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Abstract—In this work the theoretical relationship between the clear-sky outgoing 
infrared radiation and the surface upward radiative flux is explored by using a realistic 
finite semi-transparent atmospheric model. We show that the fundamental relationship 
between the optical depth and source function contains real boundary condition 
parameters. We also show that the radiative equilibrium is controlled by a special 
atmospheric transfer function and requires the continuity of the temperature at the ground 
surface. The long standing misinterpretation of the classic semi-infinite Eddington 
solution has been resolved. Compared to the semi-infinite model, the finite semi-
transparent model predicts much smaller ground surface temperature and a larger surface 
air temperature. The new equation proves that the classic solution significantly 
overestimates the sensitivity of greenhouse forcing to optical depth perturbations. In 
Earth-type atmospheres sustained planetary greenhouse effect with a stable ground 
surface temperature can only exist at a particular planetary average flux optical depth of 
1.841. Simulation results show that the Earth maintains a controlled greenhouse effect 
with a global average optical depth kept close to this critical value. The broadband 
radiative transfer in the clear Martian atmosphere follows different principle resulting in 
different analytical relationships among the fluxes. Applying the virial theorem to the 
radiative balance equation, we present a coherent picture of the planetary greenhouse 
effect. 
 
Key-words: greenhouse effect, radiative equilibrium. 

 
 

1. Introduction 
 
Recently, using powerful computers, virtually any atmospheric radiative transfer 
problem can be solved by numerical methods with the desired accuracy without 
using extensive approximations and complicated mathematical expressions 
common in the literature of the theoretical radiative transfer. However, to 
improve the understanding of the radiative transfer processes, it is sometimes 
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useful to apply reasonable approximations and to arrive at solutions in more or 
less closed mathematical forms which clearly reflect the physics of the problem. 

Regarding the planetary greenhouse effect, one must relate the amount of 
the atmospheric infrared (IR) absorbers to the surface temperature and the total 
absorbed short wave (SW) radiation. In this paper we derive purely theoretical 
relationships between the above quantities by using a simplified one 
dimensional atmospheric radiative transfer model. The relationships among the 
broadband atmospheric IR fluxes at the boundaries are based on the flux optical 
depth. The atmospheric total IR flux optical depths are obtained from 
sophisticated high-resolution spectral radiative transfer computations. 
 
 

2. Radiative transfer model 
 
In Fig. 1 our semi-transparent clear sky planetary atmospheric model and the 
relevant (global mean) radiative flux terms are presented. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here 0F  is the total absorbed SW radiation in the system, F  is the part of 0F  
absorbed within the atmosphere, DE  is the long wave (LW) downward 
atmospheric radiation, OLR  is the outgoing LW radiation, UE  is the LW 
upward atmospheric radiation. GS  is the LW upward radiation from the ground: 

4
G GS tσ= , where Gt  is the ground temperature and σ  is the Stefan-Boltzmann 

constant. TS  and AA  are the transmitted and absorbed parts of GS , respectively. 

Fig. 1. Radiative flux components in a semi-transparent clear planetary atmosphere. 
Short wave downward: 0F  and F ; long wave downward: DE ; long wave upward: 
 OLR , UE , TS , AA , and GS ; non-radiative origin: K , 0P  and P . 
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The total thermal energy from the planetary interior to the surface-atmosphere 
system is 0P . P  is the absorbed part of 0P  in the atmosphere. The net thermal 
energy to the atmosphere of non-radiative origin is K . The usual measure of the 
clear-sky atmospheric greenhouse effect is the GG S OLR= −  greenhouse factor 
(Inamdar and Ramanathan, 1997). The normalized greenhouse factor is defined 
as the /N GG G S=  ratio. In some work the /GS OLR  ratio is also used as 
greenhouse parameter (Stephens et al., 1993). 
 
Our model assumptions are quite simple and general: 
 
(a) — The available SW flux is totally absorbed in the system. In the process of 
thermalization 0F  is instantly converted to isotropic upward and downward LW 
radiation. The absorption of the SW photons and emission of the LW radiation 
are based on independent microphysical processes. 
 
(b) — The temperature or source function profile is the result of the equilibrium 
between the IR radiation field and all other sinks and sources of thermal energy 
(latent heat transfer, convection, conduction, advection, turbulent mixing, short 
wave absorption, etc.). Note, that the K  term is not restricted to strict vertical 
heat transfer. Due to the permanent motion of the atmosphere K  represents a 
statistical or climatic average. 
 
(c) — The atmosphere is in local thermodynamic equilibrium (LTE). In case of 
the Earth this is true up to about 60 km altitude. 
 
(d) — The surface heat capacity is equal to zero, the surface emissivity Gε  is 
equal to one, and the surface radiates as a perfect blackbody. 
 
(e) — The atmospheric IR absorption and emission are due to the molecular 
absorption of IR active gases. On the Earth these gases are minor atmospheric 
constituents. On the Mars and Venus they are the major components of the 
atmosphere. 
  
(f) — In case of the Earth it is also assumed that the global average thermal flux 
from the planetary interior to the surface-atmosphere system is negligible, 

0 0P = . The estimated geothermal flux at the surface is less than 0.03 per cent of 
0F  (Peixoto and Oort, 1992). However, in our definition 0P  is not restricted to 

the geothermal flux. It may contain the thermal energy released into the 
atmosphere by volcanism, tidal friction, or by other natural and non-natural 
sources. 
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(g) — The atmosphere is a gravitationally bounded system and constrained by 
the virial theorem: the total kinetic energy of the system must be half of the total 
gravitational potential energy. The surface air temperature, At , is linked to the 
total gravitational potential energy through the surface pressure and air density. 
The temperature, pressure, and air density obey the gas law, therefore, in terms 
of radiative flux 4

A AS tσ=  represents also the total gravitational potential energy. 
 
(h) — In the definition of the greenhouse temperature change keeping At  and Gt  
different could pose some difficulties. Since the air is in permanent physical 
contact with the surface, it is reasonable to assume that, in the average sense, the 
surface and close-to-surface air are in thermal equilibrium: S A Gt t t= = , where 

St  is the equilibrium temperature. The corresponding equilibrium blackbody 
radiatiation is 4

U SS tσ= . For now, in Fig. 1 GS  is assumed to be equal to US .  
 
Assumptions (c), (d), (e), and (f) are commonly applied in broadband LW flux 
computations, see for example in Kiehl and Trenberth (1997). Under such 
conditions the energy balance equation of the atmosphere may be written as: 
 
 0A D UF P K A E E+ + + − − = . (1) 
 
The balance equation at the lower boundary (surface) is: 
 
 0 0 0D A TF P E F P K A S+ + − − − − − = . (2) 
 
The sum of these two equations results in the general relationship of: 

 
 0 0

T UF P S E OLR+ = + = . (3) 
 
This is a simple radiative (energy) balance equation and not related to the 
vertical structure of the atmosphere. For the Earth this equation simplifies to the 
well known relationship of 0F OLR= . For long term global mean fluxes these 
balance equations are exact and they are the requirements for the steady-state 
climate. However, they do not necessarily hold for zonal or regional averages or 
for instantaneous local fluxes. 
 The most apparent reason of any zonal or local imbalance is related to the 
K  term through the general circulation. For example, evaporation and 
precipitation must be balanced globally, but due to transport processes, they can 
add or remove optical depth to and from an individual air column in a non-
balanced way. The zonal and meridional transfer of the sensible heat is another 
example. 
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When comparing clear sky simulation results of the LW fluxes, one should 
be careful with the cloud effects. Due to the SW effect of the cloud cover on 0F  
and F , clear sky computations based on all sky radiosonde observations will 
also introduce deviations from the balance equations. 

The true all sky outgoing LW radiation, AOLR , must be computed from the 
clear OLR  and the cloudy COLR  fluxes as the weighted average by the 
fractional cloud cover: (1 )A COLR OLR OLRβ β= − + , where β  is the fractional 
cloud cover. Because of the large variety of cloud types and cloud cover and the 
required additional information on the cloud top altitude, temperature, and 
emissivity, the simulation of COLR  is rather complicated.  

The global average AOLR  may be estimated from the bolometric planetary 
equilibrium temperature. From the ERBE (2004) data product we estimated the 
five year average planetary equilibrium temperature as 253.8Et =  K, which 
resulted in a global average 235.2AOLR =  W m–2. From the same data product 
the global average clear-sky OLR  is 266.4 W m–2. 
 
 

3. Kirchhoff law 
 
According to the Kirchhoff law, two systems in thermal equilibrium exchange 
energy by absorption and emission in equal amounts, therefore, the thermal 
energy of either system can not be changed. In case the atmosphere is in thermal 
equilibrium with the surface, we may write that: 
 
 (1 )A U U A DA S A S T E= = − = . (4) 
 
By definition the atmospheric flux transmittance AT  is equal to the /T US S  ratio: 

1 exp( ) /A A T UT A S Sτ= − = − =% , where A  is the flux absorptance and Aτ%  is the 
total IR flux optical depth. The validity of the Kirchhoff law – concerning the 
surface and the inhomogeneous atmosphere above – is not trivial. Later, using 
the energy minimum principle, we shall give a simple theoretical proof of the 
Kirchhoff law for atmospheres in radiative equilibrium.  

In Fig. 2 we present large scale simulation results of AA  and DE  for two 
measured diverse planetary atmospheric profile sets. Details of the simulation 
exercise above were reported in Miskolczi and Mlynczak (2004). This figure is a 
proof that the Kirchhoff law is in effect in real atmospheres. The direct 
consequences of the Kirchhoff law are the next two equations: 
 
 UE F K P= + + , (5) 
 

 0 0( )U D US F P E E− + = − . (6) 
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The physical interpretations of these two equations may fundamentally change 
the general concept of greenhouse theories. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 Upward atmospheric radiation 
 
Eq. (5) shows that the source of the upward atmospheric radiation is not related 
to LW absorption processes. The F K P+ +  flux term is always dissipated 
within the atmosphere increasing (or decreasing) its total thermal energy. The 

D U TE S S= −  functional relationship implies that D UG E E− = − , therefore, the 
interpretation of DG E−  as the LW radiative heating (or cooling) of the 
atmosphere in Inamdar and Ramanathan (1997) could be misleading. 

