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Abstract— In order to efficiently integrate renewable energy sources – the production of which 
can be planned harder – in the energy grid, quite accurate forecasts are needed. Especially in 
Hungary, where energy storage is yet an unsolved problem. The limited ability of wind forecast 
means that the delivered power of the wind farms cannot be predicted with sufficient accuracy. 
This work focuses on the improvement of wind power forecast precision by using different 
statistical methods. In the first part of the paper, simple BIAS correction approaches and more 
complex ensemble based methods are applied to improve the power prediction for the whole 
country. The second part of the work focuses on enhancement of the wind power forecast of a 
single wind farm. While mostly only wind speed is taken into consideration for the calculation 
of the generated power, it is shown that air density is also an important factor in the equations. 
Autoregressive filtering is launched in order to show that wind speed and power forecasts can 
also be improved by this kind of statistical method. 
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1. Introduction 

Nowadays it is a crucial question to use renewable energy all over the world and to 
integrate it to the electricity network. Due to huge energy demand in the 20th century, 
the depletion of conventional energy sources (e.g., fossil oil, natural gas), and the 
increasing CO2-emission, wind energy, as renewable energy source, has become of 
increasing importance. In the last decades, the world’s wind energy utilization 
exploded. While in 1996 only 6 GW built-in capacity was in operation, by 2015 this 
value has exceeded 433 GW, and the wind energy industry is set to grow by another 
60 GW in 2016 (Global Wind Energy Council, 2016). The European Union is also 
committed to use renewable energy sources. The latest revised RES-E directive in 
2016 sets out the EU target of at least 27% for the renewables in the final energy 
consumption by 2030 (European Commission, 2016). In 2014, 195.8 Mtoe (Million 
of tonnes of oil equivalent) renewable primary energy was produced in the EU-28 
area. The share of the energy sources were the following: biomass and waste 63.1%, 
hydropower 16.5%, wind 11.1%, geothermal 3.2%, solar 6.1% (Eurostat, 2016). The 
Hungarian production was 2.05 Mtoe for renewable primary energy, and the share 
of the sources are: Biomass and waste 89.2%, Geothermal 6.3%, Wind 2.8%, 
Hydropower 1.3%, Solar 0.5% (Eurostat, 2016). In spite of many advantages, the 
users of ‘green energy’ are also facing several unresolved problems. Critics of wind 
power argue that the intermittent energy production of the turbines has a negative 
effect on the security of the power system. The limited ability of the forecast of wind 
eventuates that the delivered power of wind farms cannot be forecasted with 
sufficient accuracy. As a consequence, to ensure secure system operation, the energy 
supplied by wind should only have a limited proportion in the total electricity 
production. In the last few decades, fluctuations could easily be regulated, but since 
the wind energy has gained higher proportion in the power system, these 
uncertainties cannot be ignored any longer. 

In Hungary, currently there is no scope for wind power expansion. In 2006, 
the Hungarian Energy and Public Utility Regulatory Authority limited the wind 
power capacity to 330 MW. This value seemed to be sufficient that time, but 
329 MW was built in by 2011, so practically no more installation is possible at 
the moment. The current political and regulatory environment in Hungary does 
not allow installing new wind power plants. For capacity expansion, a more 
precise predictability of wind power would be elemental. Nowadays, several 
methods are being investigated in order to ensure this issue, such as the energy 
storage. By means of this, in case of oversupply, a battery can be charged, and the 
stored energy can be used, when undersupply occurs (Hartmann, 2012). Another 
area is the prediction of the generated wind power. Statistical data mining 
approach was applied for wind farm power prediction (Kusiak, 2009). Another 
possible way is to use numerical weather prediction (NWP) models. However, 
NWP models forecast the wind speed and direction values, the system operator 
needs wind power data. To overcome this problem, neural networks are generally 
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constructed (Barbounis et. al, 2006). Another approach is to calculate the 
characteristic curve between wind speed and wind power, by means of, e.g., the 
bin method or regression (Llombart et. al, 2005).  

The production of wind energy strongly depends on weather, resulting that 
its planning is very difficult. It is an important task for the meteorologists to 
prepare the most accurate forecasts for the target users. The goal for the Hungarian 
Meteorological Service (OMSZ) is to adapt and develop algorithms connected to 
the calculation of power energy for wind, solar, and water resources. The 
operational usage is also important and expected. 

