IDŐJÁRÁS

Quarterly Journal of the Hungarian Meteorological Service Vol. 124, No. 1, January – March, 2020, pp. 47–72

Validation of the existing models for estimating diffuse solar radiation over Egypt

S. M. Robaa

Astronomy, Space Sciences and Meteorology Department, Faculty of Science, Cairo University, Giza - Egypt Email: d robaa@hotmail.com

(Manuscript received in final form February 7, 2019)

Abstract— The main objective of this study is to review and test the applicability of well-established models collected from the literature for estimating the monthly average daily diffuse solar radiation on a horizontal surface in Egypt. The different meteorological data measured at eight stations during the period 1987–2016 were used to calculate the monthly mean values of diffuse solar radiation over these stations using the collected models. The selected eight stations measure diffuse solar radiation component and have been chosen to cover the whole of Egypt. The collected models (fourteen models) were compared on the basis of many statistical error tests such as the relative percentage error, (e%), mean percentage error (MPE), mean bias error (MBD), root mean square error (RMSE), t-test, and Nash-Sutcliffe equation (NSE). According to the results, the Tarhan and Sarı model (Model 12) showed the best estimation of the diffuse solar radiation on a horizontal surface for all of the eight stations, and therefore, it is recommended for predicting diffuse solar radiation at any location in Egypt.

Key-words: solar energy, diffuse solar radiation, sunshine duration, extraterrestrial radiation, solar radiation models, model comparison, Egypt.

1. Introduction

Knowledge of local solar radiation components is essential in the design and study of many solar energy applications (*Lu et al*, 1998; *Li* and *Lam*, 2000; *Wong* and *Chow*, 2001; *Driesse* and *Thevenard*, 2002; *Almorox* and *Hontoria*, 2004; *Al-Mohamad*, 2004; *Kumar* and *Umanand*, 2005). Although Egypt is a vast country and has abundant solar energy, solar radiation measurements are not easily

available in Egypt (especially the diffuse solar radiation) because of not being able to afford the measuring equipments and techniques involved (*Ibrahim*, 1985). Therefore, it is important to develop methods to estimate the solar radiation on the basis of the more readily available meteorological data. Several models have been developed to estimate the amount of global solar radiation on horizontal surfaces in Egypt (Ibrahim, 1985; Sabbagh, 1977; El-Shahawy, 1984; El-Shazly, 1998; Trabea and Shaltout, 2000; Darwish and Taha, 2000; Tadros, 2000; El-Metwally, 2004 and 2005; El-Sebaii, and Trabea, 2005; Khalil and Shaffie, 2013; El-Metwally and Wald, 2013; Khalil and Shaffie, 2016). Unfortunately, the diffuse radiation measurements are very rare in Egypt, and there are no researches, except for the study of *El-Sebaii* and *Trabea* (2003), which made a concerning estimation of diffuse solar radiation in Egypt. Therefore, the main objective of this paper is to validate the best available models that predict the monthly mean daily diffuse radiation on a horizontal surface against an independent data set over Egypt, and thus, to select the most accurate model. All the most accurate empirical models which are used to estimate diffuse solar radiation, D, have been collected from literatures to evaluate the applicability of these models to estimate D over different stations in Egypt. The collected models were compared on the basis of many statistical error tests.

2. Comparison of models with literature

The most accurate empirical models concerning estimation of diffuse solar radiation collected from the literature are as follows:

Model 1 (Hawas and Muneer, 1984):

$$\frac{D}{H} = 1.35 - 1.6075 \left(\frac{H}{H_0}\right),$$
 (1)

Model 2 (*Ulgen* and *Hepbasli*, 2009):

$$\frac{D}{H_0} = 0.1155 - 0.1958 \left(\frac{H}{H_0}\right),$$
 (2)

Model 3 (Gopinathan, 1988):

$$\frac{D}{H} = 0.697 - 0.577 \left(\frac{n}{N_0}\right),$$
 (3)

Model 4 (Jamil and Akhtar, 2017):

$$\frac{D}{H} = 0.2932 - 1.8655 \left(\frac{H}{H_0}\right) - 1.5114 \left(\frac{n}{N_0}\right),$$
 (4)

Model 5 (Gopinathan, 1988):

$$\frac{D}{H} = 0.879 - 0.575 \left(\frac{H}{H_0}\right) - 0.323 \left(\frac{n}{N_0}\right),\tag{5}$$

Model 6 (El-Sebaii et al. 2010):

$$\frac{D}{H_0} = 3.0020 - 3.8820 \left(\frac{H}{H_0}\right) - 0.1500 \left(\frac{n}{N_0}\right),\tag{6}$$

Model 7 (*El-Sebaii* and *Trabea*, 2003):

$$\frac{D}{H} = -0.209 + 2.183 \left(\frac{n}{N_o}\right) - 1.785 \left(\frac{n}{N_o}\right)^2,\tag{7}$$

Model 8 (Tarhan and Sarı, 2005):

$$\frac{D}{H} = 0.9885 - 1.4276 \left(\frac{H}{H_0}\right) + 0.5679 \left(\frac{H}{H_0}\right)^2$$
, (8)

Model 9 (Jamil and Akhtar, 2017):

$$\frac{D}{H} = 0.3116 + 1.8043 \left(\frac{H}{H_0}\right) + 0.0501 \left(\frac{H}{H_0}\right)^2 - 1.5118 \left(\frac{n}{N_0}\right), (9)$$

Model 10 (Jamil and Akhtar, 2017):

$$\frac{D}{H} = 0.3017 - 1.8726 \left(\frac{H}{H_0}\right) - 1.5454 \left(\frac{n}{N_o}\right) + 0.0212 \left(\frac{n}{N_o}\right)^2, \tag{10}$$

Model 11 (Jamil and Akhtar, 2017):

$$\frac{D}{H_0} = -0.1776 + 1.6206 \left(\frac{H}{H_0}\right) - 0.6843 \left(\frac{n}{N_0}\right) - 0.2136 \left(\frac{n}{N_0}\right)^2, \quad (11)$$

Model 12 (Tarhan and Sarı, 2005):

$$\frac{D}{H} = 1.0207 - 1.6582 \left(\frac{H}{H_0}\right) + 1.1018 \left(\frac{H}{H_0}\right)^2 - 0.4019 \left(\frac{H}{H_0}\right)^3$$
, (12)

Model 13 (Aras et al. 2006):

$$\frac{D}{H} = 1.7111 - 4.9062 \left(\frac{H}{H_0}\right) + 6.6711 \left(\frac{H}{H_0}\right)^2 - 3.9235 \left(\frac{H}{H_0}\right)^3 , \quad (13)$$

Model 14 (Jamil and Akhtar, 2017):

$$\frac{D}{H} = 0.2191 + 2.3964 \left(\frac{H}{H_0}\right) - 0.3877 \left(\frac{H}{H_0}\right)^2 - 1.7828 \left(\frac{n}{N_0}\right) + 0.1705 \left(\frac{n}{N_0}\right)^2, \quad (14)$$

where D is the monthly average of the daily diffuse solar radiation, H is the monthly average of the daily global solar radiation, H_o is the monthly average daily extraterrestrial radiation, n is the day length, and N_o is the maximum possible sunshine duration. H_o was calculated from the following equation (Duffie, 1991):

$$H_o = \frac{24}{\pi} I_s f(\cos \varphi \cos \delta \sin w + \frac{2\pi}{360} w \sin \varphi \sin \delta), \qquad (15)$$

where I_s is the solar constant (=1367Wm⁻²), f is the eccentricity correction factor of the Earth's orbit, φ is the latitude of the site, δ is the sun declination, and w is the mean sunrise hour angle for the given month. f, δ , w, and N_o can be computed by the following equations (*Duffie*, 1991):

$$f = \left(1 + 0.033\cos\frac{360n'}{365}\right),\tag{16}$$

$$\delta = 23.45 \sin \left[\frac{360(284 + n')}{365} \right],\tag{17}$$

$$w = \cos^{-1}(-\tan\varphi\tan\delta), \qquad (18)$$

$$N_o = 2w/15$$
, (19)

where n' is the day of the year.

3. Data and comparison methods

In this study, monthly mean values of global solar radiation and sunshine hours measured at of eight stations during the period 1987–2016 have been obtained from the Egyptian Meteorology Authority (EMA) to calculate the diffuse solar radiation, D over these stations using the above corresponding models. Table 1 gives the list of the stations and their coordinates in addition to the type of the measured radiation at each station and its date of commencement of records. The monthly mean values of extraterrestrial solar radiation, H_o , and the day length, n, were calculated for each month of the year and for each station using Eqs. (15–19), and they were then employed to estimate D for each station.

Table 1. Coordinates of the Egyptian radiation measurements network and the radiation	on
components measured together with the date of commencement of recording	

Station	Latitude (N)	Longitude (E)	Elevation (m)		Meas	uren	nent	Date of commencement
				G	D	I	S	of records*
Sidi-Barrani	31°38'	25°24'	27	X	X	-	X	1984
Matruh	31°20'	27°13'	38	X	X	-	X	1961 (1981)
El-Arich	31°05'	33°49'	32	X	X	-	X	1980
Tahrir	30°39'	30°42'	16	X	X	-	X	1960 (1981)
Cairo	30°05'	31°17'	36	X	X	X	X	1969 (1974)
Qena	26°03'	32°12'	96	X	X	-	X	1979
El-Kharga	25°27'	30°32'	78	X	X	-	X	1964 (1981)
Aswan	23°58'	32°47'	192	X	X	-	X	1972 (1981)

^{*} The year in brackets indicates the data of commencement of diffuse and/or direct solar radiation records.

G is the global solar radiation; D is the diffuse solar radiation, I is the direct solar radiation, and S is the sunshine duration.

The calculated values of diffuse solar radiation, D_c , were compared with the corresponding mean measured values, D_m (mean of the period 1987–2016) in each model. Moreover, the performance of the models was also evaluated on the basis of the following statistical error tests: relative percentage error (e%), mean percentage error (MPE), mean bias error (MBE) root mean square error (RMSE), t-statistic (t), and Nash–Sutcliffe equation (NSE). e%, MPE, MBE, RMSE, t and NSE are defined by Equations (20–25), respectively, as below (Tiba, 2001; Ulgen and Hepbasli, 2003 and 2004; $Notton\ et\ al.\ 2004$; $Soares\ et\ al.\ 2004$; $Tymvios\ et\ al.\ 2005$; $Mediavilla\ et\ al.\ 2005$; $Ulgen\ and\ Hepbasli$, 2002; $Togrul\ and\ Togrul$, 2002; Stone, 1993; $Chen\ et\ al.\ 2004$):

$$e = [(D_{i,m} - D_{i,c})/D_{i,m}] * 100,$$
(20)

$$MPE = \sum_{i=1}^{N} \frac{[(D_{i,m} - D_{i,c})/D_{i,m}] * 100}{N},$$
(21)

$$MBE = \sum_{i=1}^{N} \frac{(D_{i,m} - D_{i,c})}{N},$$
(22)

$$RMSE = \left(\frac{\sum_{i=1}^{N} (D_{i,m} - D_{i,c})}{N}\right)^{0.5},$$
(23)

$$t = \left(\frac{(n-1)MBE^2}{RMSE^2 - MBE^2}\right)^{0.5},\tag{24}$$

$$NSE = 1 - \frac{\sum_{i=1}^{N} (D_{i,m} - D_{i,c})^{2}}{\sum_{i=1}^{N} (D_{i,m} - \overline{D}_{i,c})^{2}},$$
(25)

where $D_{i,m}$ and $D_{i,c}$ are the *i*th measured and calculated values of diffuse solar radiation, respectively, while N is the number of observations taken into account.