Regarding the origin, UE  is more closely related to the total internal kinetic 
energy of the atmosphere, which – according to the virial theorem – in 
hydrostatic equilibrium balances the total gravitational potential energy. To 
identify UE  as the total internal kinetic energy of the atmosphere, the 

/ 2U UE S=  equation must hold. UE  can also be related to NG  through the 
( )U U NE S A G= −  equation. In opaque atmospheres 1A =  and the 0.5NG =  is 

the theoretical upper limit of the normalized greenhouse factor. 
 
3.2 Hydrostatic equilibrium 
 

Fig. 2. Simulation results of AA  and DE . Black dots and open circles represent 228 
selected radiosonde observations with 1Gε =  and 0.96Gε = , respectively. Black stars   
are simulation results for Martian standard atmospheric profiles with 1Gε = . We used 
two sets of eight standard profiles. One set contained no water vapor and in the other 
the water vapor concentration was set to constant 210 ppmv (approximately 

0.0015 prcm H2O).
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In Eq. (6) 0 0( )US F P− +  and D UE E−  represent two flux terms of equal 
magnitude, propagating into opposite directions, while using the same 0F  and 

0P  as energy sources. The first term heats the atmosphere and the second term 
maintains the surface energy balance. The principle of conservation of energy 
dictates that: 
 
 0 0 0 0( )U D US F P E E F P OLR− + + − = + = . (7) 
 
This equation poses a strict criterion on the global average US : 
 
 0 03 / 2 ( )U US OLR S F P R= → − + = . (8) 
 
In the right equation R  is the pressure of the thermal radiation at the ground: 

/3UR S= . This equation might make the impression that G  does not depend on 
the atmospheric absorption, which is generally not true. We shall see that under 
special conditions this dependence is negligible. Eq. (8) expresses the 
conservation of radiant energy but does not account for the fact, that the 
atmosphere is gravitationally bounded. Implementing the virial theorem into Eq. 
(8) is relatively simple. In the form of an additive VS  ‘virial’ term we obtained 
the general radiative balance equation: 
 
 0 0/ 2 /10 3 / 2 ( ) 6 /5U T D US S E OLR S F P R A+ − = → − + = . (9) 
 
In Eq. (9) the / 2 /10V T DS S E= −  virial term will force the hydrostatic 
equilibrium while maintaining the radiative balance. From Eq. (9) follow the 
3/5 2 /5 /A UT OLR S+ =  and the / 3/5U DE E =  relations. This equation is based 
on the principle of the conservation of energy and the virial theorem, and we 
expect that it will hold for any clear absorbing planetary atmosphere. 

The optimal conversion of 0 0F P+  to OLR  would require that either 
0AT ≈  or 1AT ≈ . The first case is a planet with a completely opaque atmophere 

with saturated greenhouse effect, and the second case is a planet without 
greenhouse gases. For the Earth obviously the 0AT ≈  condition apply and the 

/ 3/5A A
UOLR S =  equation gives an optimal global average surface upward flux 

of 392A
US =  W m–2 and a global average surface temperature of 288.3 K. We 

know that – because of the existence of the IR atmospheric window – the flux 
transmittance must not be zero and the atmosphere can not be opaque. The 
Earth’s atmosphere solves this contradiction by using the radiative effect of a 
partial cloud cover. 

For atmospheres, where 5D TE S≈  or 1/ 6AT ≈ , Eq. (9) will take the form 
of Eq. (8). In optically thin atmospheres where, /10DE OLR<<  or T US E>> , 
Eq. (9) simplifies to: 
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 0 0/ 2 3 / 2 ( )U T US S OLR S F P R A+ = → − + = . (10) 
 
Eq. (10) implies the 2 /3 /3 /A UT OLR S+ =  and / 2 /3U DE E =  relations. 
Applying this equation for the Earth’s atmosphere will introduce more than 10% 
error in the OLR .  
 
3.2 Transfer and greenhouse functions 
 
The relationships between the OLR  and US  may be expressed by using the 
concept of the transfer function. The transfer function converts the surface 
upward radiation to outgoing LW radiation. It is practically the / UOLR S  ratio 
or the normalized OLR . The greenhouse functions are analogous to the 
empirical NG  factor introduced in Section 2. From Eqs. (8), (9), and (10) one 
may easily derive the 2 /3f + = , 1 2 /5f A= −o , and 1 /3f A∗ = −  transfer 
functions, and the 1/3g+ = , 2 /5g A=o , and /3g A∗ =  greenhouse functions, 
respectively. The g+ , go , and g∗  greenhouse functions will always satisfy the 

0 0
US F P> +  relationship, which is the basic requirement of the greenhouse 

effect. On the evolutionary time scale of a planet, the mass and the composition 
of the atmosphere together with the 0F  and 0P  fluxes may change dramatically 
and accordingly, the relevant radiative balance equation could change with the 
time and could be different for different planets.  

The most interesting fact is, that in case of Eq. (8) / 1/3Ug R S+ = =  does 
not depend on the optical depth. G  will always be equal to the radiation 
pressure of the ideal gas, and the atmosphere will have a constant optical depth 

Aτ
+%  which is only dependent on the sum of the external SW and internal thermal 

radiative forcings. In Eqs. (9) and (10) the dependence of G  on A  is expected. 
Planets following the radiation scheme of Eq. (8) can not change their surface 
temperature without changing the surface pressure – total mass of the 
atmosphere – or the SW or thermal energy input to the system. This kind of 
planet should have relatively strong absorption ( 1/ 6AT ≈ ), and the greenhouse 
gases must be the minor atmospheric constituents with very small effect on the 
surface pressure. Earth is a planet of this kind. In the Martian atmosphere UE  is 
far too small and in the Venusian atmosphere GS  is far too large to satisfy the 

/ 2U UE S≈  condition, moreover, the atmospheric absorption on these planets 
significantly changes with the mass of the atmosphere – or with the surface 
pressure.  

Our simulations show that on the Earth the global average transmitted 
radiative flux and downward atmospheric radiation are 61E

TS =  W m–2 and 
309E

DE =  W m–2. The /5E E
T DS E≈  approximation holds and Eq. (8) with the g+  

greenhouse function may be used. The global average clear sky US  and OLR  



 9

are 382E
US =  W m–2 and 250EOLR =  W m–2. Correcting this E

US  to the altitude 
level where the OLR  was computed (61.2 km), we may calculate the global 
average NG  as ( ) / 0.332E E E E

N U UG S OLR S= − = . In fact, E
NG  is in very good 

agreement with the theoretical 0.333g+ = . The simulated global average flux 
optical depth is ln( ) 1.87E E

A ATτ = − =% , where E
AT is the global average flux 

transmittance.  This simulated E
Aτ%  can not be compared with theoretical optical 

depths from Eq. (8) without the explicit knowledge of the ( , )U AS OLR τ%  
function. The best we can do is to use Eq. (9) – the 1/ 6AT =  condition – to get 
an estimate of ln(1/ 6) 1.79Aτ

+ ≈ − =% , which is not very far from our E
Aτ% . 

The popular explanation of the greenhouse effect as the result of the LW 
atmospheric absorption of the surface radiation and the surface heating by the 
atmospheric downward radiation is incorrect, since the involved flux terms ( AA  
and DE ) are always equal. The mechanism of the greenhouse effect may better 
be explained as the ability of a gravitationally bounded atmosphere to convert 

0 0F P+  to OLR  in such a way that the equilibrium source function profile will 
assure the radiative balance ( 0 0F P OLR+ = ), the validity of the Kirchhoff law 
( D UE S A= ), and the hydrostatic equilibrium ( 2U US E= ). Although an 
atmosphere may accommodate the thermal structure needed for the radiative 
equilibrium, it is not required for the greenhouse effect. Formally, in the presence 
of a solid or liquid surface, the radiation pressure of the thermalized photons is the 
real cause of the greenhouse effect, and its origin is related to the principle of the 
conservation of the momentum of the radiation field. 

Long term balance between 0 0F P+  and OLR  can only exist at the 
0 0 0 0( ) /(1 2 /5) 3( ) / 2US F P A F P= + − ≈ +  planetary equilibrium surface upward 

radiation. It worth to note that US  does not depend directly on F , meaning that the 
SW absorption may happen anywhere in the system. 0F  depends only on the 
system albedo, the solar constant, and other relevant astronomical parameters.  

In the broad sense the surface-atmosphere system is in the state of radiative 
balance if the radiative flux components satisfy Eqs. (3), (4), and (8). The 
equivalent forms of these conditions are the /3D U UE E S− =  and 

/ 2D UE E OLR− =  equations. In such case there is no horizontal exchange of 
energy with the surrounding environment, and the use of a one dimensional or 
single-column model for global energy budget studies is justified.  

Our task is to establish the theoretical relationship between US  and OLR  as 
the function of Aτ%  for semi-transparent bounded atmospheres assuming, that the 
radiative balance (Eqs. (8) and (9)) is maintained and the thermal structure 
(source function profile) satisfies the criterion of the radiative equilibrium. The 
evaluation of the response of an atmosphere for greenhouse gas perturbations is 
only possible with the explicit knowledge of such relationship. 
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4. Flux optical depth 
 
To relate the total IR absorber amount to the flux densities, the most suitable 
parameter is the total IR flux optical depth. In the historical development of the 
gray approximation different spectrally averaged mean optical depths were 
introduced to deal with the different astrophysical problems (Sagan, 1969). If 
we are interested in the thermal emission, our relevant mean optical depth will 
be the Planck mean. Unfortunately, the Planck mean works only with very small 
monochromatic optical depths (Collins, 2003). In the Earth atmosphere the 
infrared monochromatic optical depth is varying many orders of magnitude, 
therefore, the required criteria for the application of the Planck mean is not 
satisfied.  