This work focuses on the forecast of the wind power and on the improvement 
of its precision by using different methods. In Hungary, the power production has 
to be given for two days ahead, and for this horizon, meteorological forecasts have 
certainly to be used to achieve the desired accuracy. The aim of this work is to 
ensure the possibly most accurate forecast using meteorological data.  

In the first part of this work, statistical correction of wind power forecast is 
shown, which is summarized for all wind power stations in Hungary for the 
Hungarian Transmission System Operator Ltd (MAVIR). Simple BIAS 
correction approaches (Sweeney and Lynch, 2011), like short term rolling trend 
(STT), short term rolling bias (STB), composite forecast (COM) are applied to 
correct the wind power predictions, without real access.  

Quantile regression (QR) and analog ensemble (AnEns) methods 
(Alessandrini et al., 2014) were also applied to gain probabilistic information 
from a deterministic model. The expectation was that not only additional 
information can be generated, but the final result would mean a more accurate 
prediction than that obtained with a single model run. 

The second part of the paper focuses on improving of the wind power 
forecast of a single wind farm. It is shown that not only wind speed, but also air 
density is an important influencing parameter of wind power production. Air 
density has already been taken into consideration in former works (Rizwan et. al, 
2012; Farkas, 2011), calculating the characteristic curve from two separate inputs. 
In this work, the wind speed is normalized with the air density as suggested in 
IEC 61400-12-1 (2005), so the characteristic curve is determined from one input 
parameter, keeping the model simpler. Results can also be improved by applying 
statistical methods, as autoregressive modeling (Collomb, 2009).  

2. Data and methods 

The kinetic energy of the wind, can be calculated by E formula: ܧ = ૚૛݉ݒ૛, where 

m is the air mass, v is the wind speed. Assuming a constant wind speed, the 
quantity of air flowing through an area A, which is perpendicular to the wind 
direction can be given by:  
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ܣ  = 	  (1) ,࢚࢜࣋࢓

 
where ρ denotes the air density, and t is the time. The power is the time derivative 
of kinetic energy: 
 

 ଴ܲ = ௗாௗ௧ = ா௧ = ଵଶ  ଷ . (2)ݒܣߩ

 
For standard atmosphere (temperature of 273 K and pressure of 1013 hPa), 

the power can be calculated using the following equation:  
 

 
௉బ஺ =  ଷ. (3)ݒ0.647

 
From this equation, two consequences follow. First, wind has low power 

density compared to conventional energy sources. Thus, large turbine diameter is 
needed in order to get sufficiently high power density (Hunyár et al., 2001). On 
the other hand, the equation is strongly non-linear, which may lead to significant 
error in the later prediction that is based on the wind speed. The first issue is 
further augmented by the Betz’s law (Betz, 1966), i.e., the maximum amount of 
power supply Pw is: 

 

 ( ௪ܲ)௠௔௫ = ଵ଺ଶ଻ ܣ ఘଶ  ଷ (4)ݒ

 
However, real wind power plants cannot produce arbitrarily large power. 

On the other hand, under and above given wind speeds, no power can be obtained 
– these are called cut-in and cut-out speed, respectively. The characteristic curve 
is illustrated in Fig. 1.  

Furthermore, wind speed varies with the height. This can be calculated by: 
 

௛ݒ  = ଵ଴ݒ ቀ ௛௛భబቁ௡, (5) 

 
where ݒଵ଴ is the velocity at height ℎଵ଴ = 10	݉, n is the so-called Hellmann 
exponent, which is different above dry land and sea, and also depends on the 
topography. 

Meteorological forecasts do not provide the value of wind power, which is 
the most important parameter for system operator. Their outputs are wind speed, 
temperature, relative humidity, etc. However, these data can be used to determine 
the produced wind power. 
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Fig. 1. Wind turbine performance as a function of wind speed (Hunyár et al, 2001). 

 
 
The maximum obtainable power of wind turbines depends on several 

parameters (Eq. (4)). The most important of these is certainly the wind speed. 
Thus, mostly the wind power – wind speed (P-v) characteristic curve is given by 
manufacturers. However, according to Eq. (2), also air density plays an important 
role. This effect will be investigated later.  

In practice, the shape of a characteristic curve is slightly different from that 
of Fig. 1, since it is sigmoid-shaped – curves for different turbines are given in 
Fig. 2. Furthermore, real power curves are significantly different from those of 
given by manufacturers, so determination of the real characteristic curve is crucial 
in order to give precise schedule. 