4. Results and discussion

The values of monthly mean daily diffuse solar radiation intensity estimated using the above fourteen models (1–14) were compared with the corresponding measured values at the used eight stations. The relative percentage errors, e(%), between the estimated and measured values of the monthly mean daily diffuse solar radiation intensity were determined using Eq. (20) for the 12 months of the year. The statistical tests of MPE, MBE, RMSE, t-test, and NES were also calculated using Eqs. (21–25), respectively. The results are given in Tables 2–9. Furthermore, Table 10 summarizes the maximum and minimum values of the statistics errors, MPE, MBE, RMSE, t-test, and NSE, of each fourteen models at the eight selected stations.

and *t-test* value and highest *NES* values compared to the other fourteen models. It was found that, the overall percentage error, e%, of Model (12) is in the range of acceptable values between -5.04 and +3.31% with the lowest mean percentage error (MPE) values that range from -0.49% to +0.27%. Furthermore, 95.8% of these values (e%) lie between -2.64 and +2.94 for Model (12). Also, the MBE values of Model (12) are usually equal to zero or very close to zero, while the values of *t-test* range from +0.03 to 1.88. Furthermore, Model (12) has the highest values of NES and closest to 1.0, whereas they range from 0.9956 to 0.9999. These are considered excellent indicators in that the Tarhan and Sarı model (Model 12) gives precise estimation for each station and all Egypt with acceptable errors. Although Model (13) is almost like Model (12), Model (13) has higher values of MPE, MBE, RMSE, and t-test and lower values of NES than of Model (13), (See *Tables 2–9*). Therefore, it can be concluded that the Tarhan and Sarı model (Model 12) is extremely recommended for use to estimate diffuse solar radiation at any location in Egypt, i.e., Model (12) is the best model for estimating diffuse solar radiation on a horizontal surface over Egypt.

Dc (MJ.m.¹), that estimated using the different fourteen models in addition to the performance statistics errors (MPE, MBE, RMSE, Table 2. Monthly mean values (1987–2016) of measured diffuse solar radiation, Dm (MJ.m⁻¹) and the corresponding calculated values, t-test and NSE) at Sidi-Barrani

կյա	(9107-78	Model	del 1	Мос	Model 2	Mod	del 3	Mo	Model 4	Mo	Model 5	Mo	Model 6	Mod	Model 7	Moc	Model 8	Mo	Model 9	Mod	Model 10
οM	861) mA	Dc	6%	Dc	6%	Dc	6%	Dc	%9	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%
Jan	4.89	4.95	-1.27	4.98	-1.77	4.90	-0.23	4.89	0.02	5.24	-7.07 4.71	4.71	3.60	5.22	-6.73	4.95	-1.20 4.77	4.77	2.36	4.74	3.10
Feb	6.05	6.30	-4.15	6.29	-3.98	6.21	-2.67	6.15	-1.66	6.42	-6.13	6.13	-1.37	6.21	-2.63	6.27	-3.65	6.50	-7.37	6.30	-4.10
Mar	8.11	8.11	-0.02	7.91	2.49	7.86	3.04	7.52	7.27	7.78	4.12	69.7	5.21	7.92	2.31	7.94	2.06	8.59	-5.94	7.65	5.68
Apr	9.75	9.71	0.43	10.01	-2.68	9.35	4.10	8.91	8.58	9.04	7.28	8.95	8.17	9.15	6.11	9.45	3.12	9.70	0.47	8.91	8.62
May	9.80	08.6	0.01	10.05	-2.59	9.49	3.21	9.04	7.71	9.21	5.99	9.11	66.9	9.15	89.9	9.58	2.23	2.23 10.13	-3.39	80.6	7.32
Jun	8.95	8.90	0.57	8.80	1.71	8.65	3.39	8.31	7.18	8.32	7.09	8.14	80.6	8.45	5.59	8.73	2.41	9.16	-2.38	8.17	8.73
Jul	9.11	9.36	-2.71	9.52	-4.51	9.16	-0.50	8.91	2.21	8.80	3.38	8.78	3.64	8.99	1.27	9.24	-1.48	9.27	-1.80	8.58	5.83
Aug	8.21	8.37	-1.95	8.48	-3.25	8.21	-0.02	8.05	1.92	7.97	2.88	8.00	2.57	8.24	-0.35	8.29	-0.99	8.40	-2.36	7.78	5.21
Sep	7.92	8.05	-1.60	8.15	-2.85	7.89	0.39	7.74	2.32	7.71	2.71	69.7	2.85	7.96	-0.57	7.97	-0.59 8.10	8.10	-2.27	7.55	4.72
Oct	6.38	6.45	-1.10	6.50	-1.90	6.41	-0.53	6.41	-0.45	6.47	-1.47	6.28	1.57	6.55	-2.73	6.48	-1.50	6.58	-3.14	6.37	0.15
Nov	5.32	5.39	-1.39	5.23	1.73	5.34	-0.47	5.35	-0.50	5.49	-3.25	5.37	-0.87	5.49	-3.20	5.40	-1.44	5.62	-5.66	5.41	-1.72
Dec	4.80	4.83	-0.64	4.89	-1.94	4.74	1.25	4.65	3.13	5.01	-4.46	4.98	-3.66	4.86	-1.26	4.79	0.27	5.13	-6.88	4.79	0.25
										2		e e				8					
MPE		Ī	0.59	Ĩ	3.24	1	-3.2	1	3.12	Ĩ	3.69	ı	4.08	į	-2.23	I	0.08	Ī	-1.02	1	2.18
MBE		Ī	0.46	Ĩ	0.73	I	-0.58	1	0.84	Ĩ	0.91	ı	0.73	Í	0.29	I	0.12	Ĩ	0.05	1	0.73
RMS		Ī	0.98	Ī	0.85	I	0.71	1	1.63	Ĭ	1.54	ı	1.58	Ĭ	0.78	I	0.46	Ĭ	0.79	ı	1.34
t-test		Ī	3.14	Ĩ	2.99	ı	5.99	ı	3.05	Ĩ	3.49	I	2.96	Ĩ	2.75	Į	0.11	Ĩ	0.19	ı	3.69
NSE		Ĩ	0.983	Ī	996.0	ı	0.970	ı	0.9514	Ĭ	0.9502	I	0.9563	ĺ	0.979	Į	0.991	Ī	0.9812	I	0.970

Table 2. continued

Model 14	6%	0.23	-1.45	7.48	9.79	7.92	7.39	2.42	2.13	2.53	-0.24	-0.29	3.34
Mod	Dc	4.88	6.14	7.50	8.80	9.03	8.29	8.89	8.04	7.72	6.40	5.34	4.64
Model 13	6%	-8.17	-2.21	1.08	5.72	8.05	3.77	0.58	-1.59	-2.30	-5.34	-3.84	2.82
Mod	Dc	5.29	6.18	8.02	9.19	9.01	8.61	90.6	8.34	8.10	6.72	5.52	4.66
el 12	6%	-2.64	-4.74	1.39	2.77	2.16	3.31	0.46	0.78	0.73	-1.08	-1.93	-1.05
Model 12	Dc	5.02	6.34	8.00	9.48	9.59	8.65	9.07	8.15	7.86	6.45	5.42	4.85
Model 11	6%	-2.83	6.04	-3.55	-3.74	-3.65	-2.77	-5.57	-4.31	-3.91	-2.96	-2.79	-3.00
Mod	Dc	5.03	5.68	8.40	10.11	10.16	9.20	9.62	8.56	8.23	6.57	5.47	4.94
(9107-7	861) mA	4.89	6.05	8.11	9.75	08.6	8.95	9.11	8.21	7.92	6.38	5.32	4.80
րյա	ρM	Jan	Feb	Mar	Apr	May	Iun	Jul	Aug	Sep	Oct	Nov	Dec

2.35	0.82	1.23	2.96	0.9679
- 2	0 -	- 1	- 2	- 0.5
1		1	1	
0.12	0.23	0.54	0.26	0.9899
I	1	1	1	I
0.07	0.00	0.33	0.03	0.9999
1	1	1	1	1
-3.98	-0.88	68'0	96'L	0.9729
MPE	MBE	RMSE	t-test	NSE

Table 3. The same as Table 2, but for Matruh

րյա	(9102-78	Model	del 1	Mod	Model 2	Model	del 3	Moc	Model 4	Moc	Model 5	Mod	Model 6	Мос	Model 7	Mod	Model 8	Mod	Model 9	Mod	Model 10
οM	(19) ma	Dc	6%	Dc	%9	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%
Jan	4.28	4.29	-0.23	4.33	-1.27	3.98	7.07	4.44	-3.65	4.51	-5.36	4.19	2.05	4.08	4.63	4.11	3.98	4.15	3.14	4.31	-0.70
Feb	5.91	5.75	2.67	6.16	-4.15	6.27	-6.13	6.17	-4.40	6.22	-5.27	5.93	-0.37	5.82	1.44	5.94	-0.44	5.96	-0.77	5.97	-1.09
Mar	8.35	8.10	3.04	8.35	-0.02	8.01	4.12	8.05	3.58	8.03	3.85	7.92	5.14	8.16	2.23	8.48	-1.50	8.21	1.65	7.95	4.80
Apr	9.33	8.95	4.10	9.29	0.43	8.65	7.28	8.80	5.69	8.72	6.49	9.03	3.25	9.14	1.99	9.30	0.34	90.6	2.92	8.82	5.49
May	10.12	9.80	3.21	10.12	0.01	9.51	5.99	9.65	4.60	9.58	5.30	9.32	7.93	9.83	2.84	10.34	-2.21	10.1	-0.20	9.94	1.80
Jun	9.43	9.11	3.39	9.38	0.57	8.76	7.09	8.94	5.24	8.85	6.16	8.90	5.67	9.19	2.50	9.42	0.16	9.17	2.71	8.93	5.27
Jul	9.83	9.88	-0.50	10.10	-2.71	9.50	3.38	69.6	1.44	9.59	2.41	89.6	1.56	9.62	2.18	9.81	0.17	9.56	2.75	9.31	5.34
Aug	8.72	8.72	-0.02	8.89	-1.95	8.47	2.88	8.60	1.43	8.53	2.16	8.57	1.67	8.54	2.05	8.70	0.18	8.52	2.27	8.34	4.37
Sep	7.98	7.95	0.40	8.11	-1.60	7.76	2.71	7.86	1.55	7.81	2.13	8.03	-0.57	7.90	96.0	8.08	-1.32	7.90	1.02	7.71	3.35
Oct	6.48	6.51	-0.53	6.55	-1.10	6.58	-1.47	6.54	-1.00	95.9	-1.23	98.9	-5.88	6.81	-5.14	69.9	-3.25	6.61	-1.98	6.53	-0.71
Nov	5.22	5.20	0.47	5.29	-1.39	5.39	-3.25	5.32	-1.86	5.35	-2.55	5.01	4.08	5.07	2.78	5.32	-1.93	5.26	-0.86	5.21	0.21
Dec	4.46	4.40	1.25	4.49	-0.64	4.66	-4.46	4.39	1.61	4.32	3.03	4.29	3.74	4.24	4.85	4.35	2.44	4.36	2.18	4.37	1.91
MPE		1	86.0	ı	5.12	Ĭ	1.84	Ì	2.93	1	3.95	Ĭ	1.28	1	-1.72	1	0.23	ı	0.37	1	-1.29
MBE		1	1.63	1	2.78	Ĭ	-0.75	Ī	1.09	1	2.07	Ī	-0.21	ı	1.14	1	-0.25	ı	1.32	1	-0.81
RMSE		1	2.06	ı	1.96	Ĭ	96.0	Ī	3.51	1	0.13	Í	0.59	ı	1.19	1	0.51	ı	0.65	1	86.0
t-test		1	4.19	I	5.74	Ĭ	2.75	Ĭ	4.32	1	5.32	Ĭ	3.23	ı	0.79	I	0.81	ı	0.79	1	2.05
NSE		1	0.979	I	0.960	Ĩ	0.980	ı	0.9588	1	0.9609	<u> </u>	0.9781	1	0.969	Ī	0.989	ı	0.9748	1	0.977