This problem can be eliminated without sacrificing accuracy by using the 
simulated flux optical depth. Such optical depths may be computed from 
monochromatic directional transmittance by integrating over the hemisphere. 
We tuned our line-by-line (LBL) radiative transfer code (HARTCODE) for an 
extreme numerical accuracy, and we were able to compute the flux optical depth 
in a spherical refractive environment with an accuracy of five significant digits 
(Miskolczi et al., 1990). To obtain this accuracy 9 streams, 150 homogeneous 
vertical layers, and 1 cm–1 spectral resolution were applied. These criteria 
control the accuracy of the numerical hemispheric and altitude integration and 
the convolution integral with the blackbody function, see Appendix A.   

All over this paper the simulated total flux optical depths were computed as 
the negative natural logarithms of these high accuracy Planck weighted 
hemispheric monochromatic transmittance: ln( )A ATτ = −% .  

In a non-scattering atmosphere, theoretically, the dependence of the source 
function on the monochromatic optical depth is the solution of the following 
differential equation (Goody and Young, 1989): 
 

 
2

2
( ) ( )3 ( ) 4d H dJH

dd
ν ν ν ν

ν ν
νν

τ ττ π
ττ

− = − , (11) 

where ( )Hν ντ  is the monochromatic net radiative flux (Eddington flux) and 
( )Jν ντ  is the monochromatic source function, which is – in LTE – identical 

with the Planck function, ( ) ( )J Bν ν ν ντ τ= . The vertically measured mono-
chromatic optical depth is ντ . Eq. (11) assumes the isotropy of the radiation field 
in each hemisphere and the validity of the Eddington approximation. 

For monochromatic radiative equilibrium ( ) / 0dH dν ν ντ τ =  and Eq. (11) 
becomes a first order linear differential equation for ( )Bν ντ . Applying the gray 
approximation, one finds that there will be no dependence on the wave number, 
ντ  will become a mean vertical gray-body optical depth, τ , and H  will become 

the net radiative flux: 
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 ( ) / 3 /(4 )dB d Hτ τ π= . (12) 
 
The well known solution of Eq. (12) is: 
 
 0( ) (3/ 4 )B H Bτ π τ= + . (13) 
 
According to Eq. (13), in radiative equilibrium the source function increases 
linearly with the gray-body optical depth. The integration constant, 0B , can be 
determined from the Schwarzschild-Milne equation, which relates the net flux to 
the differences in the hemispheric mean intensities: 
 
 ( ) ( )H I Iτ π + −= − , (14) 
 
where I +  and I −  are the upward and downward hemispheric mean intensities, 
respectively. In the solution of Eq. (12) one has to apply the appropriate 
boundary conditions. In the further discussion we shall allow GS  and AS  to be 
different. 
 
4.1 Semi-infinite atmosphere 
 
In the semi-infinite atmosphere, the total vertical optical depth of the atmosphere 
is infinite. The boundary condition is usually given at the top of the atmosphere, 
where, due to the absence of the downward flux term, the net IR flux is known. 
Using the general classic solutions of the plane-parallel radiative transfer 
equation in Eq. (14), one sees that the integration constant will become 

0 /(2 )B H π= . Putting this 0B  into Eq. (13) will generate the classic semi-
infinite solution for the ( )B τ%  source function: 
 
 ( ) (1 ) /(2 )B Hτ τ π= +% % , (15) 
where τ%  is the flux optical depth, as usually defined in two stream 
approximations, (3/ 2)τ τ=% . In astrophysics monographs Eq. (15) is referred to 
as the solution of the Schwarzschild-Milne type equation for the gray 
atmosphere using the Eddington approximation.   

The characteristic gray-body optical depth, ˆCτ , defines the IR optical 
surface of the atmosphere: ˆ( )CB Hπ τ = . The ‘hat’ indicates that this is a 
theoretically computed quantity. At the upper boundary, 0τ =% , the source 
function is finite, and is usually associated with the atmospheric skin 
temperature: 0 (0) / 2B B Hπ π= = . Note, that in obtaining 0B , the fact of the 
semi-infinite integration domain over the optical depth in the formal solution is 
widely used. For finite or optically thin atmosphere Eq. (15) is not valid. In 
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other words, this equation does not contain the necessary boundary condition 
parameters for the finite atmosphere problem.  

Despite the above fact, in the literature of atmospheric radiation and 
greenhouse effect, Eq. (15) is almost exclusively applied to derive the 
dependence of the surface air temperature and the ground temperature on the 
total flux optical depth (Goody and Yung, 1989; Stephens and Greenwald, 1991; 
McKay et al., 1999; Lorenz and McKay, 2003): 
 
 4 4 (1 ) / 2A E At t τ= + % , (16) 
 
 4 4 (2 ) / 2G E At t τ= + % , (17) 
 
where 4 ( ) /A At Bπ τ σ= % , 4 4 4 / 2G A Et t t= + , and 4 / /Et H OLRσ σ= =  are the surface 
air temperature, ground temperature, and the effective temperature, respectively. 
At the top of the atmosphere the net IR radiative flux is equal to the global 
average outgoing long wave radiation. As we have already seen, when long term 
global radiative balance exists between the SW and LW radiation, OLR  is equal 
to the sum of the global averages of the available SW solar flux and the heat flux 
from the planetary interior. 

Eq. (15) assumes that at the lower boundary the total flux optical depth is 
infinite. Therefore, in cases, where a significant amount of surface transmitted 
radiative flux is present in the OLR , Eqs. (16) and (17) are inherently incorrect. 
In stellar atmospheres, where, within a relatively short distance from the surface 
of a star the optical depth grows tremendously, this could be a reasonable 
assumption, and Eq. (15) has great practical value in astrophysical applications. 
The semi-infinite solution is useful, because there is no need to specify any 
explicit lower boundary temperature or radiative flux parameter (Eddington, 
1916). 

When considering the clear-sky greenhouse effect in the Earth’s 
atmosphere or in optically thin planetary atmospheres, Eq. (16) is physically 
meaningless, since we know that the OLR  is dependent on the surface 
temperature, which conflicts with the semi-infinite assumption that Aτ = ∞% . Eq. 
(17) is also not a prescribed mathematical necessity, but an incorrect assumption 
for the downward atmospheric radiation and applying the relationship of Eq. 
(16). As a consequence, Eq. (16) will underestimate At , and Eq. (17) will largely 
overestimate Gt  (Miskolczi and Mlynczak, 2004).  

There were several attempts to resolve the above deficiencies by 
developing simple semi-empirical spectral models, see for example Weaver and 
Ramanathan (1995), but the fundamental theoretical problem was never 
resolved. The source of this inconsistency can be traced back to several decades 
ago, when the semi-infinite solution was first used to solve bounded atmosphere 
problems. About 80 years ago Milne stated: “Assumption of infinite thickness 
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involves little or no loss of generality”, and later, in the same paper, he created 
the concept of a secondary (internal) boundary (Milne, 1922). He did not realize 
that the classic Eddington solution is not the general solution of the bounded 
atmosphere problem and he did not re-compute the appropriate integration 
constant. This is the reason why scientists have problems with a mysterious 
surface temperature discontinuity and unphysical solutions, as in Lorenz and 
McKay (2003). To accommodate the finite flux optical depth of the atmosphere 
and the existence of the transmitted radiative flux from the surface, the proper 
equations must be derived. 
 
4.2 Bounded atmosphere 
 
In the bounded or semi-transparent atmosphere U TOLR E S= + . In the Earth’s 
atmosphere, the lower boundary conditions are well defined and explicitly given 
by At , Gt , and Aτ% . The surface upward hemispheric mean radiance is 

4/ /G G GB S tπ σ π= = . The upper boundary condition at the top of the 
atmosphere is the zero downward IR radiance. 

The complete solution of Eq. (12) requires only one boundary condition. To 
evaluate 0B  we can use either the top of the atmosphere or the surface boundary 
conditions since both of them are defined. Applying the boundary conditions in 
Eq. (14) at (0)H H=  and ( )AH H τ=  will yield two different equations for 0B . 
The traditional way is to solve this as a system of two independent equations for 

0B  and GB  as unknowns, and arrive at the semi-infinite solution with a 
prescribed temperature discontinuity at the ground. In the traditional way, 
therefore, GB  becomes a constant, which does not represent the true lower 
boundary condition.  

The source of the problem is, that at the lower boundary GB  is treated as an 
arbitrary parameter. In reality, when considering the Schwarzschild-Milne 
equation at ( )AH H τ= , we must apply a constraint for GB . In the introduction 
we showed that this is set by the total energy balance requirement of the system: 

G D UOLR S E E= − + . Using the above condition for solving Eq. (14) at 
( )AH H τ=  will be equivalent to solving the same equation at (0)H H= . For 

mathematical simplicity now we introduce the atmospheric transfer and 
greenhouse functions by the following definitions: 
 
 ( ) 2 /(1 exp( ))A A Af τ τ τ= + + −% % % , (18) 
and 
 ( ) ( exp( ) 1) /( exp( ) 1)A A A A Ag τ τ τ τ τ= + − − + − +% % % % % . (19) 
 
The f  and g  are special functions and they have some useful mathematical 
properties: 1f g= −  and 2/ / / 2A Adg d df d f Aτ τ= − =% . Later we shall see that 
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in case of radiative equilibrium, these functions partition the surface upward 
radiative flux into the OLR  and GS OLR−  parts. Using the above notations the 
derived 0B  takes the form: 
 

 0
2 /

2 A G A
HB A B T A
A f

π τ π
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

% . (20) 

 
For large Aτ%  this 0B  tends to the semi-infinite solution. Combining Eq. (20) 
with Eq. (13) we obtain the general form of the source function for the bounded 
atmosphere: 
 

 2( ) ( ) /
2 A G A
HB A B T A
A f

π τ τ τ π
⎡ ⎤

= − − −⎢ ⎥
⎣ ⎦

% % % . (21) 

 
We call Eq. (21) the general greenhouse equation. It gives the fundamental 
relationship between τ% , Aτ% , GB , H , and the IR radiation fluxes, and this is the 
equation that links the surface temperatures to the column density of absorber. 
This equation is general in the sense, that it contains the general boundary 
conditions of the semi-transparent atmosphere, and asymptotically includes the 
classic semi-infinite solution. For the validity of Eq. (21) the radiative 
equilibrium condition (Eq. (12)) must hold.  