 

 
Fig. 2. Characteristic curves of different turbines. 
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To calculate power using the characteristic curves, wind speed forecast is 
needed on the hub height. The wind speed forecasts are provided by the AROME 
non-hydrostatic numerical weather prediction model (Szintai et al., 2015) with 
2.5 km horizontal and 15 minutes temporal resolution over the Carpathian domain 
(Fig. 3).  

 

 
Fig. 3. Domain of the AROME model as run operationally at OMSZ. Blue dots are wind 
power plants in Hungary. 

 
 
 

The predicted wind speed is vertically interpolated to hub height, and 
horizontally to turbine position. From the individual wind speed values, power 
productions are calculated with a simple transformation of the characteristic 
curves. MAVIR gets the summarized power estimation of the 172 Hungarian 
tubes (Fig. 3 and Table 1). Most of the wind power stations belong to 2 MW 
installed capacity and locate in the north western part of the country.  

Forecasts are valid for +3–39 hours with 15 min temporal resolution, and are 
prepared 4 times a day (00 UTC, 06 UTC, 12 UTC, and 18 UTC). The system 
operator is able to use the latest wind power estimations for the planning in the 
next hours/day, and he/she is able to control the uncertainties of the wind power 
depending on the weather conditions (Fig. 4). 
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Table 1. Most important parameters of wind farms in Hungary (MEH, 2015) 

Type of wind turbine 
Number of 

pieces 
Nominal capacity of 

turbine [MW] 
Rotor height 

 [m] 

Enercon E40 7 0.6  78 

Enercon E48 5 0.8  75 

Enercon E70 5 2.0 100 

Fuhrlander MD77 2 1.5 100 

Gamesa G90 91 2.0 100 

Nordex N29 1 0.3   50 

Repower MM 82 12 2.0 100 

Vestas V27 1 0.23   32 

Vestas V52 1 0.8   86 

Vestas V90 – 1.8 MW 2 1.8 105 

Vestas V90 – 2 MW 36 2.0 100–105 

Vestas V90 – 3 MW 8 3.0 100 

WT 50 S 1 0.05    24 

 
 
 
 
 

 
Fig. 4. AROME wind power forecast for Hungary (blue: 00 UTC, red: 06 UTC, orange: 
12 UTC, green: 18 UTC forecasts). 
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MAVIR expects that the power forecasts should be as precise as it is 
possible, and the mean absolute error (MAPE) should not exceed 5%:  

 
 

ܧܲܣܯ  = ଵ௡∑ ቚ௉೘೐ି௉೘೚௉೘೐ ቚ௡ଵ ∗ 100	% , (6) 

 
 
where Pme means the power measurement and Pmo denotes the modeled value. In 
real purposes this expectation is unrealistic, e.g., the value of MAPE was 53% in 
the summer of 2015. Mean relative error (modeled-measured) histogram in Fig. 5 
shows that the model significantly overestimates the wind power. In 30 % of the 
cases, the error reaches 100 %. This result seems scary, but most of the forecasted 
and measured data are relatively small, so the errors are not so large (Fig. 6).  

 
 
 
 
 
 

 
Fig. 5. Mean relative errors of AROME wind power forecast for Hungary for summer, 
2015 (blue: 00 UTC, red: 06 UTC, orange: 12 UTC, green: 18 UTC forecasts). 
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Fig. 6. Forecasted and measured power values for Hungary for summer, 2015 (blue: 00 
UTC, red: 06 UTC, orange: 12 UTC, green: 18 UTC forecasts, black: measured). 

 
 
 
 
 
 

Wind is a very fluctuating meteorological parameter. Thus, the power also 
changes rapidly due to the cubic relationship between the two variables (Eq. (2)). 
Unfortunately, this kind of issue affects also the results of BIAS corrections. 

2.1. Statistical corrections of wind power forecasts 

First of all, simple BIAS correction methods were applied on the summarized 
wind power forecast valid for the whole country. The power measurements are 
also available only for the whole country. This makes any kind of statistical 
correction work less accurate. Some model output statistics were provided with 
100 days training period to improve the forecast skill.  