Table 3. continued

զյա	(9107-48	Mod	Model 11	Mod	Model 12	Mod	Model 13	Moc	Model 14
PM	61) m (DC	6%	Dc	6%	Dc	%9	Dc	6%
Jan	4.28	4.23	1.22	4.27	0.26	4.23	1.10	4.19	2.18
Feb	5.91	5.96	-0.93	6.03	-2.01	5.95	89.0-	5.96	-0.85
Mar	8.35	80.8	3.23	8.77	-5.01	8.28	98.0	8.15	2.44
Apr	9.33	8.94	4.20	9.16	1.85	9.12	2.27	00.6	3.56
May	10.12	10.04	0.80	66.6	1.30	10.19	02.0-	10.09	0.30
Jun	9.43	9.05	3.99	9.37	0.63	9.23	2.07	9.11	3.35
Jul	9.83	9.43	4.05	9.71	1.19	9.62	2.11	9.50	3.40
Aug	8.72	8.43	3.32	8.65	0.85	8.57	1.75	8.48	2.80
Sep	7.98	7.81	2.18	7.76	2.77	7.95	0.43	7.85	1.60
Oct	6.48	6.57	-1.34	6.61	-2.03	6.63	-2.30	6.59	-1.66
Nov	5.22	5.24	-0.32	5.22	90.0-	5.28	-1.12	5.25	-0.59
Dec	4.46	4.37	2.04	4.42	86.0	4.40	1.24	4.37	2.11
MPE		1	2.60	1	0.11	Ī	0.42	I	2.07
MBE		L	0.79	1	-0.04	I	0.33	I	-0.82
RMSE		1	0.88	1	0.32	I	0.59	I	1.06
t-test		1	3.11	1	0.15	Ī	96.0	1	2.68
NSE		1	9086'0	1	9666'0	ı	6886'0	I	0.9663

Table 4. The same as Table 2, but for El-Arich

											1		ľ						ľ		
цтп	(9107-78	Mo	Model 1	Model 2	iel 2	Model	el 3	Model 4	el 4	Model 5	el 5	Model 6	lel 6	Model 7	lel 7	Model 8	lel 8	Moc	Model 9	Mod	Model 10
oM	861) m Q	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	e%	Dc	6%	Dc	6%	Dc	e%
Jan	4.88	4.90	-0.34	4.95	-1.34	4.54	06.9	5.05	-3.38	5.09	-4.34	4.83	0.95	4.62	5.23	4.64	4.87	4.67	4.20	4.87	0.27
Feb	6.73	95.9	2.56	7.01	-4.22	7.15	-6.30	7.01	4.14	7.02	-4.24	6.83	-1.48	6.59	2.04	6.63	1.54	6.71	0.30	6.74	-0.12
Mar	8.96	8.70	2.93	8.97	60.0-	8.61	3.95	8.62	3.85	8.52	4.87	8.60	4.03	8.71	2.83	9.10	-1.60	8.72	2.72	8.44	5.77
Apr	9.79	9.40	3.99	92.6	0.36	60.6	7.11	9.21	5.96	6.05	7.51	9.58	2.15	9.54	2.59	9.79	0.04	9.40	3.98	9.16	6.46
May	10.19	6.87	3.10	10.20	-0.06	09.6	5.82	69.6	4.87	9.55	6.32	67.6	6.83	9.84	3.44	10.37	-1.81	10.1	98.0	16.6	2.77
lun	10.01	89.6	3.28	96.6	0.50	9.32	6.92	9.46	5.50	67.6	7.19	9.55	4.56	9.70	3.10	10.00	0.05	9.63	3.78	9.39	6.24
Jul	9.52	9.58	-0.61	81.6	-2.78	9.21	3.21	9:36	1.71	9.19	3.43	9.48	0.45	9.26	2.78	9.51	0.07	9.16	3.82	8.92	6.31
Aug	80.6	60.6	-0.13	9.26	-2.02	8.83	2.71	8.93	1.70	8.79	3.18	9.03	0.56	8.84	2.65	20.6	90.0	8.78	3.34	8.60	5.34
Sep	9.31	9.28	0.29	9.47	-1.67	70.6	2.54	9.14	1.81	9.02	3.15	9.47	-1.67	9.16	1.56	9.44	-1.42 9.12	9.12	2.08	8.91	4.32
Oct	7.04	7.08	-0.64	7.12	-1.17	7.16	-1.64	7.09	-0.73	7.05	-0.21	7.53	86.9-	7.36	-4.54	7.28	-1.03	7.10	-0.91	7.02	0.26
Nov	6.15	6.13	0.36	6.24	-1.46	6.36	-3.42	6.25	-1.59	6.24 -	-1.53	5.97	2.97	5.94	3.38	6.21	-3.35	6.14	0.21	80.9	1.18
Dec	4.81	4.76	1.14	4.84	-0.71	5.03	-4.63	4.72	1.87	4.61	4.06	4.68	2.64	4.55	5.45	4.66	3.04	4.65	3.24	4.67	2.88
MPE		T	1.05		1.19		1.40		1.99	'	-2.37		1.37		2.73		0.36		2.13		-2.11
MBE		ı	0.82		2.11		1.42		1.37		0.91		1.32		2.27		-0.16		1.19		-0.93
RMSE		I	1.38		2.73		2.64		3.43		1.92		1.65		0.53		0.73		1.53		1.02
t-test		1	1.86		1.76		1.68		1.58	- 1	2.35		3.79		4.71		1.01		3.95		4.07
NSE		ī	0.977		0.985		0.979	0	0.9868	0	0.9731	0	0.9648		096.0		0.66.0		0.9726		0.962

Table 4. continued

զյա	(9107-48	Мос	Model 11	Mod	Model 12	Moc	Model 13	Mod	Model 14
PW .	61) mA	Dc	6%	Dc	%9	$\mathcal{D}\mathcal{C}$	%9	g	%3
Jan	4.88	4.77	2.18	4.98	-2.03	4.91	-0.71	4.92	-0.87
Feb	6.73	6.71	0.24	6.71	0.24	6.73	0.07	85.9	2.16
Mar	8.96	8:58	4.29	9.41	-5.04	88.8	0.84	8.74	2.41
Apr	9.79	9.37	4.27	9.61	1.82	9.57	2.25	9.44	3.54
May	10.19	10.00	1.86	10.06	1.28	10.26	-0.73	10.16	0.27
Jun	10.01	9.50	5.06	9.95	0.61	08.6	2.05	89.6	3.33
Jul	9.52	9.03	5.11	9.44	0.82	9.48	0.41	75.6	1.58
Aug	9.08	89.8	4.39	8.85	2.54	8.89	2.08	8.77	3.38
Sep	9.31	9.01	3.25	9.20	1.17	9.15	1.73	9.05	2.77
Oct	7.04	7.06	-0.28	7.18	-2.05	7.20	-2.32	7.16	-1.68
Nov	6.15	6.10	0.74	6.09	0.95	80.9	1.22	6.02	2.09
Dec	4.81	4.66	3.11	4.81	-0.08	4.87	-1.15	4.84	-0.61
MPE		Ī	2.99	1	80.0-	Ĭ	0.31		-1.33
MBE		I	1.11	I	0.13	Ī	0.28	Ī	-0.91
RMSE		I	1.88	1	0.22	I	0.49	Ī	0.84
t-test		I	5.78	1	0.19	I	1.03	Ī	2.45
NSE		I	0.9596	ı	0.9997	I	0.9923	I	0.9744

Table 5. The same as Table 2, but for Tahrir

4 3uc	(9107-48	Moo	Model 1	Mod	Model 2	Model	del 3	Moc	Model 4	Moc	Model 5	Moc	Model 6	Mod	Model 7	Мос	Model 8	Мос	Model 9	Model 10	el 10
M.	6I) W(I	Dc	%9	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%
Jan	4.79	4.75	0.84	4.89	-2.09	4.60	3.87	4.99	-4.25	4.87	-1.69	4.64	3.09	4.55	5.05	4.88	-1.88	4.71	1.67	4.73	1.22
Feb	90.9	6.01	0.83	6.27	-3.53	6.26	-3.35	6.25	-3.13	6.23	-2.86	6.04	0.28	5.95	1.79	5.99	1.11	5.99	1.23	90.9	90.0
Mar	8.83	8.70	1.42	8.77	99.0	8.48	3.95	8.58	2.84	8.44	4.45	8.53	3.43	8.78	0.62	8.72	1.28	8.60	2.57	8.39	5.03
Apr	9.70	9.49	2.17	9.82	-1.27	9.01	7.11	9.11	90.9	9.23	4.83	9.47	2.37	9.57	1.31	9.42	2.89	9.34	3.76	9.18	5.36
May	69.6	9.54	1.52	9.62	0.73	9.13	5.82	9.22	4.80	9.05	6.57	9.19	5.13	9.61	0.81	9.71	-0.23	9.63	0.57	9.47	2.31
Jun	9.02	8.85	1.89	8.91	1.19	8.40	6.92	8.64	4.25	8.49	5.88	8.67	3.83	8.88	1.58	8.78	2.69	8.70	3.55	8.51	5.65
Jul	8.60	8.45	1.69	8.79	-2.24	8.32	3.21	8.41	2.21	8.43	1.94	8.46	1.62	8.48	1.43	69.8	-0.99	8.37	2.70	8.11	5.71
Aug	8.35	8.26	1.07	8.48	-1.55	8.12	2.71	8.04	3.70	8.19	1.87	8.22	1.61	8.24	1.36	8.12	2.73	8.07	3.36	7.94	4.86
Sep	8.13	8.07	69.0	8.23	-1.18	7.92	2.54	7.80	4.00	8.07	0.74	8.13	-0.06	8.12	0.07	7.95	2.25	7.93	2.43	7.82	3.78
Oct	6.47	6.41	0.90	6.54	-1.04	6.58	-1.64	6.53	-0.93	6.70	-3.60	6.84	-5.76	9.65	-2.79	09.9	-2.00	6.55	-1.30	6.47	-0.01
Nov	5.31	5.28	0.55	5.36	-1.01	5.49	-3.42	5.46	-2.78	5.27	0.72	5.14	3.18	5.31	0.02	5.22	1.65	5.25	1.15	5.26	96.0
Dec	4.55	4.54	0.21	4.54	0.25	4.69	-3.13	4.37	3.98	4.40	3.35	4.37	4.05	4.36	4.24	4.59	-0.88	4.49	1.31	4.41	2.99
MPE		1	1.23	1	1.59	ı	-0.71	ı	1.68	1	0.18	Î	0.865	ſ	2.43	1	-0.88	ı	2.56	1	-1.10
MBE		ľ	1.12	1	1.74	ĺ	1.16	L	1.34	Ĺ	1.59	ĵ	0.58	ĵ	1.73	ſ	-0.54	1	1.15	1	-0.40
RMSE		I	2.01	Ī	3.08	ĺ	2.28	I	2.54	Ĺ	1.23	ĵ	1.19	ĵ	1.03	ľ	0.88	L	1.705	ı	0.62
t-test		I	1.77	I	1.67	ſ	2.01	1	2.69	Ĺ	3.53	ĵ	2.4	Ĺ	4.33	1	1.54	ı	4.865	ı	2.13
NSE		I	0.978	ı	0.986	ı	0.976	ı	0.9758	ı	0.9670	Ī	0.9775	ĺ	0.9667	1	0.998	ı	0.9661	Ī	0.981