We could not find any references to the above equation in the 
meteorological literature or in basic astrophysical monographs, however, the 
importance of this equation is obvious, and its application in modeling the 
greenhouse effect in planetary atmospheres may have far reaching consequences.  

For example, radiative-convective models usually assume that the surface 
upward convective flux is due to the temperature discontinuity at the surface. 
The fact, that the new 0B  (skin temperature) changes with the surface 
temperature and total optical depth, can seriously alter the convective flux 
estimates of previous radiative-convective model computations. Mathematical 
details on obtaining Eqs. (20) and (21) are summarized in Appendix B. 

At the upper boundary H OLR= , and it is immediately clear that for large 
Aτ%  Eq. (21) converges to the semi-infinite case of Eq. (15). It is also clear that 

the frequently mentioned temperature discontinuity requirement at the surface 
has been removed by the explicit dependence of ( )B τ%  on GB . The derivative of 
this equation is constant and equal to 3 /(4 )H π , just like in the semi-infinite 
case, as it should be. According to Eq. (21), the surface air temperature and the 
characteristic optical depth depend on GB  and Aτ% : 
 
 ( ) ( / ) /A G AB OLR f B T Aπ τ π= −% , (22) 
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 2(1 / )ˆ 1
1 exp( )

G A
C

A

B OLRπ ττ
τ

− +
= +

−
%

%
. (23) 

 
Particularly simple forms of the OLR  and UE  may be derived from Eq. (22): 
 
 ( )A G AOLR f S A S T= + , (24) 
 
 U A G AE f S A gS T= − . (25) 
 
In Eqs. (24) and (25) 4( )A A AS B tπ τ σ= =% . The upward atmospheric radiation 
clearly depends on the ground temperature and can not be computed without the 
explicit knowledge of GS .  
 
 

5. Temperature discontinuity 
 
Now we shall again assume the thermal equilibrium at the surface: S A Gt t t= = . 
Inevitably, because the radiating ground surface is not a perfect blackbody, 

U A GS S S= > , and 4 4
G G G G S G US t t Sε σ ε σ ε= = = . From Eq. (24) one may easily 

express St : 
 

 4 4 /(1 ( 1)) /S E A Gt t T fε= + − . (26) 
 
For high emissivity and opaque areas the following approximations will hold: 
 
 4 4 /S Et t f= , (27) 
 
 /US OLR f= . (28) 
The / ( ) /U U T U AE S OLR S S f T= − = −  relationship follows from Eq. (28). This 
function (normalized upward atmospheric radiation) has a sharp maximum at 

1.59U
Aτ =% . It is worth noting, that in Eq. (26) the dependence of St  on Gε  opens 

up a greenhouse feedback channel which might have importance in relatively 
transparent areas with low emissivity, for example at ice covered polar regions. 
Also, Eq. (26) must be the preferred equation to study radiative transfer above 
cloud layers. Assuming the global averages of 0.95Gε =  and 0.17AT = , Eq. 
(27) will underestimate St  by about 0.9 per cent. 

So far at the definition of Gε  we ignored the reflected part of the downward 
long-wave flux. The true surface emissivity is: /( ) /G D A U DE T S E Aε ′ = − . Gε ′  may 
be obtained from Gε  by applying the next correction: /(1 )G G A GT Aε ε ε′ = − . The 
energy balance at the boundary is maintained by the net sensible and latent heat 
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fluxes and other energy transport processes of non-radiative origin. Further on 
we shall assume that the 1G Gε ε ′= =  approximation and Eqs. (27) and (28) are 
valid. Let us emphasize again, that these equations assume the thermal 
equilibrium at the ground.  
 
5.1 Energy minimum principle 

 
We may also arrive at Eq. (28) from a rather different route.  The principle of 
minimum energy requires the most efficient disposal of the thermal energy of 
the atmosphere. Since in radiative equilibrium the quantity 0Bπ  is an additive 
constant to the source function, for a given OLR  and GS  we may assume that in 
the atmosphere the total absorber amount (water vapor) will maximize 0B .  

Mathematically, Aτ%  is set by the 0 / 0AdB dτ =%  condition. It can be shown 
that this is equivalent to solve the /GS OLR f=  transcendental equation for Aτ% , 
see the details in Appendix B. Comparing this equation with Eq. (28) follows 
the G US S=  equation.  

In other words, in radiative equilibrium there is a thermal equilibrium at 
the ground and the quantities GS , OLR , and Aτ%  are linked together in such a 
way that Aτ%  will maximize 0B . The above concept is presented in Fig. 3. Here 
we show three 0Bπ  functions, with short vertical lines indicating the positions 
of their maxima. The thick solid curve was computed from Eq. (20) with the 
clear sky global averages of 250OLR = W m–2 and 382GBπ =  W m–2. The open 
circle at 1.87Aτ =%  represents the global average 0Bπ  of 228 simulations. 

The position of the maximum of this curve is practically coincidental with 
the global average E

Aτ% . The location of the maximum may be used in a 
parameterized 2 ( )AH O τ%  function for the purely theoretical estimate of the global 
average water vapor content. In such estimate our global average Aτ%  would 
result in about 2.61 precipitable centimeter (prcm) H2O column amount. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. 0 ( )ABπ τ%  functions computed from Eq. (20) for a realistic range of Aτ% . The solid 
line represents the clear-sky global average. The maximum of this curve is 0 142Bπ = W 
m–2 at 1.86Aτ =% . The open circle at 0 143Bπ = W m–2 and 1.87Aτ =% is the global 
average of large scale line-by-line simulations involving 228 temperature and humidity 
profiles from around the globe. The broken line and the solid dot were computed for 
a zonal average arctic profile. The dotted line and the ‘+’ symbol 

represent similar computations for the USST-76 atmosphere. 
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The broken line and the full circle show similar computations for a zonal 
mean arctic profile. For reference, the 0( )ABπ τ%  function of the U.S. Standard 
Atmosphere, 1976 (USST-76) is also plotted with a dotted line. In this case the 
actual optical depth 1.462US

Aτ =%  (indicated by the ‘+’ symbol) is not 
coincidental with the position of tche maximum of the 0( )ABπ τ%  curve, meaning 
that this profile does not satisfy Eq. (28). Compared to the required equilibrium 
surface temperature of 280.56US

At =  K, the USST-76 atmosphere is warmer by 
about 7.6 K at the ground. Some further comparisons of the theoretical and 
simulated total optical depths are shown in Fig. 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The simulated data points were obtained by LBL computations using zonal 
mean temperature profiles at different polar and equatorial belts. The theoretical 
values – the solutions of Eq. (28) – are in fairly good agreement with the 
simulated Aτ% , the correlation coefficient is 0.989. The major conclusion of Figs. 
3 and 4 is the fact that for large scale spatial averages the finite atmosphere 
problem may be handled correctly with the different forms of Eqs. (24) or (28). 
For local or instantaneous fluxes (represented by the gray dots) the new 
equations do not apply because the chances to find an air column in radiative 
balance are slim. 
 
5.2 Global average profiles 
 

Fig. 4. Comparisons of the theoretical and simulated total flux optical depths. The inner 
four circles were computed for global and zonal mean temperature profiles, the leftmost 
circle were computed for an extremely cold arctic profile, the rightmost circle represents 
a mid-latitudinal summer profile. The dots show the results of 228 LBL simulations. The 
scatter of the dots are due to the fact that the temperature profiles were 

not in perfectradiative equilibrium. 
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In Fig. 5 we present our global average source function profile – which was 
computed from selected all-sky radiosonde observations – and the theoretical 
predictions of the semi-infinite and semi-transparent approximations. 
 

 
 
 
 
 
 
 
 
 
 The source function profile of the USST-76 model atmosphere is also 
plotted with a dotted line. The global average tropospheric source function 
profile is apparently a radiative equilibrium profile satisfying Eq. (21) or the 

0( ) / 2B OLR Bτ τ= +% %  equation, where 0 146B =  W m–2. Up to 10 km altitude the 
0( ) (1 /10)AB z OLR z B≈ − +  approximation may be used, where the global 

average AOLR  is: / 2A E
AOLR OLRτ≈ % . 

Clearly the new equations give a far better representation of the true 
average tropospheric source function profile than the one obtained from the 
opaque semi-infinite equation. Our source function profile corresponds to a 
temperature profile with an average tropospheric lapse rate of 5.41 K km–1. The 
flux densities E

US  and EOLR  with E
Aτ%  closely satisfy Eqs. (8), (9), and (28). This 

optical depth is consistent with the observed global average water vapor column 
amount of about 2.5 prcm in Peixoto and Oort (1992).  

Fig. 5. Theoretical and measured source function profiles, and the global average H2O 
profile. The solid lines were computed from 228 selected all sky radiosonde 
observations. The black dots and the dashed line represent the semi-infinite 
approximation with the temperature discontinuity at the ground. The open circles were 
computed from Eq. (21). The optical depth values of 0.357, 0.839, 1.28, 1.47, and 1.87 
correspond to ˆ

UEτ , ˆCτ , ˆ
DEτ , C US

A Aτ τ≈% % , and E
Aτ% , respectively. The dash-dot line is the 

approximate altitude of an assumed cloud layer where the A
DOLR E OLR= = . 
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In Fig. 5 the thin solid and broken lines – and the top axis – show the water 
vapor column density profiles of our global average and the USST-76 
atmospheres respectively. 

Since the Earth-atmosphere system must have a way to reduce the clear sky 
EOLR  to the observed AOLR  we assume the existence of an effective cloud 

layer at about 2.05 km altitude. The corresponding optical depth is 1.47C
Aτ =% . 