Short-term rolling trend (STT) correction calculates the average errors for 
every time step over the previous 28 days (Sweeney and Lynch, 2011). Then the 
method corrects the raw forecast values with the computed ones at every time 
steps. Short-term rolling bias (STB) computes the average error of the previous 
3 days, and corrects the original forecasts with this single value. Composite 
method (COM) is given by the sum of weighted STT, STB, and simple BIAS 
corrections.  
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Secondly, quantile regression (QR) and analog ensemble (AnEns) were 
applied to get probability information based on deterministic forecast using 
statistical approach. QR was provided to generate a set of the wind power 
predictors. 19-member ensemble forecasts were based on the AROME model 
from quantile 0.05 to 1 by step 0.05. QR can be carried out for a random variable 
Y as follows:  

 
 ܳ(߬) = (߬)଴ߚ + ଵݔ(߬)ଵߚ + ଶݔ(߬)ଶߚ + ⋯+  ௣,  (7)ݔ(߬)௣ߚ
 
 

where xp are the p known regressors, βp(τ) are the coefficients for the τth quantile 
and τ is the probability of finding values of Y below Q(τ). The coefficients for 
each quantile might be gained throughout a learning period. In our case, the total 
dataset is one-year-long (July 2012 – August 2013), therefore both the training 
period and the test period are half-year-long. Similarly to the work in Alessandrini 
et al. (2014), wind speed, wind direction, and forecast leadtime had been used as 
predictors, testing which can probably be neglected. Thus, four setups have been 
tried, in two of them forecast leadtime was used as predictor (wind speed and 
leadtime, then wind speed, wind direction, and leadtime as predictors). The 
coefficients for each quantile had been trained, and for the other two setups (wind 
speed, and wind speed and wind direction as predictors) not only each quantile 
but every leadtime had their own coefficients. 

The analog ensemble technique is based on the work of Alessandrini et al. 
(2014). It was originally applied for ensemble forecasts, but can also be used with 
deterministic forecasts (Delle Monache et al., 2012). The method, as its name 
suggests, searches for the closest N analogues to each forecast leadtime’s 
prediction in the training period. These N members are the ensemble members for 
the given leadtime. In our case, the program searches for analogous wind speeds 
and wind directions in the training period, and extracts the corresponding power 
measurement. The general metric used to search for the best analogue for the 
current forecast is as follows: 

 

,௧ܨ‖  ‖,௧ܣ = ∑ ௪೔ఙ೑೔ேೡ௜ୀଵ ට∑ ௜,௧ି௝ܨ) − ௜,௧,ା௝)ଶ௧ሚ௝ୀି௧ሚܣ  , (8) 

 
where Ft is the forecast that we search the At' analogue for in the past at time t'. Nv 
is the number of physical variables and wi are their weights, while σfi is the 
standard deviation of the past forecasts of the given variable for the selected 
location (Alessandrini et al., 2014). As the number of ensemble members should 
be the square root of the number of training days, we chose the first 15 analogues, 
gaining a 15-member EPS. 
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2.2. Corrections of a single wind farm data  

2.2.1. Fitting the P-v curve with fuzzy model 

Measured data of two turbines (600 kW E40 and 2 MW E70) are available from 
May 2010 to June 2011, containing wind speed, wind direction, and wind power 
with the time resolution of 10 minutes. For fitting of the P-v characteristic curve, 
a cluster estimation method is applied (Chiu, 1994). This method can deal with 
more input parameters, so not only wind speed, but, e.g., wind direction can be 
handled. In this work, however, only wind speed is considered as input in order 
to keep our model as simple as possible. 

The model assumes that in the investigated multi-dimensional function, 
different groups can be created that behave similarly. For wind turbines, at low 
speeds the output power is zero, and at high speeds (but lower than the cut-out 
speed) it equals to the nominal performance of the turbine. The center of these 
groups can be calculated, and these centers characterize the groups accurately. 
The applied fuzzy method implements the principle of Sugeno and Tanaka, 1992. 
In this case, the model will be able to describe a complex behavior with only a 
few rules. Using this approach, the characteristic curve fitting can be executed. 

2.2.2. Consideration of air density 

Most power forecasting methods take only wind speed into consideration. 
However, Eq. (4) clearly shows that the maximum obtainable performance is the 
linear function of air density. Certainly, the most important parameter is the wind 
speed, but only a few percent of improvement can be crucial for the system 
operator (who wants to ensure system stability) and the turbine operator (whose 
aim is to minimize the regulatory surcharge to be paid).  