Table 5. continued

զյա	(9107-28	Мос	Model 11	Mod	Model 12	Moc	Model 13	Moc	Model 14
PW	61) W(I	$\mathcal{D}\mathcal{C}$	6%	Dc	6%	Dc	%9	Dc	%
Jan	4.79	4.79	80.0	4.86	-1.37	4.67	2.54	4.70	1.83
Feb	90.9	6.05	0.24	6.05	0.16	00.9	0.92	5.97	1.54
Mar	8.83	8.86	-0.37	9.02	-2.10	8.78	0.56	8.70	1.49
Apr	9.70	9.40	3.05	9.50	2.04	9.51	2.01	9.43	2.77
May	69.6	9.54	1.57	99.6	0.27	9.74	-0.47	02.6	-0.10
Jun	9.02	92.8	2.83	8.90	1.33	8.85	1.92	8.78	2.62
Jul	8.60	8.34	2.97	8.55	0.62	8.43	1.95	8.45	1.76
Aug	8.35	8.06	3.47	8.16	2.31	8.21	1.70	8.14	2.54
Sep	8.13	7.95	2.21	8.01	1.45	8.10	0.33	8.00	1.55
Oct	6.47	6.55	-1.16	6.61	-2.18	6.57	-0.97	6.56	-1.33
Nov	5.31	5.27	0.85	5.25	1.09	5.36	-1.57	5.30	0.26
Dec	4.55	4.48	1.51	4.58	-0.61	4.41	3.14	4.49	1.26
MPE			86.0	1	-0.49	1	86.0	I	0.55
MBE		1	0.49	1	-0.39	1	-0.83	I	0.41
RMSE			0.84	1	0.53	1	1.06	Ι	0.94
t-test		П	2.22	1	0.32	1	1.79	I	3.39
NSE		1	0.9841	1	0.9993	1	0.9958	I	9026.0

Table 6. The same as Table 2, but for Cairo

		<u></u>			2-2						-				۵,			~
Model 10	6%	-0.07	0.11	1.47	3.70	1.29	3.49	3.16	3.59	2.62	-1.10	1.02	1.19	-0.06	-0.62	0.84	1.96	0.988
Mo	Dc	4.50	5.89	7.49	7.99	9.18	8.69	8.23	8.10	7.89	6.17	5.54	4.55	ı	I	1	1	1
Model 9	6%	0.87	0.73	1.10	3.40	1.07	3.19	2.83	3.41	2.32	-1.23	1.00	1.41	0.93	0.38	1.12	2.59	0.9827
Mo	Dc	4.46	5.86	7.52	8.02	9.20	8.71	8.26	8.11	7.91	6.18	5.54	4.53	I	I	I	Ī	I
lel 8	6%	-0.33	0.59	3.15	4.13	1.04	4.17	2.36	3.80	3.02	-1.01	1.31	1.06	0.05	-0.03	0.56	1.88	0.996
Model 8	Dc	4.51	5.87	7.36	7.96	9.20	8.62	8.30	8.08	7.86	6.16	5.53	4.55	Ĭ	Ĩ	Ī	Ĭ	Ī
lel 7	6%	3.36	1.51	1.59	2.54	69.0	2.57	2.06	2.36	1.25	-2.04	0.58	2.78	0.67	0.67	0.83	3.23	0.9740
Model 7	Dc	4.35	5.81	7.48	8.09	9.24	8.77	8.32	8.20	8.00	6.22	5.57	4.47	ı	I	I	I	ı
Model 6	6%	09.0	0.70	2.35	2.63	2.45	3.26	0.31	2.17	1.10	-3.88	2.42	1.58	1.71	0.87	1.45	3.63	0.9718
Мос	Dc	4.47	5.86	7.42	80.8	70.6	8.71	8.47	8.22	8.01	6.34	5.46	4.53	ī	I	I	I	_
Model 5	6%	1.68	-0.53	2.53	3.07	3.69	3.73	1.69	1.62	0.40	-3.19	0.37	3.80	-0.35	0.52	1.05	2.53	0.9828
Мос	Dc	4.42	5.93	7.41	8.05	96.8	99.8	8.36	8.26	8.07	6.29	5.58	4.43	ı	I	1	j	<u> </u>
Model 4	6%	-0.58 4.42	-1.42	3.14	4.21	4.97	4.04	1.91	2.65	1.97	-3.35	0.20	4.01	2.05	1.54	1.79	3.51	0.9713
Moc	Dc	4.53	5.98	7.36	7.95	8.84	8.64	8.34	8.18	7.94	6.30	5.59	4.42	ı	I	1	I	<u> </u>
el 3	6%	1.09	-3.10	4.20	5.97	6.20	6.40	2.57	2.29	1.64	-2.62	-1.35	0.11	0.19	0.87	1.73	2.21	926.0
Model	Dc	4.45	80.9	7.28	7.80	8.72	8.42	8.28	8.21	7.97	6.26	5.68	4.59	ı	ı	1	ı	1
el 2	6%	-3.17	-3.33	1.75	2.39	2.76	2.72	-0.01	1.07	1.41	-0.99	-1.89	2.12	88.0	1.66	2.15	2.60	0.976
Model 2	Dc	4.64	6.10	7.47	8.10	9.04	8.76	8.50	8.31	7.99	6.16	5.71	4.50	I	Ī	Ĩ	Ĩ	Ĭ
Model 1	6%	2.35	-1.26	2.68	4.64	3.67	4.40	2.45	1.89	1.61	-0.37	-1.43	-1.46	1.45	1.23	2.27	2.23	716.0
Moc	Dc	4.39	5.97	7.40	7.91	8.96	8.60	8.29	8.24	7.97	6.12	5.68	4.67	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ
(9107-48	6I) W(I	4.50	5.90	7.60	8.30	9.30	9.00	8.50	8.40	8.10	6.10	5.60	4.60					
	hnolV	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	MPE	MBE	RMS	t-test	NSE

Table 6. continued

զյա	(9107-48	Mod	Model 11	Mod	Model 12	Moc	Model 13	Mod	Model 14
οM	26I) W(I	Dc	6%	Dc	6%	Dc	6%	Dc	6%
Jan	4.50	4.44	1.31	4.49	0.23	4.42	1.70	4.43	1.57
Feb	5.90	5.87	0.58	5.85	0.85	5.85	0.83	5.84	1.06
Mar	7.60	7.59	60.0	7.62	-0.31	7.54	0.83	7.54	0.79
Apr	8.30	8.09	2.53	8.10	2.40	80.8	2.71	8.08	2.65
May	9.30	9.25	0.55	9.29	60.0	9.27	0.30	9.28	0.22
Jun	9.00	8.79	2.37	8.82	1.98	8.77	2.55	8.78	2.50
Jul	8.50	8.29	2.46	8.40	1.19	8.30	2.39	8.32	2.11
Aug	8.40	8.18	2.58	8.20	2.43	8.19	2.56	8.18	2.56
Sep	8.10	8.00	1.27	7.98	1.50	7.99	1.33	7.99	1.41
Oct	6.10	6.17	-1.07	6.21	-1.76	6.12	-1.10	6.17	-1.20
Nov	5.60	5.62	-0.36	5.56	19.0	5.66	-0.29	5.60	-0.05
Dec	4.60	4.49	2.33	4.59	0.32	4.50	2.28	4.52	1.79
MPE		1	0.77	Ι	-0.04	1	0.16	1	0.74
MBE		1	0.45	1	0.01	1	0.24	1	0.40
RMSE		1	0.89	I	0.33	1	89.0	1	1.03
t-test		1	2.80	1	98.0	1	1.92	_	2.99
NSE	5.	1	0.9774	1	6666.0	1	0.9927	1	0.9766

Table 7. The same as Table 2, but for El-Kgarga

																			l		
итп	(9107-28	Model	del 1	Moc	Model 2	Mode	lel 3	Moc	Model 4	Mo	Model 5	Moc	Model 6	Mo	Model 7	Moc	Model 8	Mod	Model 9	Model 10	el 10
οM	86I) W(I	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	e%	Dc	6%	Dc	6%	Dc	6%	Dc	6%
Jan	4.50	4.46	0.89	4.53	-0.75	4.46	0.85	4.44	1.39	4.47	0.67	4.47	0.74	4.43	1.64	4.48	0.49	4.48	0.55	4.47	0.75
Feb	5.44	5.51	-1.34	5.55	-1.93	5.51	-1.20	5.44	0.04	5.44	0.03	5.40	0.72	5.40	0.81	5.41	0.58	5.40	0.79	5.41	0.58
Mar	7.42	7.20	2.91	7.26	2.14	7.18	3.28	7.24	2.36	7.21	2.84	7.29	1.73	7.31	1.53	7.30	1.62	7.39	0.40	7.34	1.13
Apr	8.29	7.92	4.43	8.06	2.73	7.93	4.30	8.01	3.37	7.99	3.60	8.04	3.02	8.03	3.12	8.01	3.33	8.05	2.90	8.03	3.17
May	8.65	8.28	4.32	8.37	3.23	8.28	4.32	8.41	2.83	8.45	2.37	8.50	1.76	8.56	0.99	8.58	0.80	8.60	0.58	8.58	0.76
Jun	8.20	7.85	4.22	7.94	3.22	7.80	4.83	7.93	3.30	7.88	3.95	7.94	3.23	7.95	3.03	7.93	3.27	7.99	2.58	7.95	2.99
Jul	7.81	7.64	2.18	7.74	0.84	7.70	1.44	7.65	1.99	7.65	2.02	69.7	1.57	7.61	2.61	7.62	2.41	7.65	2.01	7.60	2.64
Aug	7.78	7.60	2.27	7.68	1.34	7.61	2.23	7.59	2.51	7.57	2.71	7.56	2.79	7.55	2.97	7.53	3.19	7.55	2.92	7.54	3.07
Sep	7.89	7.75	1.79	7.82	0.91	7.78	1.37	7.76	1.61	7.76	1.71	7.76	1.71	7.74	1.93	7.72	2.14	7.74	1.91	7.73	2.01
Oct	5.61	5.71	-1.86	5.73	-2.09	5.79	-3.25	5.76	-2.69	5.73	-2.10	5.75	-2.56	5.70	-1.57	5.67	-1.04	5.69	-1.49	5.67	-1.15
Nov	4.59	4.62	-0.62	4.63	-0.76	4.57	0.53	4.57	0.39	4.55	0.84	4.51	1.71	4.55	0.80	4.57	0.47	4.55	0.83	4.57	0.48
Dec	4.20	4.15	1.28	4.08	2.96	4.16	0.85	4.06	3.40	4.10	2.43	4.14	1.50	4.12	1.98	4.13	1.69	4.16	0.87	4.14	1.49
MPE		I	1.75	1	0.41	I	0.95	1	1.36	1	-0.15	I	1.32	Τ	0.52	I	0.27	1	0.43	ī	0.34
MBE		I	1.38	1	1.09	I	0.87	Ī	1.10	1	0.43	1	0.62	T	0.02	ı	0.21	ī	0.49	Ī	-0.11
RMS		I	2.03	1	1.60	I	1.59	I	1.31	1	0.95	1	1.28	T	0.83	ı	0.72	1	0.87	1	0.93
t-test		I	2.87	1	2.57	I	2.92	Ī	3.37	1	2.21	1	3.11	Τ	2.59	1	1.72	1	2.24	I	2.37
NSE		I	0.974	1	0.979	I	0.974	<u> </u>	0.9727	ı	0.9895	1	0.9772	T	0.9813	ı	0.991	1	6886'0	Ī	0.982