Fig. 6 shows the dependences of the OLR  and DE  on the cloud top altitude and 
UE  on the cloud bottom altitude. At this cloud level the source function is 

332.8CS =  W m–2. We also assume that the cloud layer is in thermal 
equilibrium with the surrounding air and radiates as a perfect black-body. Clear 
sky simulations show that at this level the A

DOLR OLR E≈ ≈  and the layer is 
close to the radiative equilibrium. Cloudy computations also show that UE  – and 
consequently K – has a maximum around this level, which is favorable for cloud 
formation.  

In cloudy areas the system loses the thermal energy to space at a rate of 
AOLR  which is now covered by the absorbed SW flux in the cloudy 

atmosphere. According to the Kirchhoff law, the downward radiation to the 
cloud top is also balanced. Below the cloud layer, the net LW flux is close to 
zero. Clouds at around 2 km altitude have minimal effect on the LW energy 
balance, and they seem to regulate the SW absorption of the system by adjusting 
the effective cloud cover β . 

The 2 /3 15A E
UOLR S− ≈ −  W m–2 is a fairly good estimate of the global 

average cloud forcing. The estimated 0.6β ≈  is the required cloud cover (at this 
level) to balance AOLR , which looks realistic. We believe that the β  parameter 
is governed by the maximum entropy principle, the system tries to convert as 
much SW radiation to LW radiation as possible, while obeying the 

0 02 /(3 )OLR f F P= +  condition. The cloud altitude, where the clear-sky 
A

DOLR OLR E= =  depends only on the SW characteristics of the system 
(surface and cloud albedo, SW solar input) and alone, is a very important 
climate parameter.  
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In Kiehl and Trenberth (1997) the USST-76 atmosphere was used for the 

estimation of the clear-sky global mean DE  and OLR . To make their computed 
OLR  consistent with the ERBE clear-sky observations, they reduced the 
tropospheric water vapor amount by 12%, to about 1.26 prcm. Our LBL 
simulation using the same profile indicates that 1.462US

Aτ =%  and ( ) 0.742US
Af τ =% , 

and as we have seen already, Eq. (28) is not satisfied. The expected equilibrium 
transfer function is 260.8/391.1 0.6668f = = , which corresponds to a global 
average water vapor column amount of 2.5 prcm. This value is about double of 
the actual amount.  

Due to the low water vapor column amount in the USST-76 atmosphere the 
clear-sky estimates of the global average TS , DE , and UE  are irrealistic. The 
flux transmittance is over estimated by 33% and for example DE  is under 
estimated by about 31 W m-2. The ERBE clear-sky OLR may also have a 6.5% 
positive bias. Although Eqs. (4) and (8) are satisfied, this discrepancy indicates 
that the USST-76 atmosphere does not represent a real radiative equilibrium 
temperature profile and should not be used as a single-column model for global 
energy budget studies.  

It follows from Eq. (28) that 0 ˆ(1 )/2 (1 / 2)A CB OLR T OLRπ τ= − = +  and the 
characteristic optical depth will be equal to the total flux absorptance A . Those 
optical depths where the source function is equal to UE  or DE  can also be easily 

Fig. 6. Cloudy simulation results using the global average temperature and water vapor 
profiles. For the OLR  and DE  curves the altitude is the cloud-top level. For the UE  
curve the altitude is the level of the cloud-bottom. Simulations were performed at 
eleven cloud levels between the 0 and 11 km altitudes. The gray vertical 

line is the all-sky AOLR . 
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derived: ˆ 2 /
UE AA T fτ = −  and ˆ (2 / ) 1

DE AA f Tτ = − − . Using large number of 
radiosonde observations, the global averages of 0Bπ , UE , OLR , DE , US ,  and 
their respective optical depths can be computed, and one can establish the 
dependence of optical depth on the z  geometric altitude. In Fig. 5, on the right 
vertical axis, the 0, ˆ

UEτ , ˆCτ , C
Aτ% , ˆ

DEτ , and E
Aτ%  optical depths are also indicated. 

Note the close to linear relationship between the altitude and the optical depth. 
This relationship may be represented pretty well by the ˆ( ) (1 /10)Az zτ τ= −%  
equation, where z  is given in km. This linear function directly contradicts to the 
usual assumption of exponential decrease of ( )zτ%  function, indicating the 
different nature of ˆ( )zτ . The optical depth computed from Eq. (21) is essentially 
the measure of the transfer of heat energy by non radiative processes and can be 
regarded as a kind of dynamical flux optical depth. Although ˆ(0) Aτ τ= % , the 

( ) ln( ( ))Az T zτ = −%  is an exponential function and the ( )AT z  is a linear function. 
Let us mention that a linear ˆ( )zτ  function is consistent with the hydrostatic 
equation: ˆˆ/ /adp d g kτ = , where p  is the atmospheric pressure, ag  is the gravity 
acceleration, and k̂  is an effective absorption coefficient associated with ˆ( )zτ . 

 
 

6. Error estimates 
 
Eq. (28) was extensively validated against the results of large scale LBL 
simulations of the planetary flux optical depth and greenhouse effect, and 
selected satellite observations in Miskolczi and Mlynczak (2004). In Fig. 7 we 
summarize the errors of the semi-infinite approximation using Eqs. (16) , (17), 
and (28). The comparison with Eq. (24) would be more complex, it involves real 
(or imposed) surface temperature discontinuity (through the term of GS ) and 
will be discussed elsewhere.  
 In the realistic range of the clear-sky Aτ% , Eq. (28) predicts 2–15% 
underestimates in the source function at the surface in Eq. (16), and about 25% 
overestimates in the surface upward radiation in Eq. (17). According to Eqs. 
(14) and (15), the response of the surface upward flux to a small optical depth 
perturbation, (CO2 doubling, for example), is proportional to AτΔ % . In the semi-
transparent approximation ( ) (1 exp( ))U A A AS τ τ τΔ ≈ Δ − −% % % , which means that the 
semi-infinite approximation will seriously overestimate USΔ . 

At a global average clear-sky optical depth the relative error is around 20%, 
but for smaller optical depth (polar areas) the error could well exceed 60%. 
Differences of such magnitude may warrant the re-evaluation of earlier 
greenhouse effect estimates. For the estimation of the greenhouse effect at some 
point all atmospheric radiative transfer model has to relate the flux optical depth 
(or absorber amount) to the source function, therefore one should be aware of 
the errors they might introduce to their results when applying the semi-infinite 
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approximation. The above sensitivity estimates assume a constant OLR , 
therefore, they should be regarded as initial responses for small optical depth 
perturbations. Considering the changes in the OLR  as well, the correct 
theoretical prediction is / ( / 4)U AS A OLRτΔ Δ =% .  

For example, a hypothetical CO2 doubling will increase the optical depth 
(of the global average profile) by 0.0241, and the related increase in the surface 
temperature will be 0.24 K. The related change in the OLR  corresponds to –0.3 
K cooling. This may be compared to the 0.3 K and –1.2 K observed temperature 
changes of the surface and lower stratosphere between 1979 and 2004 in Karl et 
al., (2006). 

From the extrapolation of the ‘Keeling Curve’ the estimated increase in the 
average CO2 concentration during this time period is about 22% (National 
Research Council of the National Academies, 2004). Comparing the magnitude 
of the expected change in the surface temperature we conclude, that the 
observed increase in the CO2 concentration must not be the primary reason of 
the global warming.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Greenhouse parameters 
 
 

Fig. 7. The three relative error curves are: [ ]( ) (1 ) / 2 1/ ( )A A Af fτ τ τ+ −% % %  (solid line), 
[ ]( ) 1 / 2 1/ ( )A A Af fτ τ τ+ −% % %  (dotted line), and 1/(exp( ) 1)Aτ −%  (dashed line). These 

functions represent the relative differences using Eqs. (16) and (17) or Eq. (28) for the 
computation of ( )U AS τ% and ( )U AS τΔ % , respectively. The vertical line is an estimate of 
the clear-sky global average Aτ% . The dots represent 228 LBL simulation results. The 
scatter of the dots is due to the fact that the temperature profiles were not in perfect 

radiative equilibrium. 
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The f  and g  functions may be used for the theoretical interpretation of some 
empirical greenhouse parameters: 1 NG G g= = , and 2 / 1/UG S OLR f= = . Here 

1G  is Raval and Ramanathan’s normalized greenhouse parameter, and 2G  is 
Stephens and Greenwald’s greenhouse parameter (Raval and Ramanathan, 
1989; Stephens and Greenwald, 1991). The sensitivity of the greenhouse 
function to optical depth perturbations is expressed by the derivative of g :  
 2/ / 2S Ag dg d f Aτ= =% . (29) 
 
The Sg  function has a maximum at 1.0465S

Aτ =% , therefore, positive optical depth 
perturbations in the real atmosphere are coupled with reduced greenhouse effect 
sensitivity. Here we note, that the 2 /5S Ag T=o  and /3S Ag T∗ =  sensitivities are 
decreasing monotonously with increasing Aτ% . It is also important that, due to the 
compensation effect of the combined linear and exponential optical depth terms, 
the f  and g  functions have negligible temperature dependence. There is, 
however, a slight non-linear dependence on the surface temperature introduced by 
the weighting of the monochromatic flux transmittances with the spectral US . 
Note, that the f  and g  functions can not be related easily to the absorber 
amounts, and, for example, a simple linear parameterization of them with the 
water vapor column amount could be difficult and inaccurate (Stephens and 
Greenwald, 1991; Miskolczi and Mlynczak, 2004).  
 The greenhouse parameters are dependent only on the flux optical depth, 
therefore it is difficult to imagine any water vapor feedback mechanism to 
operate on global scale. The global average E

Aτ%  is set by the global energy 
balance requirement of Eqs. (8) and (9).  

It follows from Eqs. (8) and (28) that 3 / 2 /OLR OLR f=  and 
2 /3f f += = , giving an equilibrium optical depth of 1.841Aτ

+ =% . Using Eq. (9) 
and (28) the equilibrium optical depth becomes 1.867Aτ =o% . The 1.87E

Aτ =%  is 
consistent with these theoretical expectations and the estimate of 1.79 in Section 
3. The excess optical depth 0.029E

A Aτ τ +− =% %  corresponds to about 1.5 W m–2 
imbalance in US , which may temporarily be compensated for example by 1.0 W 
m–2 net heat flow from the planetary interior or by small decrease in the SW 
system albedo. In case of Eq. (9) the optical depth difference is even smaller, 

0.003E
A Aτ τ− =o% % . 