Fig. 7 shows the effect of air density on the produced power. Usually the 
higher the air density, the higher the generated power (at the same wind speed). 
However, there are some exceptions, since the power of the wind is determined 
by several parameters that were not investigated in this work, e.g., by the 
distribution of the wind speed in the 10 minutes interval. 

The international standard of wind power measurements also deals with the 
effect of air density. For pitch regulated wind turbines it specifies the following 
normalization: 

௡ݒ  = ଵ଴௠௜௡ටఘభబ೘೔೙ఘబయݒ , (9) 

 
where ݒ௡ denotes the normalized wind speed, ݒଵ଴௠௜௡ and ߩଵ଴௠௜௡ are ……. the 
measured wind speed and air density averaged over 10 minutes, while ߩ଴ is the 
reference air density (IEC 61400-12-1, 2005). 
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Wind speed forecasts created by OMSZ have 15 minutes temporal 
resolution. Thus, these data had to be interpolated in order to ensure the same 
resolution for both datasets. It has to be mentioned that there were no air density 
data measurements, so the training can only be performed using the forecasted 
values. However, parameters determining air density (temperature, air pressure, 
humidity) can be forecasted more precisely than wind speed.  

Due to the high computational demand, air density data were only 
determined for two weeks, one week in June 2010 and one week in February 2011.  

 

 
Fig. 7. The effect of air density on the generated power.  

 

2.2.3. Autoregressive filtering of wind speed forecast 

In this section, wind speed prediction is processed by autoregressive filtering. 
First of all, the definition of an autoregressive process is given. If Xn can be 
calculated as: 
 
 ܺ௡ = ܽଵܺ௡ିଵ + ܽଶܺ௡ିଶ + ⋯+ ܽ௣ܺ௡ି௣ +  ௡, (10)ߦ
 
where ai is real and ߦ௡ is white noise, then X is an autoregressive process of order 
p. The autoregressive process is stationary, i.e., ai is constant in time. 
Consequently, it has to be declared that although the method can model 
atmospheric processes, it can only describe an ‘average’ behavior. Thus, it will be 
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unable to follow the unique nature of the atmosphere at a given time. 
Nevertheless, the algorithm is expected to reduce the mean squared error. 

To determine the coefficients ai, the output is given as ݕ௡ = −∑ ܽ௜ݕ௡ି௜.௣௜ୀଵ  
This formula is similar to Eq. (10), the difference is the sign of the coefficients. 
This description is useful, because this way an IIR (infinite impulse response) 
filter can be created with a transfer function of: 

 

(ݖ)ܪ  = (ݖ)ܣ1 = 11 + ܽଵିݖଵ + ⋯+ ܽ௣ିݖ௣. (11) 

 
 

The other difference is that this description does not contain noise, so the 
output can only be approximated with an error. The coefficients have to be 
determined so that the mean squared error is minimal: 

 
 
 ෍ ቎ݕ௡ − ቌ−෍ܽ௜ݕ௡ି௜௣

௜ୀଵ ቍ቏ଶ = ෍ ቌݕ௡ +෍ܽ௜ݕ௡ି௜௣
௜ୀଵ ቍଶஶ

௡ୀିஶ
ஶ

௡ୀିஶ  

 

.     (12) 

   

 
The error is minimal if we solve the following system of equations:  

 

 ∀݆ ∈ ሾ1, ݇ሿ,			෍ܽ௜ܴ|௝ି௜|௞
௜ୀଵ , = 0 (13) 

 
where R is the autocorrelation function (Collomb, 2009). This system of equations 
can be solved using the Levinson-Durbin algorithm that computes the coefficients 
recursively. 

To determine the coefficients of the autoregressive filter, a training set is 
needed to obtain the correlation coefficients. Furthermore, the order of the model 
is also to be determined. If the model is high-order, old data distort the output, 
while if too few number of coefficients are used, important details might not be 
taken into consideration. Analyzing the data, the model order was chosen so that 
data from the last 24 hours is used. Considering the 10 minutes resolution, this 
means that 144 coefficients were to be calculated. The training dataset was the 
wind speed measurements from April 2011. 
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3. Results and discussion 

3.1. Statistical correction of wind power forecast 

3.1.1. Simple methods 

Test period was chosen from March 12, 2012 to July 31, 2012 to validate the 
simple lead time BIAS, STT, STB, and COM corrections. As it can be seen in 
Fig. 8, none of the methods have been able to improve the forecast at a given day 
significantly. In one case one method was more effective, while in another case 
the different one. For longer period, all kind of methods resulted in similar 
statistics (MAPE, RMSE, BIAS).  