Table 7. continued

CG. CG. <th>զյա</th> <th>(9107-48</th> <th>Mod</th> <th>Model 11</th> <th>Mod</th> <th>Model 12</th> <th>Mod</th> <th>Model 13</th> <th>Mod</th> <th>Model 14</th>	զյա	(9107-48	Mod	Model 11	Mod	Model 12	Mod	Model 13	Mod	Model 14
4.50 4.43 1.51 4.48 0.36 4.45 1.13 4.45 5.44 5.40 0.70 5.40 0.71 5.40 0.81 5.40 7.42 7.39 0.46 7.37 0.66 7.37 0.61 7.35 8.29 8.07 2.62 8.05 2.87 8.06 2.80 8.05 8.20 8.01 2.62 8.05 2.81 8.61 0.44 8.61 8.20 8.00 2.46 7.98 2.62 7.99 2.57 7.97 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.82 2.57 7.56 2.81 7.75 1.82 7.75 1.82 7.75 1.82 7.89 7.79 1.30 7.75 1.82 7.76 1.56 4.50 4.10 2.30 4.10 2.30 4.13 1.57 4.13 - 0.69	οM	26I) W(I	Dc	6%	Dc	6%	Dc	6%	Dc	6%
5.44 5.40 0.70 5.40 0.71 5.40 0.81 5.40 7.42 7.39 0.46 7.37 0.66 7.37 0.61 7.35 8.29 8.07 2.62 8.05 2.87 8.06 2.80 8.05 8.20 8.01 0.42 8.61 0.44 8.61 0.44 8.61 8.20 8.00 2.46 7.98 2.62 7.99 2.57 7.97 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.78 7.58 2.57 7.76 1.82 7.76 1.62 7.75 7.89 7.79 1.30 7.75 1.82 7.76 1.30 5.68 4.50 4.60 -0.32 4.56 0.57 4.65 0.27 4.13 4.50 4.10 2.30 4.16 1.01 4.13 1.57 4.13 4.50 - 0.69 <td>Jan</td> <th>4.50</th> <td>4.43</td> <td>1.51</td> <td>4.48</td> <td>0.36</td> <td>4.45</td> <td>1.13</td> <td>4.45</td> <td>1.16</td>	Jan	4.50	4.43	1.51	4.48	0.36	4.45	1.13	4.45	1.16
7.42 7.39 0.46 7.37 0.66 7.37 0.61 7.35 8.29 8.07 2.62 8.05 2.87 8.06 2.80 8.05 8.65 8.61 0.42 8.61 0.44 8.61 0.44 8.61 8.20 8.00 2.46 7.98 2.62 7.99 2.57 7.97 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.82 7.78 7.56 2.81 7.57 2.74 7.56 7.89 7.79 1.30 7.75 1.82 7.76 1.62 7.75 7.80 7.79 1.82 7.76 1.62 7.75 1.83 4.50 4.10 2.30 4.16 1.01 4.13 4.13 4.20 4.10 2.30 4.10 4.13 4.13 4.13 8.20 9.23 9.23 9.23 9.23 9.23 9.23 </td <td>Feb</td> <th>5.44</th> <td>5.40</td> <td>0.70</td> <td>5.40</td> <td>0.71</td> <td>5.40</td> <td>0.81</td> <td>5.40</td> <td>0.82</td>	Feb	5.44	5.40	0.70	5.40	0.71	5.40	0.81	5.40	0.82
8.29 8.07 2.62 8.05 2.87 8.06 2.80 8.05 8.65 8.61 0.44 8.61 0.44 8.61 8.20 8.00 2.46 7.98 2.62 7.99 2.57 7.97 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.78 7.58 2.57 7.56 2.81 7.57 2.74 7.57 7.78 7.78 7.75 1.82 7.76 1.82 7.76 1.62 7.75 7.89 7.79 1.30 7.75 1.82 7.76 1.62 7.75 5.61 5.67 -1.40 5.59 -1.30 5.68 4.50 4.50 0.57 4.65 0.27 4.58 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 4.20 - 0.69 - 0.13 - 0.32 - </td <td>Mar</td> <th>7.42</th> <td>7.39</td> <td>0.46</td> <td>7.37</td> <td>99.0</td> <td>7.37</td> <td>0.61</td> <td>7.35</td> <td>96.0</td>	Mar	7.42	7.39	0.46	7.37	99.0	7.37	0.61	7.35	96.0
8.65 8.61 0.42 8.61 0.44 8.61 0.44 8.61 8.61 8.20 8.00 2.46 7.98 2.62 7.99 2.57 7.97 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.89 7.79 1.30 7.75 1.82 7.76 2.74 7.56 5.61 5.67 -1.08 5.69 -1.40 5.59 -1.30 5.68 4.50 4.50 -1.08 5.69 -1.40 5.59 -1.30 5.68 4.50 4.60 -0.32 4.56 0.57 4.65 0.27 4.58 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 4.16 0.13 - 0.32 - A.20 -1.08 -0.13 -0.32 -0.33 -0.33 - -0.34 - A.20<	Apr	8.29	8.07	2.62	8.05	2.87	8.06	2.80	8.05	2.91
8.20 8.00 2.46 7.98 2.62 7.99 2.57 7.97 7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.78 7.58 2.57 7.56 2.81 7.57 2.74 7.56 7.89 7.79 1.30 7.75 1.82 7.76 1.62 7.75 5.61 5.67 -1.08 5.69 -1.40 5.59 -1.30 5.68 4.50 4.60 -0.32 4.56 0.57 4.65 0.27 4.58 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 - 0.13 - 0.32 - A.20 - 0.69 -	May	8.65	8.61	0.42	8.61	0.44	8.61	0.44	8.61	0.49
7.81 7.62 2.42 7.67 1.80 7.64 2.20 7.62 7.78 7.58 2.57 7.56 2.81 7.57 2.74 7.56 7.89 7.79 1.30 7.75 1.82 7.76 1.62 7.75 5.61 5.67 -1.08 5.69 -1.40 5.59 -1.30 5.68 4.50 4.50 -1.20 4.76 0.57 4.65 0.27 4.58 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 - 0.13 - 0.32 - A.20 4.10 2.30 - 0.11 - 0.37 - A.20 - 0.53 - 0.58 - 0.90 - A.20 - 0.98 - 0.69	Jun	8.20	8.00	2.46	7.98	2.62	7.99	2.57	7.97	2.75
7.78 7.58 2.57 7.56 2.81 7.57 2.74 7.56 7.89 7.79 1.30 7.75 1.82 7.76 1.62 7.75 5.61 5.67 -1.08 5.69 -1.40 5.59 -1.30 5.68 4.59 4.60 -0.32 4.56 0.57 4.65 0.27 4.58 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 - 0.69 - 0.13 - 0.32 - A.20 - 0.53 - 0.31 - 0.37 - A.20 - 0.98 - 0.58 - 0.99 - A.20 - 0.98 - 0.99 - 1.99 - A.20 - 0.9956 - 0.9897	Jul	7.81	7.62	2.42	<i>19.1</i>	1.80	7.64	2.20	7.62	2.37
7.89 7.79 1.30 7.75 1.82 7.76 1.62 7.75 5.61 5.67 -1.08 5.69 -1.40 5.59 -1.30 5.68 4.59 4.60 -0.32 4.56 0.57 4.65 0.27 4.58 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 - 0.13 - 0.32 - A.20 - 0.53 - 0.11 - 0.37 - A.20 - 0.58 - 0.58 - 0.90 - A.20 - 0.58 - 0.90 - 1.98 - A.20 - 0.9850 - 0.9850 - 0.9897 -	Aug	7.78	7.58	2.57	7.56	2.81	7.57	2.74	7.56	2.82
5.61 5.67 -1.08 5.69 -1.40 5.59 -1.30 5.68 4.59 4.60 -0.32 4.56 0.57 4.65 0.27 4.58 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 A.20 4.10 1.01 4.13 1.57 4.13 A.20 - 0.69 - 0.13 - 0.32 - A.20 - 0.53 - 0.11 - 0.37 - A.20 - 0.58 - 0.58 - 0.90 - A.20 - 0.98 - 0.69 - 1.60 - 1.98 - A.20 - 0.9850 - 0.9850 - 0.9897 -	Sep	7.89	<i>4.</i> 79	1.30	7.75	1.82	7.76	1.62	7.75	1.71
4.59 4.60 -0.32 4.56 0.57 4.65 0.27 4.58 4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 1.20 4.16 1.01 4.13 1.57 4.13 1.20 0.69 0.13 0.13 0.32 0 1.20 0.53 0.11 0.37 0 1.20 0.98 0.58 0.58 0.99 0 1.60 1.60 1.98 0.985 0.985 0 1.09 1.09 0.985 0.985 0.985 0	Oct	5.61	5.67	-1.08	5.69	-1.40	5.59	-1.30	5.68	-1.17
4.20 4.10 2.30 4.16 1.01 4.13 1.57 4.13 - 0.69 - 0.13 - 0.32 - - 0.53 - 0.11 - 0.37 - - 0.98 - 0.58 - 0.90 - - 3.06 - 1.60 - 1.98 - - 0.9850 - 0.9956 - 0.9897 -	Nov	4.59	4.60	-0.32	4.56	0.57	4.65	0.27	4.58	0.22
- 0.69 - 0.13 - 0.32 - - 0.53 - 0.11 - 0.37 - - 0.98 - 0.58 - 0.90 - - 3.06 - 1.60 - 1.98 - - 0.9850 - 0.9956 - 0.9897 -	Dec	4.20	4.10	2.30	4.16	1.01	4.13	1.57	4.13	1.64
- 0.69 - 0.13 - 0.32 - - 0.53 - 0.11 - 0.37 - - 0.98 - 0.58 - 0.90 - - 3.06 - 1.60 - 1.98 - - 0.9850 - 0.9956 - 0.9897 -					8					
- 0.53 - 0.11 - 0.37 - - 0.98 - 0.58 - 0.90 - - 3.06 - 1.60 - 1.98 - - 0.9850 - 0.9956 - 0.9897 -	MPE		I	69.0	-	0.13	Ī	0.32	Î	0.54
- 0.98 - 0.58 - 0.90 - - 3.06 - 1.60 - 1.98 - - 0.9850 - 0.9956 - 0.9897 -	MBE		I	0.53	_	0.11	I	0.37	Î	0.14
- 3.06 - 1.60 - 1.98 - - 0.9850 - 0.9956 - 0.9897 -	RMSE		1	86.0	1	0.58	Ī	0.90	Ì	86.0
- 79850	t-test		I	3.06	1	1.60	Ī	1.98	, –	2.73
	NSE		I	0.9850		0.9956	Ī	0.9897	I	9626.0

