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Abstract—Due to intense human presence and various anthropogenic activities, global 
climate change has been detected. Increasing temperature values and an overall warming 
are projected, which will certainly affect the global circulation patterns and regional 
climatic conditions throughout Europe. As an indirect consequence, global warming may 
also alter the wind conditions in the Carpathian Basin. In order to provide reliable 
projections for the future, the first task is to analyze wind climatology of the recent past 
using various tools from mathematical statistics.  

In this paper, detailed analysis of observed wind fields, trends of different percentiles, 
return values, wind related climate indices, and their spatial distributions are discussed 
over Hungary using the homogenized Hungarian synoptic data sets and the homogenized 
and gridded CARPATCLIM database. Wind related climate indices are defined to 
evaluate the frequency occurrence and the trend of moderate and strong wind days at the 
stations in the last few decades. The annual daily maxima of wind speed and wind gust 
are determined on the basis of available time series fitted to the generalized extreme value 
distribution at every station and grid cell. 50-year and 100-year return values are 
estimated from these fitted distributions.  

In addition, simulated wind climate variability is evaluated for the future periods of 
2021–2050 and 2071–2100 relative to the 1961–1990 reference period. Since projected 
wind speed is highly overestimated by the simulation of the regional climate model 
RegCM for the reference period (1961–1990), a bias correction is necessary to apply to 
the raw simulated wind data using CARPATCLIM as a reference database. The bias 
correction method is based on fitting the empirical cumulative density functions of 
simulated daily time series to the observations for each gridcell using monthly 
multiplicative correction factors.  
 
Key-words: Hungarian wind climate, extremes, homogeneity, CARPATCLIM, RegCM 
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1.  Introduction 

Based on the observations, global climate change has reduced the Pole to 
Equator temperature gradient, which certainly affects the large scale circulation 
as well as regional climatic conditions. Besides the changes of mean climatic 
values, the entire distribution is changing, thus influencing intensity and 
frequency of climate extremes (AghaKouchak et al., 2012). Various physical 
processes in the atmosphere lead to extreme values of meteorological elements. 
Weather and climate extremes (e.g., heat waves, extreme cold/hot conditions, 
too little/excessive precipitation, extreme winds) may especially affect exposed 
and vulnerable human and natural systems, therefore, development of 
appropriate action plans need detailed information on the past and future 
changes of extremes. It is essential to understand how and why climate extremes 
have changed recently, and how they will likely to change in the future.  

Mid-latitude wind climate can be mainly determined by considering 
cyclogenesis processes and track analysis of high and low pressure systems over 
the continent. The surface winds are often depending on local conditions such as 
topography, geographical location, distance from large water bodies, and 
differential surface heating (Oliver, 2005). Examples of specific local wind 
include land/sea breeze, mountain/valley breeze, foehn winds formed by 
pressure or temperature gradient force. Moreover, local wind and instability can 
also be originated from (dust) storms. 

Regional and local wind climate have direct effects on human activity, for 
instance, on aviation, urban planning (via impact on building design and air 
pollution), industry, energy sector, military operations, etc. Therefore, 
researchers, engineers, architects, designers need information about local wind 
climate as fine as possible. In most of the cases, their tasks and duties are 
strongly connected to appropriate analysis of meteorological and climatic 
problems, or they need to apply results of the analysis of regional or local wind 
fields to more specific, further impact studies. Moreover, many practical and 
theoretical problems in meteorology and climatology require accurate 
measurements of wind speed, direction, and gust. In order to ensure high quality 
of meteorological measurement systems, standards of measurements have been 
set by the World Meteorological Organization (WMO). Wind speeds are 
measured as 10-minute averages, wind gusts are the maximum speeds recorded 
within the 10-minute averages’ period (WMO, 2008). The standard exposure 
height is 10 meter. 