 
 

Fig. 8. Wind power measurement, forecast and BIAS corrected forecasts for some selected days.  
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3.1.2. Ensemble based methods 

QR and AnEns were applied for the period of July 2012 – August 2013 based on 
AROME deterministic forecast. During the verification, BIAS and RMSE have 
been produced. This allows us to compare the results with those obtained by the 
higher resolution deterministic model, AROME, with the previously mentioned 
processes (QR and AnEns). These scores are shown for the EPS mean, median, 
and for AROME, as well as for the standard deviation of EPS members. In order 
to show, how good a probabilistic forecast is, several scores can be examined, 
some of them are (Alessandrini et al., 2014):  

• reliability diagram,  

• rank histogram,  

• spread Skill Plot, 

• continuous ranked probability score (CRPS). 

In the figures of BIAS (Fig. 9), basically three things can be observed: 

1) the AROME’s forecast is clearly better than the others, 

2) the BIAS gets slightly larger when including leadtime as predictor, 

3) the BIAS of AnEns’s is concurrent with the BIAS of AROME (especially 
that of the median). 

 

Of course that has to be set against RMSE, which may be seen in Fig. 10. We 
can state that:  

1) There is no concurrence the AROME’s forecast. The RMSE of AROME 
is about half of the others. 

2) The RMSE of QR is slightly better, when wind speed and leadtime are 
used as predictors.  

3) The correlation between the RMSE and the standard deviation of the eps 
members is high.  

4) The RMSE of QR and AnEns medians are much worse than QR and 
AnEns means. 
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Fig. 9. a) The BIAS of the mean and median of the eps obtained by quantile regression 
with wind speed as predictor, b) the BIAS of the mean and median of the eps obtained by 
quantile regression with wind speed and leadtime as predictors, c) the BIAS of the mean 
and median of the eps obtained by analog ensemble and AROME as the function of 
leadtime. 
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Fig. 10. a) The RMSE of the mean and median of the eps obtained by quantile regression 
with wind speed as predictor, b) the RMSE of the mean and median of the eps obtained by 
quantile regression with wind speed and leadtime as predictors, c) the RMSE of the mean 
and median of the eps obtained by analog ensemble and AROME as the function of 
leadtime. 
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In order to get more information about the probabilistic forecast, a number 
of indicators can be examined, e.g., the rank histogram (Fig. 11). This is a 
diagnostic tool to evaluate the spread of ensemble. The assumption is that all 
members are distributed with the same probability of occurrence of the 
observations within each bin. Usually the rank histograms show U-shape, so the 
spread of the members are not big enough, as it happens on the rank histogram of 
QR, when only the wind speed was used as predictor (Fig. 11. a). Using AnEns 
gives the best result, because it shows a little less equality between the bins 
(Fig. 11. c). 

3.2. Corrections of a single wind farm data  

3.2.1. Fitting the P-v curve with fuzzy model 

The fuzzy model was trained in order to determine the relationship between the 
wind speed and the generated power. Measured data were available from May 
2010 to June 2011. The first training set was a two-month-long data set (May and 
June 2010).  

Fitting the function on all data points would obviously distort the result 
significantly. However, two simple rules can filter out outliers marked in Fig. 12. 
The first rule prescribes that above the cut-in speed, output values lower than a 
given value are ignored. For the second rule, it can be observed that at about 5 
m/s, zero output was measured many times. A possible reason for that may be the 
power plant maintenance. This rule filters out data points, at which lower than 3.5 
kW power was measured at higher than 3 m/s wind speed. The other rule takes 
into consideration that beyond the nominal wind speed, the output should be 
roughly constant. The saturation performance is 619 kW. Thus, according to this 
rule, above 14 m/s power supply, values lower than 610 kW are outliers.  
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Fig. 11. Rank histograms of QR in case a) when wind speed and b) when wind speed and 
leadtime were used as predictors. c) Rank histogram of AnEns. 
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However, Fig. 12 shows that these rules do not eliminate all of the outliers. 
In order to filter these points out, a preliminary fit is needed without data points 
filtered out previously. After that, data points that differ from the model output 
with more than 10% are to be eliminated. The resulting fitted curve now follows 
the desired sigmoid-shape.  