Table 8. The same as Table 2, but for Qena

		Model 2	Model	iel 3	Moc	Model 4	Mo	Model 5	Moc	Model 6	Mo	Model 7	Mo	Model 8	Mo	Model 9	Mod	Model 10
⊩	6 Dc	6%	Dc	e%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%	Dc	6%
4.48 1.14	4 4.52	0.32	4.50	92.0	4.46	1.52	4.51	0.58	4.50	0.64	4.48	1.10	4.51	0.42	4.49	1.03	4.47	1.32
4.82 -0.65	5 4.83	-0.94	4.82	-0.59	4.77	0.43	4.77	0.30	4.75	0.75	4.75	08.0	4.76	0.65	4.75	0.75	4.75	92.0
6.24 2.64	4 6.26	2.25	6.21	3.06	6.28	1.95	6.27	2.23	6.34	1.06	6.35	96.0	6.34	1.14	6.38	0.43	6.37	0.54
6.88 3.90	0 6.94	3.05	6.87	3.95	6.92	3.25	6.91	3.46	6.94	2.96	6.94	3.01	6.93	3.10	96.9	2.76	96.9	2.71
8.42 3.57	7 8.46	3.03	8.44	3.35	8.56	1.91	8.59	1.58	8.63	1.17	99.8	0.79	8.67	0.62	8.69	0.50	69.8	0.43
8.06 3.76	8.10	3.26	8.01	4.39	8.11	3.17	8.07	3.61	8.13	2.91	8.14	2.81	8.13	2.95	8.17	2.52	8.17	2.52
6.77 2.09	9 6.82	1.41	6.79	1.73	6.75	2.30	92.9	2.21	6.79	1.79	6.75	2.31	6.77	2.10	92.9	2.22	6.75	2.31
6.16 2.39	9 6.18	1.93	6.15	2.47	6.13	2.74	6.12	2.95	6.13	2.85	6.12	2.95	6.12	3.00	6.13	2.74	6.14	2.65
6.68 1.70	0 6.71	1.26	69.9	1.54	89.9	1.77	19.9	1.93	<i>L</i> 9.9	1.81	6.67	1.92	99.9	1.98	69.9	1.60	6.70	1.46
5.29 -2.28	8 5.29	-2.39	5.31	-2.67	5.28	-2.13	5.25	-1.57	5.27	-2.03	5.25	-1.53	5.23	-1.22	5.23	-1.29	5.23	-1.19
4.67 -0.11	1 4.68	-0.19	4.64	89.0	4.64	09.0	4.64	0.65	4.61	1.27	4.63	0.82	4.64	0.52	4.66	0.25	4.67	-0.03
4.06 2.34	4 4.02	3.18	4.09	1.64	4.05	5.69	4.07	2.06	4.11	1.18	4.10	1.43	4.10	1.35	4.09	1.59	4.08	1.94
- 1.56	- 9	0.81	1	0.40	Ţ	0.83	1	0.13	Ī	0.87	1	0.37	Ι	0.29	1	0.56	Ī	09.0
- 1.24	4	1.10	ı	0.56	ı	0.56	1	0.23	Ī	0.41	ı	0.11	1	0.16	1	0.34	Ī	0.43
- 1.67	7	1.45	1	1.27	Ţ	1.07	1	0.91	Ī	1.00	1	0.78	1	0.73	1	0.85	Ī	0.94
- 3.12	2 –	2.97	1	2.56	Ţ	2.98	1	2.27	Ī	2.42	1	2.16	1	1.97	1	2.39	Ī	2.79
- 0.973	73 –	926.0	1	0.981) –	0.9770	<u> </u>	0.9804	-	0.9843	1	0.9863	1	0.993	1	0.9881) –	0.9874

Table 8. continued

(1) (2) <th>үзис</th> <th>(9107-48</th> <th>Mod</th> <th>Model 11</th> <th>Mod</th> <th>Model 12</th> <th>Mod</th> <th>Model 13</th> <th>Mod</th> <th>Model 14</th>	үзис	(9107-48	Mod	Model 11	Mod	Model 12	Mod	Model 13	Mod	Model 14
4.53 4.50 0.76 4.50 0.77 4.48 1.22 4.49 4.79 4.75 0.77 4.75 0.76 4.75 0.78 4.75 6.41 6.36 0.81 6.36 0.81 6.37 0.57 6.94 7.16 6.95 2.89 6.95 2.94 6.96 2.76 6.95 8.73 8.69 0.47 8.68 0.61 8.69 0.43 8.66 8.73 8.69 0.47 8.68 0.61 8.69 0.43 8.66 8.73 8.15 2.88 0.61 8.69 0.43 8.66 8.73 8.15 2.68 8.15 2.71 8.16 2.54 8.14 6.91 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.80 6.68 1.77 6.67 1.87 6.69 1.54 6.68 5.17 4.16 4.17 1.22 4.08 1.75 4.10 4.16 4.10 1.33 4.11 1.22 </th <th>PM</th> <th>6I) m(I</th> <th>Dc</th> <th>e%</th> <th>Dc</th> <th>e%</th> <th>Dc</th> <th>e%</th> <th>Dc</th> <th>e%</th>	PM	6I) m(I	Dc	e%	Dc	e%	Dc	e%	Dc	e%
4.79 4.75 0.77 4.75 0.76 4.75 0.77 4.75 0.76 4.75 0.78 4.75 6.41 6.36 0.81 6.36 0.81 6.37 0.57 6.34 7.16 6.95 2.89 6.95 2.94 6.96 2.76 6.95 8.73 8.69 0.47 8.68 0.61 8.69 0.43 8.66 8.38 8.15 2.68 8.15 2.71 8.16 2.54 8.14 6.91 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.91 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.91 6.77 2.09 6.77 2.08 6.14 2.70 6.13 6.80 6.63 1.77 6.67 1.87 6.68 1.54 6.68 5.17 5.23 -1.28 5.24 -1.46 5.16 -1.24 5.25 4.67 4.65 0.39 4.64 0.69 4.73 0.12 4.	Jan	4.53	4.50	92.0	4.50	0.73	4.48	1.22	4.49	06.0
6.41 6.36 0.81 6.36 0.81 6.37 0.57 6.34 7.16 6.95 2.89 6.95 2.94 6.96 2.76 6.95 8.73 8.69 0.47 8.68 0.61 8.69 0.43 8.66 8.38 8.15 2.71 8.69 0.43 8.66 8.38 8.15 2.71 8.69 0.43 8.66 6.91 6.77 2.08 6.77 2.05 6.76 2.24 8.14 6.91 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.80 6.63 1.77 6.67 1.87 6.69 1.54 6.68 6.81 6.77 2.09 4.73 6.13 4.63 6.69 4.73 6.13 4.16 4.16 6.69 4.73 6.12 4.63 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 8.1 1.2 1.2 4.08 1.75 4.10 1.2	Feb	4.79	4.75	0.77	4.75	92.0	4.75	0.78	4.75	0.79
7.16 6.95 2.89 6.95 2.94 6.96 2.76 6.95 8.73 8.69 0.47 8.68 0.61 8.69 0.43 8.69 8.38 8.15 2.68 8.15 2.71 8.16 2.54 8.14 6.91 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.91 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.91 6.73 2.81 6.12 2.88 6.14 2.70 6.13 6.80 6.68 1.77 6.67 1.87 6.69 1.54 6.68 5.17 5.23 -1.28 5.24 -1.46 5.16 -1.24 5.25 4.67 4.65 0.39 4.64 0.69 4.73 0.12 4.63 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 4.16 4.10 - 0.35 - 0.20 - 0.40 - 4.10 - <t< td=""><td>Mar</td><th>6.41</th><td>6.36</td><td>0.81</td><td>6.36</td><td>0.81</td><td>6.37</td><td>0.57</td><td>6.34</td><td>1.01</td></t<>	Mar	6.41	6.36	0.81	6.36	0.81	6.37	0.57	6.34	1.01
8.73 8.69 0.47 8.68 0.61 8.69 0.43 8.66 8.38 8.15 2.71 8.16 2.54 8.14 6.91 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.31 6.13 2.81 6.12 2.88 6.14 2.70 6.13 6.80 6.63 1.77 6.67 1.87 6.69 1.54 6.68 5.17 5.23 -1.28 5.24 -1.46 5.16 -1.24 5.25 4.67 4.65 0.39 4.64 0.69 4.73 0.12 4.63 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 - 0.13 - 0.27 - 0.36 - - 0.40 - - 0.13 - 0.18 <td>Apr</td> <th>7.16</th> <td>6.95</td> <td>2.89</td> <td>6.95</td> <td>2.94</td> <td>96.9</td> <td>2.76</td> <td>6.95</td> <td>2.94</td>	Apr	7.16	6.95	2.89	6.95	2.94	96.9	2.76	6.95	2.94
8.38 8.15 2.68 8.15 2.71 8.16 2.54 8.14 6.91 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.31 6.13 2.81 6.12 2.88 6.14 2.70 6.13 6.80 6.68 1.77 6.67 1.87 6.69 1.54 6.68 5.17 5.23 -1.28 5.24 -1.46 5.16 -1.24 5.25 4.67 4.65 0.39 4.64 0.69 4.73 0.12 4.63 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 A.16 4.16 4.03 - 0.27 - 0.56 - A.17 - 0.13 - 0.13 - 0.13 - 0.27 - 0.30 - A.17 - 0.13 - 0.13 - 0.26 - A.	May	8.73	69.8	0.47	8.68	0.61	8.69	0.43	8.66	0.83
6.31 6.77 2.09 6.77 2.05 6.76 2.26 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.77 6.73 6.74 2.70 6.13	Jun	8.38	8.15	2.68	8.15	2.71	8.16	2.54	8.14	2.83
6.31 6.13 2.81 6.12 2.88 6.14 2.70 6.13 6.80 6.68 1.77 6.67 1.87 6.69 1.54 6.68 5.17 5.23 -1.28 5.24 -1.46 5.16 -1.24 5.25 4.67 4.65 0.39 4.64 0.69 4.73 0.12 4.63 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 - 0.35 - 0.27 - 0.56 - - 0.13 - 0.11 - 0.40 - - 0.78 - 0.68 - 0.90 - - 0.78 - 0.68 - 0.92 - - 0.9876 - 0.9896 - 0.9896 -	Jul	6.91	6.77	2.09	6.77	2.05	92.9	2.26	6.77	2.08
6.80 6.68 1.77 6.67 1.87 6.69 1.54 6.68 5.17 5.23 -1.28 5.24 -1.46 5.16 -1.24 5.25 4.67 4.65 0.39 4.64 0.69 4.73 0.12 4.63 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 A.16 4.16 4.03 - 0.27 - 0.56 - A.17 1.22 4.08 1.75 4.10 A.16 4.11 1.22 4.08 1.75 4.10 A.16 4.16 0.27 - 0.56 - A.17 1.83 - 0.92 - A.17 1.88 - 2.65 - A.17 1.88 - 2.65 - A.20 0.9896 - 0.9896 -	Aug	6.31	6.13	2.81	6.12	2.88	6.14	2.70	6.13	2.84
5.17 5.23 -1.28 5.24 -1.46 5.16 -1.24 5.25 4.67 4.65 0.39 4.64 0.69 4.73 0.12 4.63 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 A.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 A.16 4.16 4.03 - 0.27 - 0.56 - A.17 1.22 0.11 - 0.40 - - A.17 1.22 0.08 - 0.40 - A.17 1.22 0.03 - 0.40 - A.17 - 0.03 - 0.09 - A.17 - 1.88 - 2.65 - A.17 - 0.9987 - 0.9896 -	Sep	6.80	89.9	1.77	6.67	1.87	6.69	1.54	89.9	1.76
4.67 4.65 0.39 4.64 0.69 4.73 0.12 4.63 4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 - 0.35 - 0.27 - 0.56 - - 0.13 - 0.11 - 0.40 - - 0.78 - 0.68 - 0.92 - - 2.17 - 1.88 - 2.65 - - 0.9876 - 0.9896 - 0.9896 -	Oct	5.17	5.23	-1.28	5.24	-1.46	5.16	-1.24	5.25	-1.60
4.16 4.10 1.33 4.11 1.22 4.08 1.75 4.10 - 0.35 - 0.27 - 0.56 - - 0.13 - 0.11 - 0.40 - - 0.78 - 0.68 - 0.92 - - 2.17 - 1.88 - 2.65 - - 0.9876 - 0.9987 - 0.9896 -	Nov	4.67	4.65	0.39	4.64	69.0	4.73	0.12	4.63	0.74
- 0.35 - 0.27 - 0.56 - - 0.13 - 0.11 - 0.40 - - 0.78 - 0.68 - 0.92 - - 2.17 - 1.88 - 2.65 - - 0.9876 - 0.9987 - 0.9896 -	Dec	4.16	4.10	1.33	4.11	1.22	4.08	1.75	4.10	1.41
- 0.35 - 0.27 - 0.56 - - 0.13 - 0.11 - 0.40 - - 0.78 - 0.68 - 0.92 - - 2.17 - 1.88 - 2.65 - - 0.9876 - 0.9987 - 0.9896 -										
- 0.13 - 0.11 - 0.40 - - 0.78 - 0.68 - 0.92 - - 2.17 - 1.88 - 2.65 - - 0.9876 - 0.9987 - 0.9896 -	MPE		1	0.35	1	0.27	Ι	0.56	I	0.71
- 0.78 - 0.68 - 0.92 - - 2.17 - 1.88 - 2.65 - - 0.9876 - 0.9987 - 0.9896 -	MBE		Ι	0.13	1	0.11	I	0.40	I	0.28
- 2.17 - 1.88 - 2.65 - - 0.9876 - 0.9987 - 0.9896 -	RMSE		I	0.78	1	0.68	I	0.92	I	0.99
- 0.9876 - 0.9987 - 0.9986 -	t-test		1	2.17	1	1.88	I	2.65	I	2.58
	NSE		1	9286.0	1	7866.0	I	9686'0	1	0.9819