Direct wind climatological analysis of changes is hampered by the lack of 
several-decades-long, good quality, and homogeneous surface wind 
observations. Homogeneity of climate data is especially important when 
analyzing extremes, especially, at fine spatial scale. A climatological time series 
can be considered homogeneous if its variability is solely caused by changes in 
weather and climatic conditions (Aguilar et al., 2005). However, wind as a 
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meteorological element is especially sensitive to uncertainties caused by 
relatively small changes related to the measuring process, in the vicinity of the 
measuring equipment. For example, installation of a small building or changes 
in vegetation cover near the measuring equipment, or changes in instrumentation 
and measuring methods can produce bias in wind measurements (Wan et al., 
2010). When such a change occurs, it can result a discontinuity in the time series 
or a false trend (Menne and Williams Jr., 2009). Therefore, quality control and 
homogenizing of available daily wind speed and wind gust data sets (1975–
2012) were completed (Péliné et al., 2014) in order to assess Hungarian wind 
climate trends, variability, frequency, and intensity of extreme wind events as 
reliable as possible. For this purpose, the MASH (Multiple Analysis of Series 
for Homogenization) procedure developed at the Hungarian Meteorological 
Service (Szentimrey, 1999) was applied to homogenize 19 Hungarian stations’ 
daily wind speed and wind gust data sets. 

The word “extreme” refers to many different issues in the climate research 
literature, so there is no unique, precise climatological definition of an extreme 
(Stephenson, 2008). For instance, extreme may be associated to a climate 
variable or an impact of specific climatic conditions. In the case of a climate 
variable (e.g., temperature, precipitation, wind speed, etc.), extremes can be well 
defined as a rarely occurring value, i.e., with small probability, in the tail of the 
probability density function (f(x)) of the given climate variable. In the case of an 
impact, an extreme can be less well defined, since quantity of impacts cannot be 
described in a unique way. It is important to mention that on one hand, rare 
events (e.g., tornado) may not necessarily cause damage, and their impact does 
not always lead to a disaster; on the other hand, non-extreme events (e.g., strong 
wind or regularly occurring storm) may cause devastating effects and severe 
damages in the environment. In this paper, we are focusing on the analysis of 
climate variables themselves.  

Based on the Special Report on Managing the Risks of Extreme Events and 
Disasters to Advance Climate Change Adaptation (SREX) published by the 
International Panel on Climate Change (IPCC, 2012), extreme weather or 
climate events are the occurrence of a value of a weather or climate variable 
above (or below) a threshold value near the upper (or lower) ends of the range of 
observed values of the variable. For simplicity, both extreme weather events and 
extreme climate events are often referred to collectively as ‘climate extremes’ 
(Seneviratne et al., 2012). They can be defined quantitatively in two ways: (1) 
related to their probability of occurrence, e.g., percentiles and return frequencies, 
(2) related to a specific (possibly impact-related) threshold. 

Although the wind speed value itself is rarely used to define extreme events 
(e.g., mesoscale convective complex, cyclone, thunderstorm, squall lines, etc.) 
(Peterson et al., 2008), wind speed thresholds may be used to characterize the 
severity of the phenomenon (e.g., the Saffir-Simpson scale for tropical 
cyclones). Changes in wind extremes may be resulted from changes in the 
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intensity or location of their associated phenomena (e.g., change in local 
convective activity) or from other changes in the climate system such as the 
movement of large-scale circulation patterns (IPCC, 2012). Wind extremes may 
be described by a range of daily/monthly/yearly quantities such as high 
percentiles, maxima, or wind-related climate indices after checking data series 
for homogeneity. 

Our main aim is to analyze the wind climate in Hungary, specifically, to 
estimate temporal and spatial distributions of mean and extreme wind speed. For 
this purpose, different percentile values and their trends are calculated, 
moreover, return values and wind-related climate indices are determined using 
observed (station and gridded) and projected (from climate model simulation) 
data sets. 

2. Applied data and methodology 

2.1. Applied statistical distributions 

For the sake of practical simplicity and to reduce complex characteristics of time 
series during the analysis, data distributions are often estimated by mathematical 
functions that depend on a few parameters only, so the analysis task is simplified 
to estimation of these parameters. 