Since the world oceans are virtually unlimited sources and sinks of the 
atmospheric water vapor (optical depth), the system – depending on the time 
constant of the different energy reservoirs – has many ways to restore the 
equilibrium situation and maintain the steady state global climate. For example, 
in case the increased CO2 is compensated by reduced H2O, then the general 
circulation has to re-adjust itself to maintain the meridional energy flow with 
less water vapor available. This could increase the global average rain rate and 
speed up the global water cycle resulting in a more dynamical climate, but still 
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the energy balance equations do not allow the average surface temperature to 
rise. The general circulation can not change the global radiative balance 
although, changes in the meridional heat transfer may result in local or zonal 
warming or cooling which again leads to a more dynamical climate. Note that 
there are accumulating evidence of long term negative surface pressure trends all 
over the Southern Hemisphere (Hines et al., 2000), which may be an indication 
of decreasing water vapor amount in the atmosphere. 

The estimation of the absolute accuracy of the simulated global average E
Aτ%  

is difficult. The numerical errors in the computations are negligible, and 
probably the largest single source of the error is related to the selection of the 
representative atmospheric profile set. To decide whether the indicated small 
optical depth differences are real, further global scale simulations are required. 

In the view of the existence of the Aτ
+%  and Aτ

o%  critical optical depth, the 
runaway greenhouse theories have very little physical foundations. Greenhouse 
gases in any planetary atmosphere can only absorb the thermalized available SW 
radiation and the planetary heat flux. Keeping these flux terms constant, 
deviations from Aτ

+%  or Aτ
o%  will introduce imbalance in Eqs. (8) and (9), and 

sooner or later – due to the energy conservation principle – the global energy 
balance must be restored. On the long run the general energy balance 
requirement of Eq. (9) obviously overrules the IR radiative balance requirement 
of Eq. (28). 

Based on Eq. (28) we may also give a simple interpretation of UE : 
U U U AE S f S T= − . Since the total converted 0 0F P+  to OLR  is US f , and 
U AS T  is the transmitted part of the surface radiation, the U U AS f S T−  difference 

is the contribution to the OLR  from all other energy transfer processes which 
are not related to LW absorption: UE F K P= + + . Substituting this last 
equation into the energy balance equation at the lower boundary, and using Eq. 
(3) we get: 0D AE A− = . This is the proof of the Kirchhoff law for the surface-
atmosphere system. The validity of the Kirchhoff law requires the thermal 
equilibrium at the surface. Note, that in obtaining Eq. (28) the Kirchhoff law 
was not used (see Appendix B). 
 
 

8. Zonal distributions 
 
To explore the imbalance caused by optical depth perturbations, one has to use 
the differential form of Eq. (28):  
 
 / / /U Uf f OLR OLR S SΔ = Δ − Δ . (30) 
According to Eq. (30) the relative deviations from the equilibrium f , OLR , and 

US  must be balanced. The validity of Eq. (30) is nicely demonstrated in Fig. 8.  
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The fΔ  can be related to the AτΔ %  quantity through the 2 / 2Af f AτΔ = −Δ %  
equation. The OLRΔ  and USΔ  quantities are defined by the next two equations: 

2 / 4U AOLR S f AτΔ = − Δ %  and / 4U AS OLR AτΔ = Δ % . It can be shown that the 
/ / 0U UOLR OLR S SΔ + Δ = , and UOLR f SΔ = − Δ  equations also hold. In Fig. 9 

the dependence of USΔ  on OLRΔ  is presented. The open circles in this figure 
indicate small deviations from Eq. (30). At larger | |USΔ  the true OLRΔ  is 
slightly overestimated. Figs. 8 and 9 show that the surface warming is coupled 
with reduced OLR , which is consistent with the concept of the stratospheric 
compensation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Unfortunately, our static model can not deal with the dynamical factors 

represented by the variables K  and F . The decomposition of UE  into its several 
components is beyond the scope of this study. Based on our large scale clear-sky 

Fig. 8. Validation of the / / /U Uf f OLR OLR S SΔ =Δ −Δ  equation. Dots were computed 
from radiosonde observations and they represent the relative differences from the 
equilibrium f . The dashed and dotted lines are fitted to the /OLR OLRΔ  and /U US SΔ  

points, respectively. 

Fig. 9. The imbalance in US and OLR are marked with black dots. For the 
| | 20USΔ >  W m–2 the open circles were computed from the UOLR f SΔ = − Δ  equation. 
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simulations, in Figs. 10, 11, and 12 we present the meridional distributions of the 
zonal mean Aτ% , OLR , and US , and their deviations from Eqs. (8) and (28). 

In Fig. 10 the zonal average Aτ%  distributions are presented. At the 
equatorial regions up to about +/- 35 degree latitudes, the atmosphere contains 
more water vapor than the planetary balance requirement of Aτ

+% . This feature is 
the result of the combined effects of evaporation/precipitation processes and the 
transport of the latent and sensible heat by the general circulation. The reason of 
the differences between the actual and equilibrium zonal distributions is the 
clear-sky assumption. The global averages for both distributions are 1.87 
representing about 2.61 prcm global average water vapor column amount.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 11 the simulated OLR  and the Uf S  theoretical curve show good 
agreement at higher latitudes, indicating that for zonal means the IR radiative 
balance holds. At the equatorial regions the simulations significantly 
overestimate Uf S . The reason is the un-accounted cloud cover at low latitudes. 
The dotted line is the required OLR  to completely balance the zonal mean US  
and can be regarded as the zonal mean clear-sky 0F . 

In Fig. 12 again, the effect of the cloud cover at low latitudes is the reason 
of the theoretical overestimation of US . At high latitudes Eq. (28) approximately 
holds. The dots were computed using the semi-infinite model, and they show 
significant underestimation in the observed zonal mean US . According to Figs. 11 
and 12, at higher latitudes the flux densities are almost balanced. 

The quantitative analysis and the explanation of the imbalance at the 
equatorial regions requires further investigation involving large-scale 

Fig. 10. Meridional distributions of the zonal mean clear sky Aτ% . Solid line is the actual 
Aτ% computed from simulated flux transmittance. Dashed line is the required Aτ%  to 

satisfy the 2 / 1 exp( )U A AS OLR τ τ− = + −% % equation. Thin solid horizontal line is the 
global average for both curves. Dotted line is the planetary equilibrium optical depth, 

Aτ
+% , obtained from Eqs. (6) and (26). 
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simulations of cloudy atmospheres. It is also necessary to build a suitable 
theoretical broad band radiative transfer model for studying the different aspects 
of a complex multi-layer cloud cover. Using the new equations there is a hope 
that simple bulk formulation may be developed to deal with the planetary scale 
energetics of the cloud cover.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. Planetary applications 
 

The f , Af T− , and g  functions can be regarded as theoretical normalized 
radiative flux components representing / UOLR S , /U UE S , and ( ) /U US OLR S−  
ratios, respectively. The f o , Af T−o , go , and f ∗ , Af T∗ − , and g∗  are similar 
functions representing Eqs. (9) and (10), respectively. The dependences of these 

Fig. 11. Meridional distributions of the zonal mean OLR . Solid line is the actual clear-
sky OLR computed from all sky radiosonde observations. Dashed line is the required 
OLR  to satisfy the UOLR f S=  equation. The horizontal line is the global 

average. Dotted line is the zonal mean equilibrium OLR computed as 2 / 3US . 

Fig. 12. Meridional distributions of the zonal mean surface upward flux densities.  
Thick solid line is the observed all sky US . Dashed line is the required US  to satisfy the 

/US OLR f= equation. Thin solid horizontal line is the global average. Dots represent 
the semi-infinite approximation of (1 ) / 2U AS OLR τ= + %  for higher latitudes. 
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functions and the Sg  function on the optical depth are presented in Fig. 13. 
For reference, in this figure we also plotted the individual simulation results of 

/U UE S  for the Earth and Mars, and the / UOLR S  only for the Mars. In the next 
sections we discuss some further characteristics of the broadband IR 
atmospheric radiative transfer of Earth and Mars.  

At this time the Venusian atmosphere is not included in our study. The 
major problem with the Venusian atmosphere is the complete cloud cover and the 
lack of knowledge of the accurate surface SW and LW fluxes. The development of 
a comprehensive all-sky broadband radiative transfer model is in progress. 
 
9.1 Earth 
 
In Fig. 13 the simulated global average normalized flux densities are very close 
to the theoretical curves, proving that the new equations reproduce the real 
atmospheric situations reasonably well. The horizontal scatter of the gray dots 
indicate the range of the optical depth that characteristic for the Earth’s climate. 
Theoretically, the lower limit is set by the minimum water vapor amount and the 
CO2 absorption. The upper limit is set by a theoretical limiting optical depth of 

2.97L
Aτ =% , where the transfer and greenhouse functions becoming equal. This 

optical depth corresponds to about 6 prcm water vapor column amount, which is 
consistent with the observed maximum water vapor content of a warm and 
humid atmosphere. 

The vertical scatter of the gray dots around the Af T−  curve is the clear 
indication that locally the atmosphere is not in perfect radiative equilibrium and 
Eq. (28) is not perfectly satisfied. The obvious reason is the SW effect of the 
cloud cover and the more or less chaotic motion of the atmosphere. For the 
global averages Eqs. (8) and (28) represent strict radiative balance requirements. 
On regional or local scale this equation is not enforced by any physical law and 
we observe a kind of stochastic radiative equilibrium which is controlled by the 
local climate.   