Table 9. The same as Table 2, but for Aswan

0	\0	7	9	_	7	7	7	∞	7	9	33	m	00	w	7	Ţ	m	33
Model 10	6%	1.02	0.76	0.67	2.82	0.52	2.62	2.18	2.77	1.66	-1.33	0.33	1.58	0.43	0.27	0.81	2.33	0.993
Mo	Dc	4.73	5.60	7.15	7.74	8.57	8.67	7.93	7.90	7.54	6.29	5.31	4.34	1	Ī	1	1	١
Model 9	6%	0.89	0.76	0.62	2.82	0.48	2.60	2.15	2.78	1.69	-1.29	0.32	1.46	0.45	0.24	0.82	2.28	0.9879
Mo	Dc	4.74	5.60	7.16	7.74	8.57	8.67	7.94	7.89	7.54	6.29	5.31	4.35	1	I	1	1	1
Model 8	6%	0.87	0.70	0.84	2.90	0.52	2.73	2.21	2.83	1.72	-1.20	0.25	1.64	0.94	0.23	0.83	1.81	966.0
Мос	Dc	4.74	5.60	7.14	7.73	8.56	99.8	7.93	7.89	7.54	6.28	5.32	4.34	1	1	1	1	1
Model 7	6%	0.93	0.78	0.88	2.95	0.63	2.75	2.20	2.88	1.84	-1.41	0.61	1.38	0.36	0.12	0.78	2.16	0.9870
Moc	Dc	4.74	5.60	7.14	7.73	8.56	99.8	7.93	7.89	7.53	6.30	5.30	4.35	1	Ī	1	Ī	l
Model 6	6%	0.84	0.75	0.74	2.86	0.83	2.72	2.00	2.80	1.71	-1.66	0.76	1.38	0.71	0.38	0.93	2.40	0.9862
Mod	Dc	4.74	5.60	7.15	7.73	8.54	99.8	7.95	7.89	7.54	6.31	5.29	4.35	1	1	1	1	<u> </u>
Model 5	6%	0.84	0.55	1.60	3.24	1.18	3.21	2.26	2.95	1.92	-1.55	0.74	1.74	0.25	0.17	0.84	2.22	0.9834
Moo	Dc	4.74	5.61	7.09	7.70	8.51	8.61	7.93	7.88	7.52	6.31	5.29	4.33	I	ī	ī	ī	ì
Model 4	6%	1.31	0.61	1.45	3.13	1.35	2.99	2.31	2.84	1.85	-1.83	0.71	2.06	0.60	0.34	0.92	2.57	0.9816
Moo	Dc	4.72	5.61	7.10	7.71	8.49	8.63	7.92	7.89	7.53	6.32	5.29	4.32	_	1	1	I	Ī
lel 3	6%	0.67	-0.14	2.65	3.71	2.46	4.00	1.97	2.71	1.73	-2.12	19.0	1.85	0.27	0.39	1.09	2.42	0.981
Model	Dc	4.75	5.65	7.01	99.7	8.40	8.54	7.95	7.90	7.54	6.34	5.29	4.33	ı	1	1	I	1
el 2	6%	0.45	-0.32	2.24	3.26	2.31	3.44	1.81	2.44	1.59	-1.98	0.23	2.62	0.47	99.0	1.18	2.62	0.978
Model 2	Dc	4.76	99.5	7.04	7.70	8.41	8.59	7.96	7.92	7.55	6.33	5.32	4.29	1	1	1	1	1
lel 1	6%	0.95	-0.62	2.85	3.92	3.46	4.08	1.91	2.43	1.62	-2.48	0.29	1.99	86.0	0.90	1.47	2.84	0.983
Model 1	Dc	4.73	5.67	66.9	7.65	8.31	8.54	96.7	7.92	7.55	98.9	5.31	4.32	1	1	1	1	1
(9102-48	6I) W(I	4.78	5.64	7.20	7.96	8.61	8.90	8.11	8.12	7.67	6.21	5.33	4.41					
զյա	ρM	Jan	Feb	Mar	Apr	May	Inn	Jul	Aug	Sep	Oct	Nov	Dec	MPE	MBE	RMS	t-test	NSE

Table 9. continued

րյա	(9107-28	Moc	Model 11	Mod	Model 12	Mod	Model 13	Mod	Model 14
ΡW	e1) m(I	Dc	%9	Dc	6%	Dc	6%	Dc	%
Jan	4.78	4.74	0.83	4.74	0.92	4.74	0.84	4.73	1.10
Feb	5.64	5.60	0.78	5.60	0.78	5.63	0.23	5.60	0.70
Mar	7.20	7.13	0.91	7.13	0.95	7.10	1.41	7.11	1.23
Apr	96.7	7.73	2.91	7.73	2.94	7.72	3.01	7.72	3.03
May	8.61	8.55	0.65	8.55	0.73	8.49	1.37	8.52	1.09
lun	8.90	8.65	2.76	8.65	2.79	8.63	2.99	8.64	2.91
Jul	8.11	7.94	2.08	7.94	2.14	7.95	2.03	7.93	2.19
Aug	8.12	<i>4</i> 88.	2.82	68.7	2.86	7.91	2.57	7.89	2.84
Sep	1.67	7.53	1.76	7.53	1.80	7.55	1.57	7.53	1.80
Oct	6.21	6.30	-1.44	6.30	-1.50	6.20	-1.61	6.32	-1.72
Nov	5.33	5.30	0.57	5.29	19.0	5.42	0.18	5.29	0.73
Dec	4.41	4.35	1.37	4.35	1.39	4.31	2.19	4.33	1.74
MPE		_	0.53	-	0.33	Ī	0.52	I	9.65
MBE		I	0.20	1	0.20	Î	0.53	I	0.31
RMSE		Ī	0.89	1	0.47	Î	1.05	Ī	96.0
t-test		Ĩ	2.37	1	1.37	Î	2.64	Ì	2.57
NSE		1	0.9848	1	0.9994	Ĩ	0.9900	I	0.9818

Table 10. Summary of maximum and minimum values of the statistical error tests, MPE, MBE, RMSE, t-test, and NSE of the fourteen models at the nine stations