 
 
 

 
 

Fig. 12. Training set and the outliers (May and June, 2010). 
 

 
 
 
 
This fit can be executed for data of different seasons. For both winter and 

summer, two months were selected as training set. It became evident that the 
resulting curves are significantly different (see Fig. 13). The difference at the two 
investigated wind speeds is about 5% in both cases. This is problematic, because 
characteristic curves are mostly considered as static. Furthermore, catalogue data 
differ from both curves, resulting that they cannot be used for precise forecasting.  
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Fig. 13. Fitted curves in summer and winter (2010 and 2011), and catalogue data. 

 

3.2.2. Consideration of air density 

Curve fitting, using the normalized wind speed data of Section 2.2.2 showed that 
at low and high wind speeds, there was no significant difference to observe. 
Contrarily, at medium speeds, the difference is about the 5% of Section 3.2.1. It 
is obvious again that catalogue data cannot be used for precise forecasting. The 
difference between the two unnormalized curve is 108.5 kW2, while for 
normalized curves this value is only 21.6 kW2 (Fig. 14), which means that the 
mean squared erroro (MSE) is reduced to the fifth of its original value, where 
MSE is: 
 

ܧܵܯ  = 1ܰ෍൫ ௦ܲ௨௠௠௘௥,௜ − ௪ܲ௜௡௧௘௥,௜൯ଶே
௜ୀଵ . (14) 

 
According to these results, it seems that one of the error sources that cause 

the difference between the curves is the air density. 
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Fig. 14. Fitted power curves and catalogue data. 

 

3.2.3. Autoregressive filtering of wind speed forecast 

The IIR-filtering on the data given by the OMSZ was performed with the 
coefficients calculated with the method described in Section 2.2.3. Table 2 
contains the results, showing that the MSE of both wind speed and wind power 
forecasts have been improved by 3–4%. This means that if the filtered data were 
used as forecast instead of the ‘raw’ meteorological data, these improvements 
could have been achieved. 
 

Table 1. MSE-improvements using autoregressive filtering 

MSE-improvement June, 2010 February, 2011 April, 2011 

Wind speed 3.732% 3.958% 3.015% 

Wind power 3.891% 4.387% 3.007% 
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4. Summary and conclusions 

The professionals at MAVIR are responsible for the smooth energy supply of the 
whole country. Daily plans of the available energies are created for every day with 
15 minutes time resolution by the system operator. One segment of this system is 
the prediction of the generated wind power. The task of meteorologists is to 
provide the most accurate forecast for the operators and the wind farm owners. 
The aim of this work was to improve the wind power forecasts.  

In this paper, two types of approach were discussed. In the first part, 
statistical correction of the summarized wind power forecast was shown, which is 
valid for the whole country. Simple BIAS corrections and more comprehensive 
ensemble-based methods were applied without real access. None of the methods 
were able to improve the forecast significantly. Some improvements might be 
possible in a given day, but the absolute errors became worse for the whole period.  

In the second part, we concentrated on the correction of the wind power 
forecast of a single farm. Investigations showed that the forecasts of the OMSZ 
follow the real production data well. It was also an important result that the air 
density should also be taken into account for the calculation of wind power. 
Namely, this is the parameter that may cause the difference between the 
characteristic curves in different months.  

Another result of this work was that autoregressive filtering may also 
increase the precision of power forecasting. Using this method, several percent of 
improvement was achieved, which is significant considering the 5% expectation 
of the system operator.  

Here it was not shown, but it was proven that using meteorological forecasts, 
much more precise scheduling can be made than by using predictions without 
physical considerations (data of the previous year, on average production). This 
would be advantageous for both the system operator and the turbine operators. 

This work confirms that the wind energy forecast can be improved in two 
ways. The first one is to develop the meteorological forecast, so it is very 
important to create more complex and finer resolution (in horizontal and vertical) 
NWP models. The second one is using statistical corrections for the individual 
wind turbines and wind farms, and the sum of corrected values are able to produce 
more accurate wind power for the operators. This second step seems not realistic, 
because it is almost impossible to get measurements from all the 172 wind farms, 
which are necessary for the statistical corrections.  
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