Over a wide range of optical depth around U
Aτ% , the Af T−  curve is close to 

0.5, which assures that UE  is approximately equal to / 2US  independently of the 
gravitational constraint (virial theorem). This explains why Eqs. (9) and (25) can 
co-exist at the same E

Aτ% . The USST-76 atmosphere seems to follow the radiation 
scheme of Eqs. (8), / 2 /3UOLR S ≈ . At the US

Aτ%  the global radiative balance of 
the atmosphere is violated and the atmosphere can not be in radiative 
equilibrium either. The radiative balance and the radiative equilibrium can not 
co-exist at US

Aτ% . The radiative imbalance may be estimated from Eqs. (8) and (9) 
as (2 /3 (1 2 /5)) 10US A− − ≈ −  W m–2. To retain the energy balance, the USST-
76 atmosphere should lose about 10 W m–2 more IR radiation to space. The use 
of such atmospheres for global energy budget studies has very little merit.  
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This figure shows that the Earth has a controlled greenhouse effect with a 
stable global average 1.87E

Aτ τ τ+= ≈ ≈ o% % % , ( ) 0.33 ( )E E
A Ag g gτ τ+= ≈ ≈ o% % , and 

( ) 0.185E
S Ag τ ≈% . As long as the 0 0F P+  flux term is constant and the system is 

in radiative balance with a global average radiative equilibrium source function 
profile, global warming looks impossible. Long term changes in the planetary 
radiative balance is governed by the 0 0 (3/5 2 /5)U AF P S T+ = + , UOLR S f=  
and 0 0F P OLR+ =  equations. The system is locked to the Aτ

o%  optical depth 
because of the energy minimum principle prefers the radiative equilibrium 
configuration ( A Aτ τ< o% % ) but the energy conservation principle constrains the 
available thermal energy ( A Aτ τ> o% % ). The problem for example with the highly 
publicized simple ‘bucket analogy’ of greenhouse effect is the ignorance of the 
energy minimum principle (Committee on Radiative Forcing Effects on Climate 
Change et al., 2005).  

According to Eq. (9), a completely opaque cloudless atmosphere ( 0AT ≈ ) 
would accommodate a surface temperature of 288.3St =  K, which is pretty 
close to the observed global average surface temperature. In this extent the LW 
effect of the cloud cover is equal to closing the IR atmospheric window and 
increasing the global average greenhouse effect by about 1.8 K, without 
changing the E

A Aτ τ≈ o% %  relation. The 0.6β ≈  cloud cover simultaneously assures 
the validity of the (1 2 /5) 3 /5A

U UOLR S A S= − ≈  radiation balance equation 
with 1A ≈  and a global average 392US =  W m–2, and the radiative equilibrium 

Fig. 13. Theoretical relative radiative flux ratio curves. Open circles are computed 
planetary averages from simulations. The individual simulation results of /U UE S  are 
shown as gray dots for the Earth and black dots in the lower left corner for the Mars. 
The black dots in the upper left corner are the simulated / UOLR S  for Mars. The Sg  
curve is the theoretical greenhouse sensitivity function for the Earth. The five short 
vertical markers on the zero line at the positions of 1.05, 1.42, 1.59, 1.84, and 2.97 are 
(from left to right) the locations of S

Aτ% , C US
A Aτ τ≈% % , U

Aτ% , A Aτ τ+ ≈ o% % , and L
Aτ%  optical 

depths, respectively. 
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clear-sky source function profile with 1.87E
Aτ =% . This could be the 

configuration, which maintains the most efficient cooling of the surface-
atmosphere system.  
 
9.2 Mars 
 
We performed LBL simulations of the broadband radiative fluxes for eight 
Martian standard atmospheres. In Fig. 14 the temperature and volume mixing 
ratio profiles are shown in the 0–60 km altitude range.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Fig. 15 dust-free clear-sky computed spectral OLR  and US  are 

presented for the coldest and warmest temperature profiles. The computations 
were performed in the 1–3490 cm–1 wavenumber range with 1 cm–1 spectral 
resolution. The single major absorption feature in these spectra is the 15 μ CO2 
band. The signatures of the 1042 cm–1 ozone band and several H2O bands are 
present only in the upper (warmer) spectrum. Despite the almost pure CO2 
atmosphere, the clear Martian atmosphere is remarkably transparent. The 
average flux transmittance is 0.839AT =  (just about equal to the flux 
absorptance on the Earth), and the OLR  is largely made up from TS .  
 
 
 
 
 
 
 

Fig. 14. Martian standard temperature and volume mixing ratio profiles. In the right 
plot the absorbers are (from left to right): O3, H2O, CO, N2, and CO2. 
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In Fig. 16 the relationships between US  and TS  are shown for the Mars and 
Earth. In case of the Earth, TS  is almost independent of US , while in the 
Martian atmosphere the transmitted radiation depends linearly on the surface 
upward radiative flux. This fact is an indication that the broadband radiative 
transfer is fundamentally different on the two planets.  

On Mars the optical depth has a strong direct dependence on the total mass 
of the atmosphere and consequently on surface pressure. The average flux 
optical depth is small, 0.175A Aτ τ += <<% % . In Fig. 13 the simulated / UOLR S  and 

/U UE S  ratios systematically underestimate the theoretical f  and Af T−  
functions. With the 0 0P ≈  assumption, Mars does not satisfy the IR radiative 
equilibrium and the overall energy balance criteria at the surface. 

For five model profiles the deviations from Eqs. (8) and (28) are presented 
in Fig. 17. The primary reason of the deviations related to the mechanism of the 
atmospheric heating by non IR radiative processes. On the Earth K F+  is large 
and sufficient to maintain the internal kinetic energy required by the surface 
pressure and the hydrostatic equilibrium ( / 1/ 2U UE S ≈ ). The Martian 
atmosphere can not gain much energy through the K  and F  terms. The 
sublimation and condensation of CO2 are mainly surface processes, no extended 
CO2 cloud cover is observed. The visible and near IR absorption is also small, 
most of the SW flux is absorbed at the surface, consequently F  is also small.  
 
 
 
 
 

Fig. 15. LBL simulations of the spectral flux densities for a warm and a cold standard 
Martian atmospheric profile. The thin solid line is the spectral OLR  and the thick     
dashed line is the blackbody function at the indicated surface temperatures. 
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Simulation results show that the average UE  and US  are 14.2 W m–2 and 
134 W m–2, respectively. The resulting / 0.1U UE S ≈  ratio is far too small to 
assure the hydrostatic equilibrium. In transparent atmospheres the /10DE  term 
is usually small and may be ignored in Eq. (9). In case of Mars /10DE  is about 
1.5% of US , and apparently, the Martian atmosphere accommodates the 
radiative transfer scheme of Eq. (10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Relationships between US  and TS . Data were obtained by LBL simulations 
using a set of Martian standard profiles and selected radiosonde observations from the 
TIGR radiosonde archive. In case of the Earth no significant linear correlation exists 
    between US  and TS . 

Fig. 17. Validation of the 1 / 3f A∗ = −  transfer function. The solid dots are the US  
fluxes computed with the new f ∗  transfer function. The 'true' US  (solid line) were 
computed from the temperatures of the lowest levels of the standard Martian profiles via 
the Stefan-Boltzmann law. The 'o' and '+' symbols are the predictions of US  using 

the f  and the 3 / 2US OLR=  equations, respectively. 
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Using an average available absorbed SW radiation of 127 W m–2 Eq. (8) 
would require –56 W m–2 thermal energy to maintain the planetary energy 
balance. Simulation results show that TS  is 112.3 W m–2 and half of it could 
really restore the energy balance. Since the average UE  is small the / 2TS  flux 
term is the major contribution to the internal kinetic energy of the atmosphere. 
The wind blown atmospheric dust particles could have an important role in 
transferring this amount of thermal energy from the surface to the atmosphere. 
The f ∗  transfer function predicts both the true US  in Fig. 17 (solid dots) and 
the average relative OLR  and UE  in Fig. 13 (open circles) pretty well.  

The linear dependence of US f ∗  on U AS T  in Fig. 16 explains why the band 
averaged spectral / UOLR S  ratio resolves the surface topography in the IR 
images in Chamberlain et al. (2006). The Af T∗ − and g∗  functions are also 
plotted in Fig. 13. The intersection of the f ∗  and f  curves points to an optical 
depth of 1.451Aτ

∗ =%  where the atmosphere would be in radiative equilibrium 
with a linear average source function profile. At this Aτ

∗%  the /10DE  term in Eq. 
(9) becoming large, the approximation of Eq. (10) will not hold, and 
consequently the radiative balance can not exist. The error of Eq. (10) increases 
with increasing optical depth.  

Regarding the range of the variability of the optical depth (or surface 
pressure) this situation can not occur in the clear Martian atmosphere. In the 
radiation scheme of Eq. (10) the runaway greenhouse effect is impossible, US  
will tend to 3 / 2OLR  with increasing optical depth.  

A further interesting consequence of Eq. (10) is the 2 3 0D UE E− =  
relationship. For the deeper understanding of these types of balance equations, 
in Figs. 18 and 19 the spectral flux density differences are plotted around the 
central region of the 15 μm CO2 absorption band. 

In Fig. 18 the band averaged differences of both the thick and thin solid 
curves are represented with a single dotted line at the zero position. We see that 
the spectral deviations of both the /US OLR f ∗−  and 3 / 2 ( / 2)U TOLR S S− +  
spectral differences are almost perfectly compensated, assuring the validity of 
the respective balance equations. In Fig. 19 similar explanation holds for the 
validity of the 2 3 0D UE E− =  relationship. In this case the integral of the 
spectral 2 3D UE E−  over the 1–3490 cm–1 range is 0.04 W m–2 only. 

The average normalized greenhouse factor NG  is 0.0522, which is 
consistent with the /3 0.0536A =  theoretical value. The 7.1G =  W m–2 
greenhouse factor gives 3 K greenhouse enhancement to the planetary average 
surface temperature. The greenhouse sensitivity is / /3 0.23A Ad f d Tτ∗ = =%  per 
unit optical depth and always decreasing with increasing Aτ% .  