The special cases of the three-parameter generalized extreme value (GEV) 
or Fisher-Tippet distribution (Palutikof et al., 1999) is widely used in 
meteorology, which includes Gumbel (type 1), Frechet (type 2), and Weibull 
(type 3) distributions. Distribution of averaged wind speed (with averaging 
period of 10 min) may be estimated by the two-parameter Weibull distribution, 
whereas distribution of maximum wind speed during a given period can be 
described by Gumbel distribution (Wilks, 2006). 

The Weibull distribution is governed by two parameters, i.e., a scale factor 
(λ [m/s], being proportional to the mean wind speed), and a form factor or shape 
parameter (k [dimensionless], describing the shape of the distribution). 

The Weibull distribution function F(u) can be written as follows: 
 

ሻݑሺܨ  ൌ 1 െ exp ൬1 െ ቀ௨ఒቁ൰, (1) 
 
where u is the wind speed with an averaging period of 10 min, λ is the scale 
factor, and k is the shape parameter. 

From this, the Weibull probability density function f(u) can be expressed as 
follows: 
 

 ݂ሺݑሻ ൌ ݇ · ቀ௨ೖషభఒೖ ቁ ·  exp ൬െ ቀ௨ఒቁ൰. (2) 
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Average wind speed ሾݑതሿ of the whole analyzed period can be described by 
the Weibull parameters using Gamma function (Γ) as follows: 
 
 ሾuሿ ൌ ߣ · Γ ቀ1  ଵቁ, (3) 

 
 Γሺݔሻ ൌ  ݁ି௨ݑ௫ିଵ ஶݑ݀ . (4) 

 
For k = 1 and 2, the Weibull distribution is identical to the exponential and 

Rayleigh distribution, respectively. For k = 3.4, the Weibull distribution is 
similar to the Gaussian distribution (Wilks, 2006; Emeis, 2013). 

Wind speed extremes can be characterized with estimation of high 
percentiles, wind speed related climate indices, and return values using different 
specific periods. The return value is a threshold value, which can be defined by a 
fitted model (von Storch and Zwiers, 1999). The value of the analyzed variable 
may occur or be exceeded once on average during the specific return period.  

The probability of occurrence of extreme values can be described by a 
Gumbel distribution (Gumbel, 1958). Probability density function f(x) and 
cumulative frequency distribution function F(x) are expressed in Eqs. (5) and 
(6), respectively: 

 
 ݂ሺݔሻ ൌ ݁ି௫݁ିషೣ, (5) 
 
ሻݔሺܨ  ൌ ݁ିషೣ  . (6) 

 
For estimation of return values, the inverse of Eq.(6) should be calculated 

(Emeis, 2013), which is the following percentile function G(p): 
 
ሻሺܩ  ൌ െln ሺെ lnሺሻሻ. (7) 

 
In practice, independent maxima of the time series (for example, yearly 

maxima of wind speed or wind gust) are sorted in ascending order, then, these 
sorted values are plotted against G(p). Data, which follow a Gumbel distribution 
form a straight line, in conformity with its definition. Estimations of return 
values for specific return periods (e.g., 50 years or 100 years) are quite 
straightforward by using this graph. The extreme value expected to occur once 
in 50 years or 100 years can be calculated from the equation of the fitted 
extrapolated straight line (ݑ௫ ൌ ܽ · ሺെln൫െlnሺሻ൯ሻ  ܾ). For example, if the 
return period ܶ ൌ 100 years then the probability of occurrence  ൌ ଵ் ൌ 0.01 in 
any particular year within this entire period, thus,  ܩሺ ൌ 0.99ሻ ൌ 4.6, and the 
return value (ݑ௫) can be calculated from the equation of the fitted linear line. 
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The probability for the 100-year return value to appear in a chosen 100-year 
period is ܲ ൌ 1 െ 0.99ଵ ൌ 0.634. 

