation based on climate conditions that are assumed to be constant 
over time. Severe droughts of the last decades and observed tree mortality shed 
light on the need to rethink forest management planning. Reliable projections of 
health status, production, growth, and yield are essential for the next decades in 
order to decide about sustainable tree species preference and to assess the 
economic impacts of possible species changes. The “Agroclimate” decision 
support system will provide coherent, GIS-supported information about the most 
important regional and local risks and adaptation options for three climate-
dependent sectors (forestry, rainfed agriculture, and animal husbandry on 
nature-close pastures; Mátyás et al., 2013). In the first step, Zala County in 
Southwest Hungary was selected as pilot region.  

This paper introduces the climate part of the decision support system. The 
aim is to analyze future climate projections that are providing input for the 
assessment of forest responses to climate change. Special focus is on the 
expected probability and magnitude of threatening climate conditions that are of 
primary importance in terms of forest management (Section 3). Examples are 
shown for application of regional climate model outputs for impact research in 
the GIS-supported system (Section 4).  

2. Sources of climate information and methods for analyzing 

2.1. Applied climate data and models 

For the period 1961–2010, daily observation series of temperature and 
precipitation have been used. The gridded data are available from the 
CARPATCLIM EU-project (www.carpatclim-eu.org, Lakatos et al., 2013) in 
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0.1° × 0.1° horizontal resolution. In the project, the MASH (Multiple Analysis of 
Series for Homogenization; Szentimrey, 2011) procedure has been used for 
homogenization of long-term observation series. Interpolation of the 
homogenized time series was carried out by applying the MISH (Meteorological 
Interpolation based on Surface Homogenized data basis; Szentimrey and Bihari, 
2007) method. Since the target region of the CARPATCLIM project does not 
cover the whole Zala County, data from further stations of the Hungarian 
Meteorological Service were also involved in the investigations. 

For the 21st century, results of 12 regional climate model simulations have 
been analyzed that were created in the frame of the ENSEMBLES EU FP6 
project (www.ensembles-eu.org). The data are accessible at daily time scale, in 
0.22° × 0.22° spatial resolution. The models are already validated (Jacob et al., 
2008), their uncertainties (related to the model, scenario, boundaries, and the 
variability of the climate system; Prein et al., 2011) have been investigated and 
evaluated in many research projects (e.g., Christensen et al., 2007). This 
ensemble of regional climate change projections for the SRES A1B emission 
scenario (IPCC, 2007) are considered as state-of-the-art for European climate 
impact assessments, so far.  

2.2. Methods of analyzing 

Climate model results have been included in the GIS-based decision support 
system, transformed into a common grid applying the DigiTerra Map GIS 
software and its newly developed Climate Database Query Module (Czimber, 
2014). Inclusion of all available information (e.g., elevation, hydrology, soil and 
climate conditions, and satellite images of land use, land cover, and forest 
inventory data) into a geoinformatic system allows the integrated data 
processing of the different raster and vector layers. It is possible to query data 
from the database and the map, and to make geostatistical analyses. For finding 
spatial correlations and developing functions for impact assessments, the latest 
image processing technologies (fuzzy membership functions based and 
maximum likelihood classifiers) has been used. 

Applying the Climate Database Query Module, monthly, seasonal, and 
annual temperature means and precipitation sums as well as their means over the 
vegetation period have been determined using the daily time series of 12 
different regional climate models. For calculating general extreme indices (e.g., 
total number of summer days, hot days, frost days, dry days, heavy precipitation 
days), minimum and maximum temperatures from 6 models are available. 
Moderate and severe dry summers have been defined based on Gálos et al. 
(2007). Table 1 contains the variables and derived indices selected and 
investigated in this paper.  
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Table 1. Climate variables and indices analyzed in this study 

Temperature means (T) • annual, seasonal, monthly, vegetation period 

Derived extreme indices from daily 
temperature minima (Tmin) and 
temperature maxima (Tmax) 

• extremely hot days (Tmax ≥ 35 °C) 
• hot days (Tmax ≥ 30 °C) 
• frost days (Tmin < 0 °C) 
• ice days (Tmax < 0 °C) 

Precipitation sums (P) • annual, seasonal, monthly, vegetation period 

Derived extreme indices from daily 
precipitation sums • wet days (P ≥ 20 mm day–1) 

Ellenberg‘s climate quotient (EQ; 
Ellenberg, 1988) ܳܧ ൌ ܶ௨௬ܲ௨ כ 1000 

Forestry aridity index (FAI; Führer, 
ܫܣܨ (2010 ൌ ܶ௨௬ି௨௨௦௧ெܲ௬ି௨௬  ܲ௨௬ି௨௨௦௧ כ 100 

 

 
 
 

Projected climate conditions have been analyzed for three 30-year time 
periods in the 21st century: 2011–2040, 2041–2070, and 2071–2100, 
respectively. Expected changes of temperature and precipitation as well as of the 
probability and severity of climate extremes have been determined relative to 
the reference period 1981–2010.  

Results of an ensemble of different regional climate model simulations 
have been considered rather than one single climate projection. In this way, the 
spread and robustness of the projections as well as the likelihood of the possible 
changes can be evaluated (it is not possible to state a concrete value for future 
climate change in a specific region). According to the IPCC, the change has 
been categorized as “likely” when 66% of all changes projected through the 
various models lie within this range.  