We may conclude, that Eq. (10) adequately describes the broadband 
radiative fluxes in the Martian atmosphere, but for planets with significantly 
larger optical depths Eq. (9) must be used.  
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Fig. 19. Spectral differences in the 2 DE  and 3 UE  flux densities. The dotted line 
represents the averaged differences over the 1–3490 cm–1 spectral range. The dashed 
line is the spectral blackbody function at the indicated surface temperature. The spectral 

differences are largely compensated over the extent of the 15 μm CO2 band. 

Fig. 18. Spectral flux differences in the 15 μm CO2 band. The dotted line represents the 
averaged differences over the 1–3490 cm–1 spectral range for both curves. The dashed 
line is the spectral blackbody radiation at the indicated surface temperature. The spectral 
differences are compensated over a relatively narrow wavenumber interval around the 

band center.
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10. Conclusions 
 
The purpose of this study was to develop relevant theoretical equations for 
greenhouse studies in bounded semi-transparent planetary atmospheres in 
radiative equilibrium. In our terms the local radiative equilibrium is a unique 
instantaneous state of the atmosphere where the upward atmospheric radiation is 
balanced by the short wave atmospheric absorption and the net exchange of 
thermal fluxes of non-radiative origin at the boundary. In general, the thermal 
structure of the atmosphere assures that the absorbed surface upward radiation is 
equal to the downward atmospheric radiation. It seems that the Earth's 
atmosphere maintains the balance between the absorbed short wave and emitted 
long wave radiation by keeping the total flux optical depth close to the 
theoretical equilibrium values. 

On local scale the regulatory role of the water vapor is apparent. On 
global scale, however, there can not be any direct water vapor feedback 
mechanism, working against the total energy balance requirement of the system. 
Runaway greenhouse theories contradict to the energy balance equations and 
therefore, can not work. We pointed to the importance of a characteristic altitude 
of about 2 km, where the cloud cover may control the SW input of the system 
without changing the global average OLR . To explain the observed increase in 
the global average surface temperature probably more attention should be paid 
to the changes in the net contribution from the 0F  and 0P  flux terms and 
changes in the global average water vapor content and cloud cover. Instead of 
the USST-76 atmosphere, further global energy budget studies should use 
appropriate zonal and global average atmospheres which satisfy the global 
radiative balance requirement and comply with the physics of the global 
greenhouse effect. 

Eqs. (21) and its derivatives are theoretically sound and mathematically 
correct relationships between the fluxes, greenhouse parameters, and the flux 
optical depths, and they are good enough to give quantitative estimates with 
reasonable accuracy. One of the most important results is the derived 

/US OLR f=  functional relationship which replaces the mathematically 
incorrect (1 ) / 2A AS OLR τ= + %  and (2 ) / 2G AS OLR τ= + %  equations (classic 
Eddington solutions), and also resolves the surface temperature discontinuity 
problem. In radiative equilibrium the thermal equilibrium at the surface is the 
consequence of the energy minimum principle and it is an explicit requirement 
of the new equations.  

We showed that, by applying the semi-infinite atmospheric model for clear 
or optically thin atmospheres, large errors may be introduced into the 
equilibrium surface temperatures. An other important consequence of the new 
equations is the significantly reduced greenhouse effect sensitivity to optical 
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depth perturbations. Considering the magnitude of the observed global average 
surface temperature rise and the consequences of the new greenhouse equations, 
the increased atmospheric greenhouse gas concentrations must not be the reason 
of global warming. The greenhouse effect is tied to the energy conservation 
principle through the 0 0/2 /10 3( )/2 3 /2U T D US S E F P S f+ − = + =  equations and can 
not be changed without increasing the energy input to the system. 

Applying the virial theorem new radiative balance equations were derived. 
We showed that the clear Martian model atmospheres are not in radiative 
equilibrium. The new transfer and greenhouse functions adequately describe the 
planetary greenhouse effect on the Mars and Earth. The formulation of the new 
theory for the completely cloudy Venusian atmosphere is in progress. 

The basic limitations of our formulas are related to the Eddington, and LTE 
approximations, and – regarding the practical applications – the assumption of 
the radiative balance and radiative equilibrium. The simplicity and compactness 
of the formulas make the flux calculations easy and fast and make them good 
candidates for greenhouse effect parameterizations in sophisticated climate 
models. Reasonable global change assessment using GCMs is only possible by 
observing the basic physical principles governing the planetary greenhouse 
effect. Regarding the economical impact of the global warming the 
identification of the real causes of the warming should have the highest priority 
of the climate research. We believe that the fundamental physics of the 
greenhouse effect in semi-transparent planetary atmospheres is clearly reflected 
in the new equations and once the new greenhouse theory may even appear in 
textbooks on the atmospheric radiative transfer. 
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Appendix A: Flux optical depth 
 

The usual definition of the gray-body optical depth is the d k duτ =  equation, 
where k  is a properly averaged absorption coefficient over the wavenumber 
domain, and u  is the total amount of a particular absorber along the optical path. 
Regarding an 0S  LW radiative flux passing through a homogeneous absorbing 
layer, it is expected that the transmitted part of 0S  satisfies the next equations: 

0 0( ) exp( ) exp( )S S S kuτ τ= − = −  and 0(0)S S= . In general, for a mixture of 
different kind of absorbers having complex overlapping rotational-vibrational 
band structures no such weighted average absorption coefficient (and effective 
absorber amount) can be computed a-priori. However, for an inhomogeneous 
layered atmosphere the exact flux optical depth may be obtained by using the 
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LBL method. The first step is to compute the directional mean transmittances 
over a suitable short wavenumber interval: 
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1 1
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l i

uT c k dν
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ν μ ν
ν μ= =Δ

⎡ ⎤
⎡ ⎤Δ = − +⎢ ⎥⎣ ⎦Δ ⎣ ⎦

∑∑∫ , (A1) 

 
where cos( )l lμ θ=  and lθ  is the local zenith angle, ,i lc  and ,i lkν  are the 
contributions to the total monochromatic absorption coefficient from the 
continuum type absorptions and all absorption lines relevant to the ith absorber 
and lth layer, respectively. 11N =  is the total number of major absorbing 
molecular species and 150L =  is the total number of the homogeneous 
atmospheric layers. In HARTCODE the wavenumber integration is performed 
numerically by 5th order Gaussian quadrature over a wavenumber mesh 
structure of variable length. At least 1νΔ = cm–1 spectral resolution is required 
for the accurate Planck weighting. The hemispheric spectral flux transmittance 
is obtained by integrating Eq. (A1) with respect the solid angle: 

 
 

2

( ) ( , )A AT T d
π

ν ν μ ωΔ = Δ∫% . (A2) 

In the computation of the integral in Eq. (A2) nine streams (zenith angles) were 
used and the cylindrical symmetry of the radiation field was also assumed. The 
Planck-weighted hemispheric mean transmittances were computed from 

( )AT νΔ%  by the following sum: 
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1 ( , ) ( )
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A j A A j
jA
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t

π ν ν
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= Δ Δ∑ % , (A3) 

 
where 3490M =  is the total number of spectral intervals, At  is the surface 
temperature, and ( , )j AB tνΔ  is the averaged Planck function over jνΔ . Since 
the sum in Eq. (A3) is obviously the total transmitted radiative flux from the 
ground, the exact flux optical depth may be expressed as: 
 
 ln( )A ATτ = −% . (A4) 
 
The dependence of Aτ%  on the individual total absorber amounts still can not be 
computed directly, but using a pre-computed database the construction of a 

Aτ% ),...,,( 21 Nuuu  function is a matter of a multi-dimensional parameterization. 
Here Nuu ,...,1 represent the column amounts of the different greenhouse gases. 
Such parameterization may also contain the effective temperature and pressure 
of the absorbers.  
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Appendix B: Source function profile in bounded atmosphere 
 
We have seen that in a semi-transparent atmosphere the surface upward 
radiation is 4 /G G GB tε σ π= , and the upper boundary condition at the top of the 
atmosphere is the zero downward IR radiance. The upward and downward 
hemispheric mean radiance at the upper boundary using the general classic 
solution of the plane-parallel radiative transfer equation and the isotropy 
approximation are: 
 

 
3 3
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3(0) ( )
2
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GI B e B e d
ττ τ

τ τ
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and 
 (0) 0I − = . (B2) 
 
Putting Eq. (B1) and Eq. (B2) into the ( ) ( )H I Iτ π + −= −  equation, and 
substituting the source function with 0( ) 3 ( ) /(4 )B H Bτ τ π= + in the upward 
hemispheric mean radiance we get: 
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The two definite integrals in the second and third terms of the right hand side of 
Eq. (B3) must be evaluated: 
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After putting back Eqs. (B4) and (B5) into Eq. (B3) we get: 
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Rearranging Eq. (B6) and using the (3/ 2)A Aτ τ=%  notation for the total flux 
optical depth, 0Bπ can be expressed as: 
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This 0B  in the 0( ) 3 ( ) /(4 )B H Bτ τ π= +  equation will give the general form of 
the source function profile: 
 

 2
1 ( 1)

( )
1

A A

A

H
A Ge B e

B
e

τ τ

τ

τ τ τ π
π τ

− −

−

⎡ ⎤+ + − + −⎣ ⎦=
−

% %

%

% % %
% . (B8) 

 
Applying the exp( )A AT τ= − % , 1 AA T= − , and 2 /(1 )A Af Trτ= + +% notations, Eq. 
(B8) will become identical with Eq. (21). The semi-infinite solution may be 
obtained exactly in the same way, but substituting Aτ%  with infinity in Eq. (B1), 
or simply by making these substitutions in Eq. (B8). 

The most efficient cooling of the clear atmosphere requires a total optical 
depth that maximizes 0B . The derivative of Eq. (B7) with respect Aτ% may be 
expressed as: 
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From Eq. (B9) follows that: 
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From Eq. (B10), assuming 0Aτ >%  we get: 
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Combining this equation with Eq. (28) we obtain the G UB Sπ =  equivalence 
requiring the thermal equilibrium at the ground surface. Note, that at real ground 
or sea surfaces the 1Gε ≠  condition will result in the G AS S≠  inequality, which 
is also apparent in Fig. 2. 
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