	Value/	MPE	E	MBE	Œ	RMSE	SE	t-test	1S.	NES	S
Station	(Model	Farthest	Closest								
	Number)	from 0	to 0	from 1	to 1						
Cidi Demoni	value	4.08	0.07	0.91	0.00	1.63	0.33	7.96	0.03	0.9502	0.9999
Jul-Dallalli	(Model No.)	(9)	(12)	(5)	(12)	(4)	(12)	(11)	(12)	(5)	(12)
Motort	value	5.12	0.11	2.78	-0.04	3.51	0.32	5.74	0.15	0.9588	9666.0
זאַמן חוו	(Model No.)	(2)	(12)	(2)	(12)	(4)	(12)	(2)	(12)	(4)	(12)
E1 Assist	value	2.99	80.0-	2.27	0.13	3.43	0.22	5.78	0.19	9656:0	0.9997
El-Aileii	(Model No.)	(11)	(12)	(7)	(12)	(4)	(12)	(11)	(12)	(11)	(12)
T. 10.15.45.	value	2.56	-0.49	1.74	-0.39	3.08	0.53	4.87	0.32	0.9661	0.9993
тапп	(Model No.)	(6)	(12)	(2)	(12)	(2)	(12)	(6)	(12)	(6)	(12)
200	value	2.05	-0.04	1.66	0.01	2.27	0.33	3.63	98.0	0.9713	0.9999
Сапо	(Model No.)	(4)	(12)	(2)	(12)	(1)	(12)	(9)	(12)	(4)	(12)
FIVhanca	value	1.75	0.13	1.38	0.11	2.03	0.58	3.37	1.60	0.9727	0.9956
El-Miai ga	(Model No.)	(1)	(12)	(1)	(12)	(1)	(12)	(4)	(12)	(4)	(12)
	value	1.56	0.27	1.24	0.11	1.76	0.68	3.12	1.88	0.9734	0.9987
Colla	(Model No.)	(1)	(12)	(1)	(12)	(1)	(12)	(1)	(12)	(1)	(12)
Agreement	value	0.98	0.12	0.90	0.12	1.47	0.47	2.84	1.37	0.9783	0.9994
/Swall	(Model No.)	(1)	(12)	(1)	(12)	(1)	(12)	(1)	(12)	(1)	(12)

5. Conclusions

The most accurate empirical models that estimate diffuse solar radiation were collected from the literature to evaluate their applicability for estimate diffuse solar radiation over Egypt. The collected models were compared on the basis of the many statistical error tests; relative percentage error (e%), mean percentage error (MPE), mean bias error (MBD), root mean square error (RMSE), t-test, and Nash-Sutcliffe equation (NSE). According to the results, the Tarhan and Sarı model (Model 12) showed the best estimation of the diffuse solar radiation on a horizontal surface for all stations. Therefore, the Tarhan and Sarı model (Model 12) is extremely recommended for predicting diffuse solar radiation at any location in Egypt.

References

- Al-Mohamad A., 2004: Global, direct and diffuse solar radiation in Syria. Appl Energy 79 (2), 191–200. https://doi.org/10.1016/j.apenergy.2003.12.011
- Almorox, J., and Hontoria C., 2004: Global solar radiation estimation using sunshine duration in Spain. Energy Conv. Manage 45, 1529–35. https://doi.org/10.1016/j.enconman.2003.08.022
- Aras, H., Balli, O., Hepbasli, A., 2006: Estimating the horizontal diffuse solar radiation over the Central Anatolia region of Turkey. Energy Conv. Manage 47, 2240–2249. https://doi.org/10.1016/j.enconman.2005.11.024
- Chen, R., Ersi, K., Yang, J., Lu, S., Zhao, W., 2004: Validation of five global radiation models with measured daily data in China. Energy Conv. Manage 45, 1759–69. https://doi.org/10.1016/j.enconman.2003.09.019
- Darwish, M. A., and Taha, N. E., 2000: Estimation of diffuse radiation over the Arab World (Eastern Region). 5th conference-Meteorology & Sustainable development 22-24 February 2000. Cairo, Egypt.
- *Driesse, A.* and *Thevenard, D. A.*, 2002: Test of Suehrcke's sunshine radiation relationship using a global data set. *Sol. Energy 72*, 167–75. https://doi.org/10.1016/S0038-092X(01)00082-2
- Duffie, J. A. and Beckman, W. A., 1991: Solar engineering of thermal process. New York: Wiley.
- *El-Metwally, M.,* 2004: Simple new methods to estimate global solar radiation based on meteorological data in Egypt. *Atmos. Res. 69,* 217–239. https://doi.org/10.1016/j.atmosres.2003.09.002
- El-Metwally, M., 2005: Sunshine and global solar radiation estimation at different sites in Egypt. J. Atmos. Solar Terr. Phys. 67, 1331–1342. https://doi.org/10.1016/j.jastp.2005.04.004 https://doi.org/10.1080/01431161.2013.834393
- *El-Metwally, M. and Wald, L.,* 2013: Monthly means of daily solar irradiation over Egypt estimated from satellite database and various empirical formulae. *Int. J. Remote Sens.* 34, 8182–8198. https://doi.org/10.1080/01431161.2013.834393
- *El-Sebaii, A.A.*, and *Trabea, A.A.*, 2003: Estimation of horizontal diffuse solar radiation in Egypt. *Energy Conv. Manage.* 44, 2471–2482. https://doi.org/10.1016/S0196-8904(03)00004-9
- *El-Sebaii, A.A.*, and *Trabea, A.A.*, 2005: Estimation of Global Solar Radiation on Horizontal Surfaces over Egypt. *Egypt. J. Solids.* 28, 163–175.
- *El-Sebaii, A.A., Al-Hazmi, F. S., Al-Ghamdi, A.A., Yaghmour, S.J.,* 2010: Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. *Appl. Energy* 87, 568–76. https://doi.org/10.1016/j.apenergy.2009.06.032
- El-Shahawy, M.A., 1984: Estimation of daily global solar radiation. Bull. Fac. Sci. Cairo Univ. 52, 641–653.
- *El-Shazly, M.S., Abdelmageed, A.M.* and *El-Noubi, M.,* 1998: Solar radiation characteristics at Qena/Egypt. *Mausam 49,* 59–70.
- Gopinathan, K.K., 1988: Empirical correlations for diffuse solar radiation. Sol Energy 40, 369–70. https://doi.org/10.1016/0038-092X(88)90009-6
- Hawas, M.M. and Muneer, T., 1984: Study of diffuse and global radiation characteristic in India. Energy Conv. Manage 24, 143–9. https://doi.org/10.1016/0196-8904(84)90026-8

- *Ibrahim, S.M.A.*, 1985: Predicted and measured global solar radiation in Egypt. *Sol Energy 35*, 185–8. https://doi.org/10.1016/0038-092X(85)90009-X
- *Jamil, B.* and *Akhtar, N.,* 2017: Comparative analysis of diffuse solar radiation models based on sky clearness index and sunshine period for humid-subtropical climatic region of India: A case study. *Renew. Sustain. Energy Rev.* 78, 329–355. https://doi.org/10.1016/j.rser.2017.04.073
- Khalil, S.A., and Shaffie, A. M., 2013: A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt. Renew. Sustain. Energy Rev. 27, 853–63. https://doi.org/10.1016/j.rser.2013.06.038
- Khalil, S.A., and Shaffie, A.M., 2016: Evaluation of transposition models of solar irradiance over Egypt. Renew. Sustain. Energy Rev. 66, 105–119. https://doi.org/10.1016/j.rser.2016.06.066
- *Kumar, R.* and *Umanand, L.*, 2005: Estimation of global radiation using clearness index model for sizing photovoltaic system. *Renew Energy 30*, 2221–2233. https://doi.org/10.1016/j.renene.2005.02.009
- Li, D.H.W. and Lam, J.C., 2000: Solar heat gain factors and the implications for building designs in subtropical regions. Energy Build. 32, 47–55. https://doi.org/10.1016/S0378-7788(99)00035-3
- *Lu, Z., Piedrahita R.H.*, and *Neto, C.D.S.*, 1998: Generation of daily and hourly solar radiation values for modeling water quality in aquaculture ponds. *Trans ASAE 41*, 1853–1859. https://doi.org/10.13031/2013.17323
- Mediavilla, M.D., Miguel, A., and Bilbao, J., 2005: Measurement and comparison of diffuse solar irradiance models on inclined surfaces in Valladolid, Spain. Energy Conv. Manage 46, 2075–92. https://doi.org/10.1016/j.enconman.2004.10.023
- Notton, G., Cristofari, C., and Muselli, M., Poggi, P., 2004: Calculation on an hourly basis of solar diffuse irradiations from global data for horizontal surfaces in Ajaccio. Energy Conv. Manage 45, 2849–2866. https://doi.org/10.1016/j.enconman.2004.01.003
- Sabbagh, J.A., Sayigh, A.M., El Salam, E.M., 1977: Estimation of the total radiation from meteorological data. Solar Energy 19, 307–311. https://doi.org/10.1016/0038-092X(77)90075-5
- Soares, J., Oliveira, A. P., Boznar, M. Z., Mlakar, P., Escobedo, J. F., and Machado, A.J., 2004: Modeling hourly diffuse solar radiation in the city of Sao Paulo using a neural network technique. Appl. Energy 79, 201–214. https://doi.org/10.1016/j.apenergy.2003.11.004
- Stone, R.J., 1993: Improved statistical procedure for the evaluation of solar radiation models. Sol Energy 51, 289–91. https://doi.org/10.1016/0038-092X(93)90124-7
- *Tadros, M.T.Y.*, 2000: Uses of Sunshine Duration to Estimate the Global Solar Radiation over Eight Meteorological Stations in Egypt. *Renew. Energy 21*, 231–246. https://doi.org/10.1016/S0960-1481(00)00009-4
- *Tarhan, S.* and *Sari, A.*, 2005: Model selection for global and diffuse radiation over the Central Black Sea (CBS) region of Turkey. *Energy Conv. Manage 46*, 605–613. https://doi.org/10.1016/j.enconman.2004.044.004
- *Tiba, C.,* 2001: Solar radiation in the Brazilian Northeast. *Renew. Energy* 22, 565–578. https://doi.org/10.1016/S0960-1481(00)00116-6
- Togrul, I.T., and Togrul, H., 2002: Global solar radiation over Turkey: comparison of predicted and measured data. Renew. Energy 25, 55–67. https://doi.org/10.1016/S0960-1481(00)00197-X
- *Trabea, A.,* and *Shaltout, M.A.,* 2000: Correlation of Global Solar Radiation with Meteorological Parameters over Egypt. *Renew. Energy 21,* 297–308. https://doi.org/10.1016/S0960-1481(99)00127-5
- *Tymvios, F.S., Jacovides, C.P., Michaelides, S.C.,* and *Scouteli, C.,* 2005: Comparative study of Angstrom and artificial neural networks methodologies in estimating global solar radiation. *Sol Energy* 78, 752–62. https://doi.org/10.1016/j.solener.2004.09.007
- *Ulgen, K.*, and *Hepbasli, A.*, 2002: Comparison of solar radiation correlations for Izmir, Turkey. *Int. J. Energy Res. 26*, 413–430. https://doi.org/10.1002/er.794
- *Ulgen, K.*, and *Hepbasli, A.*, 2003: Comparison of diffuse fraction of daily and monthly global radiation for Izmir, Turkey. *Energy Sour. 25*, 637–649. https://doi.org/10.1080/00908310390212444
- *Ulgen, K.*, and *Hepbasli, A.*, 2004: Solar radiation models. Part 2: Comparison and developing new models. *Energy Sour. 26*, 521–530. https://doi.org/10.1080/00908310490429704
- *Ulgen, K.*, and *Hepbasli, A.*, 2009: Diffuse solar radiation estimation models for Turkey's big cities. *Energy Conv. Manage 50*, 149–56. https://doi.org/10.1016/j.enconman.2008.08.013
- Wong, L.T., and Chow, W.K., 2001: Solar radiation model. Appl. Energy 69,191–224. https://doi.org/10.1016/S0306-2619(01)00012-5