3. Climate tendencies in Zala County 

3.1. Observed climate   

Based on meteorological observations, Zala County can be characterized by 
10.4 °C annual mean temperature and 717 mm annual precipitation sum for the 
time period 1981–2010 that has been applied as reference of the projected 
climate change (Table 2). Summer is the warmest (19.7 °C) and wettest 
(241 mm), whereas winter is the coldest (0.5 °C) and driest (121 mm) among the 
seasons. 
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Table 3. Ellenberg’s climate quotient (EQ) and its projected change (dEQ) for the 30-year 
time periods in the entire Zala County based on the results of 12 regional climate models. 
Likely range: 66% of all projections fall within this range 

 EQ dEQ (reference period: 1981–2010) 
Time period 1981-2010 2011–2040 2041–2070 2071–2100 

Mean over the time period 28.5 +2.1 +3.9 +7.7 
Likely range of changes  –1 – +4.9 +0.6 – +5.7 +2.4 – +11.6 

 

 
 

• Climate extremes and their effect on mortality. Effects of extremes are 
determining the vitality of forest stands rather than average climate 
conditions. Projected increase of probability and severity of droughts 
(Fig. 6) overwrites the projections of yield potential functions. Consecutive 
periods characterized by EQ values above a threshold are the basis for 
modeling present and future tree species distribution as well as tree 
mortality induced by drought stress (Móricz et al., 2013; Rasztovits et al., 
2014).  

• Genetically directed adaptation. Survival of forest populations is also 
influenced by genetic factors. Increase of EQ indicate the increment decline 
beech due to suboptimal adaptation (Horváth and Mátyás, 2014). 
According to the climate tolerance limit, genetic diversity of oak stands 
may drastically decline (Borovics and Mátyás, 2013). 

 
In addition to projections of yield, a number of other important aspects of 

the climate impact research in forestry will be imported into the decision support 
system such as: 

• Forest climate zones and production capacity. Among the site conditions, 
climate is changing the most dynamically. Therefore for decision support, 
appropriate determination of climate tendencies and forestry climate 
categories are essential. Contrary to the climate classification derived from 
the forest inventory database, a meteorology-based forestry aridity index 
(FAI) has been developed (Führer, 2010; Table 1) and applied to assess the 
ecological and economic impacts climate change (Führer et al., 2011, 
2013). FAI considers not only the distribution and vitality of tree species 
but also their complex relationships with growth and production.  

• Changes of the forestry climate classes in Zala County also refer to the 
more frequent and severe drought periods in the last 30 years (Fig. 2). For 
1981–2010, most of the climatically suitable areas of beech changed to 
hornbeam-oak compared to 1961–1990 (Fig. 8). In case of the projected 
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4.2. Decision support for end users 

Forest management planning needs concrete and quantified information about 
the possible change of the yield potential, including the economic consequences 
of premature harvesting due to stability loss on the level of forest sub-
compartments, in order to make decisions on species preference. It is a challenge 
for the decision support system to translate and interpret projected climate 
change (including the range and likelihood of the simulation results) as well as 
the standard deviation of the possible impacts as a quantified risk factor, so far. 

5. Summary  

Long term climate projections have been analyzed that serves as basis of climate 
impact research and adaptation support in forestry, focusing on the expected 
probability and magnitude of threatening climate conditions. In the case study 
region (Zala County in Southwest Hungary), simulation results of an ensemble 
of regional climate models indicate a significant warming in all seasons towards 
the end of the 21st century (by up to 3.9 °C for summer in 2071–2100). Both 
increasing frequency of warm temperature extremes and less cold extremes 
confirm the warming tendency. Although the mean annual values of 
precipitation remain almost constant, in winter an increase, whereas in summer a 
decrease of precipitation can be expected. The latter can exceed 25% until the 
end of the century in Zala County compared to the climate baseline period 
1981–2010. Warmer and drier conditions in summer can result in an increase of 
the probability and severity of droughts. Heavy precipitation days can be more 
frequent, especially in autumn and winter. Magnitude of all simulated changes is 
expected to increase towards the end of the century.  

These climate projections have been included as one of the basic datasets in 
the GIS-based “Agroclimate” decision support system. From the climate input, 
general climate indices (e.g., hot days, extremely hot days, wet days) and 
forestry climate indicators (e.g., Ellenberg’s climate quotinent; Ellenberg, 1988 
and forestry aridity index; Führer, 2010) are derived. They are used to develop 
correlation functions for forest growth, yield potential, and production as well as 
to model many other variables such as species distribution, water and carbon 
cycle of forests, etc. (see Section 4). Results of climate impact assessments 
indicate that in case of projected warming and drying of summers, the already 
observed damages in forestry are very likely to occur with higher probability 
and severity.  

The geoinformatic system allows the integrated data processing and the 
complex investigation of the climate influenced processes in forest ecosystems. 
In this way, the GIS-supported climate services can provide a basis of new 
scientific results in impact research. 
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However, there is still a gap between provided climate information and 
required data for impact assessments regarding to the spatial and temporal 
resolution and the appropriate bias correction methods. Forest responses are also 
influenced by other factors (e.g., site conditions beyond climate, biotic damages 
and adaptive capacity) that have been shown to contribute to the relatively large 
standard deviation of the estimated impacts. The main challenge is to interpret 
the different bandwidths and uncertainties and to provide a quantified risk factor 
regarding to possible climate change impacts for end-users in forest 
management planning. 

Climate impact research is being continued in the frame of the 
“Agroclimate-2” project, where results are planned to be extended to country 
scale and to the climate-dependent sectors of agriculture by continuous update 
with recent data and climate projections. 
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