2.2. Wind indices 

In order to analyze the extreme wind characteristics, climate indices can be used. 
Similarly to the widely used temperature and precipitation related climate 
indices (e.g., Bartholy and Pongrácz, 2007), wind related climate indices are 
defined in this study. They consider daily average wind speed as well as daily 
maximum wind gust values. Three types of indices are used here: (i) the number 
of days above or below a certain threshold value, (ii) the number of periods of 
consecutive days above or below these thresholds, and (iii) the maximum length 
of these periods. The applied time frame includes yearly, seasonal, and monthly 
basis. Table 1 summarizes the indices evaluated in this paper. 
 
 
 
 
 
 

Table 1. List of used wind related climate indices, their definitions and units. 

No. Index Definition Unit 

1–3 wavgGTXX Yearly/seasonal/monthly number of days with average 
wind speed exceeding XX m/s;  
vavg > XX m/s, where XX = 15, 10, 8 

days 

4–6 wavgLTXX Yearly/seasonal/monthly number of days with average 
wind speed below XX m/s;  
vavg < XX m/s, where XX = 1, 3, 5 

days 

7–9 CwXXD Yearly/seasonal/monthly number of periods of 
consecutive days with daily average wind speed 
exceeding XX m/s, where XX = 15, 10, 8 

– 

10–12 CwXXD Yearly/seasonal/monthly number of periods of 
consecutive days with daily average wind speed below 
XX m/s, where XX = 1, 3, 5 

– 

13–15 CwXXDmax Yearly/seasonal/monthly number of maximum 
consecutive days with daily average wind speed 
exceeding XX m/s, where XX = 15, 10, 8 

days 

16–18 CwXXDmax Yearly/seasonal/monthly number of maximum 
consecutive days with daily average wind speed below 
XX m/s, where XX = 1, 3, 5 

days 

19–23 CgXXD Yearly/seasonal/monthly number of periods of 
consecutive days with daily maximum wind gust 
exceeding XX m/s, where XX = 15, 20, 25, 30, 35 

– 

24–29 GustGTXX Yearly/seasonal/monthly number of days with daily 
maximum wind gust exceeding XX m/s;  
vgust > XX m/s, where XX = 15, 20, 25, 30, 35 

days 
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2.3. Bias corrected outputs of RegCM regional climate model  

In order to estimate the future changes in wind related climate extremes, 
regional climate model outputs serve as the basis. For this purpose, simulation of 
the RegCM regional climate model (Torma et al., 2008, 2011) is used in this 
paper. For the reference period (1961–1990), model outputs overestimate the 
average wind speed for the Carpathian Basin. The overestimation of the yearly 
average wind speed is about 2 m/s, and the seasonal overestimation is the highest 
in winter (2.6 m/s in the gridcell centering 47.5°N and 19°E, which represent the 
Budapest agglomeration area). Therefore, simulated wind data should be bias-
corrected for assessing extreme wind conditions as realistic as possible.  

The probability density function (PDF) or the cumulative density function 
(CDF) describe completely the statistical properties of a dataset. If two data sets 
results in the same PDF or CDF then they can be considered statistically identical. 
The applied correction method is based on the study of Pongrácz et al. (2014), 
which uses the differences of the monthly empirical CDFs of RegCM model 
outputs and CARPATCLIM gridded data sets for the reference period. First, 
multiplicative correction factors fmultiplicative are calculated on a monthly basis for 
the past (i.e., 1961–1990):  

 
 ݂௨௧௧௩ ൌ ி್ೞషభ ሺ௬ሻிషభ ሺ௬ሻ ൌ ௫್ೞ௫ ,  (8) 

 
where the probability-quantile of observations is xobs and the probability-quantile 
of raw simulated data is xmodel. Thus, the raw model data with CDF value p is 
corrected, and it becomes equal to CDF value of the observations. Then, these 
calculated factors are applied to the future periods (2021–2050, 2071–2100).  

3. Results 

Homogenized wind speed (1975–2012) and wind gust (1975–2013) 
measurements, as well as homogenized and gridded data sets of the 
CARPATCLIM (1961–2010) database are analyzed in order to assess 
Hungarian wind climate trends, variability, frequency, and intensity of extreme 
wind events. Average yearly wind speed is modified significantly by a 
homogenization procedure (Péliné et al., 2014). Consequently, the fitted linear 
trends of average and different percentile values also changed at many stations 
compared to those before the homogenization. These differences emphasize that 
inhomogeneities in climatological time series may lead to false values and 
misinterpretations of detected changes.  

The generalized extreme value distribution is fitted to the annual maxima 
of wind speed at every station and all the CARPATCLIM grid points, which 
were used to estimate 50-year and 100-year return values. Fig. 1 summarizes 
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Projected monthly changes in the 0.90 percentile are relatively small (the 
maximum is 0.6 m/s) for both periods, whereas changes in the 0.99 percentile 
values are projected to exceed 2 m/s in several regions in the country. 
Differences of the medians do not exceed 0.4 m/s. 

4. Summary and conclusions 

Our analysis of homogenized observed station and gridded wind data show 
overall decrease in the annual mean wind speed, which is consistent with the 
reduced Pole to Equator meridional temperature gradient in a warmer globe. 
Similar decreasing trend is also concluded by Spinoni et al. (2014) using 
CARPATCLIM data sets wind speed decrease in every season in Hungary. 

Our results can be summarized as follows.  
(1) Comparison of the raw and homogenized wind speed (1975–2012) and 

wind gust (1975–2013) measurements leads to different results, which highlight 
that inhomogeneities may mislead our conclusions.  

(2) Wind climate extremes can be described by a range of daily/monthly/ 
yearly quantities such as high percentiles, maxima, return values, and wind 
indices. For instance, overestimation of the Weibull shape parameters in ERA 
Interim reanalysis data (1979–2012) compared to synoptic stations reduces the 
variability of wind conditions and the probability of extreme wind speed. That is 
why the use of homogenous, quality-controlled, and reliable (measured) data 
series are essential when completing a reliable wind climatological analysis with 
special focus on extremes.  

(3) GEV distributions are fitted to the annual daily maxima of wind speed 
at all the measuring stations and all the grid points of CARPATCLIM (1961–
2010) database, which are used to estimate 50-year and 100-year return values. 
The return values are generally in the interval between 14 m/s and 20 m/s in 
most of Hungary, however, they exceed 26 m/s in the northeastern region of the 
country (in Nyíregyháza among the stations). The differences can partially be 
explained by the different calculation method of daily wind speed. 

(4) Regarding the wind speed indices, yearly occurrence of days with small 
average wind speed has become more frequent, and the yearly number of days 
with average wind speed exceeding the larger thresholds has decreased. These 
negative trends are generally significant. Yearly number of periods of 
consecutive days with daily average wind speed below 3 m/s has also decreased 
significantly. Wind gust related indices has also decreased in general.  

(5) Since simulated wind speed time series (using RegCM) highly 
overestimate the measurements in the reference period (1961–1990), and thus, 
do not reproduce the distribution of the CARPATCLIM daily wind speed 
values, a bias correction is applied to the simulated wind data using 
CARPATCLIM as a reference. Differences of the percentile values (between 
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raw simulated data of RegCM and the CARPATCLIM wind) are the smallest 
during months May and June. Similarly, the smallest biases of ERA Interim data 
compared to the station measurements are found in June and July. These results 
indicate that the larger bias values may be associated with winds resulted by 
winter storms.  

(6) The application of bias correction substantially reduced the average 
monthly bias (practically to zero). The differences of the percentiles in the 
reference period are generally small, except in the tail of the distribution, where 
it can reach 1 m/s in some gridpoints in case of the 0.99 percentile value.  

(7) Projected monthly changes in the median and the 0.90 percentile are 
relatively small (below 0.4 m/s and 0.6 m/s, respectively) for both future periods 
(2021–2050 and 2071–2100), however, estimated monthly changes of the 0.99 
percentile may reach 2 m/s. 
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