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Abstract⎯ Nowadays, the use of probabilistic modeling for the design of engineering 
structures is becoming more and more widespread due to the advances in computer 
technology. In order to have a comprehensive picture about a meteorological phenomenon, 
e.g., wind actions on structures, uncertainties must be taken into account. From structural 
engineering and practical points of view, the effect of the length of short time series 
available for the analysis on the final results can be interesting to define a minimum 
observation-length. In this way, the real condition at the site can be utilized to assess wind 
loading effects on the structure. 

This paper deals with the effect of uncertainties associated with the parameter 
estimation and threshold selection. A four-year record of wind speed data of Sződliget is 
analyzed, and these results are compared with the results of neighboring sites, Penc, and 
Budapest. The peak over threshold (POT) method with maximum likelihood estimation are 
selected to obtain the basic wind velocity. The suitable threshold is chosen using an 
automatic threshold selection approach. 

According to our results, the applied automated threshold selection method provide 
reliable results, and it is simple and computationally inexpensive. This method may reduce 
associate errors of threshold selection in the future. It was found that at least approximately 
100 realizations should exceed the specified threshold to earn reliable results. It means that  
1–1.5-year and 4-year records of wind speeds are necessary for statistical inference in case 
of weakly dependent observations and for statistically independent events, respectively. 
 
Key-words: extreme wind speed, basic wind velocity, generalized Pareto distribution, 
automated threshold selection, parameter estimation uncertainty 
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1. Introduction 

Most design codes are based on the semi-probabilistic partial factor method, 
where design values should be conservative estimates. However, the advances in 
computer technology suggests the introduction of alternative design procedures 
based on fully probabilistic approaches and simulation techniques. This has led to 
the development of a promising design methodology, the Performance-based 
Wind Engineering (PBWE). The PBWE was first published in 2004 (Paulotto et 
al., 2004), that paper provides a general framework for these investigations. After 
that, the major parameters and uncertainties were summarized in Ciampoli et al. 
(2011), Petrini and Ciampoli (2012), and Tessari et al. (2017). These publications 
help to understand of many aspects of structural behavior and its modeling. A cell 
tower equipped with wind speed (and strain) sensors in Sződliget (Central 
Hungary) is selected as the subject of this research, which is used as a radio tower. 
According to the experience of expert engineers and our observations, the 
utilization of the structure can be even smaller with precise modeling of wind 
load, thus, more antenna can be placed on the structure. The aim of the present 
study is to determine the point estimate and the parameter estimation uncertainty 
in the environmental field in case of Hungarian climate. 

A lattice tower can be used as an electricity transmission tower (especially 
for voltages above 100 kilovolts), as a radio tower (a self-radiating tower or as a 
carrier for aerials), or as an observation tower. As reported in Ducloux and 
Figueroa (2016), the structural behavior and response of a tangent suspension 
tower and a radio tower are quite different. Furthermore, major international wind 
codes and standards were compared in previous studies to identify the differences 
and similarities between them Kwon and Kareem (2013), Lungu et al. (1996), and 
Gatey and Miller (2007). One of the main conclusions is that alongwind responses 
are fairly consistent in the codes/standards, but there are discrepancies in 
acrosswind responses. Moreover, most of these codes use the global method, i.e., 
the solidity ratio and global shielding factors. Although this approach is very 
effective for conventional structures, it is difficult to apply for atypical 
configurations. As recommended by Prud'homme et al. (2018), an empirical local 
method could be used to determine the wind loads in such a case. Their approach 
is based on the reduction of wind velocity in a turbulent wake accounting the 
shielding effect on each member. 

Future extreme wind speeds should be considered in a reliable design. The 
available techniques to determine the 50-year return period wind speed was 
reviewed and summarized in Palutikof et al. (1999) and Cooley (2016). In this 
paper, the measured data of a 50-meter-high steel structure antenna tower 
equipped with wind speed sensors is analyzed and compared to the data provided 
by the Hungarian Meteorological Service (OMSZ). The fundamental value of the 
basic wind velocity defined at 10m above ground of terrain category II 
(EN 1991-1-4 (2010) and EN 1990 (2002)) is determined. 



313 

2. Measured data 

The data from the abovementioned antenna tower was provided by Hungarian 
Telekom Telecommunications Plc.. The wind speed was measured for the period 
between August 2011 and March 2015, with a sampling interval of 0.9 s at 25 m, 
and 50 m height above ground. The lattice tower 
is located in Sződliget, and the nearest meteorological station is in Penc. To 
identify terrain categories, the map is shown in Fig. 1. Terrain category III are 
chosen for both sites. The following data from Penc and Budapest were provided 
by the OMSZ: 

• 1999–2017 annual maxima of 10 minutes mean wind velocity, 

• 2012–2017 daily maxima of 10 minutes mean wind velocity, 

• 1998–2017 annual maxima of wind gusts. 

 

 

 

 
Fig. 1. Map and terrain category of Sződliget and Penc. 

 
 
 
The time series records of maxima for 3 and 7 days are shown in Figs. 2 and 3. 



314 

  
Fig. 2. Time series plot of 3-day maxima of wind speed measured at Sződliget. 

 

 

  
Fig. 3. Time series plot of 7-day maxima of wind speed measured at Sződliget. 

 

 

3. Applied methods 

3.1. Independent events 

First, an autocorrelation analysis is adopted to obtain the dependencies among the 
data and determine statistically independent events. A previous paper (Liu et al., 
2016) deals with repeating patterns and wind characteristics. Since an obvious 
daily periodicity of the change rate was recognized, the maxima for 3 and 7 days 
are analyzed in this study. This selection results in 441 and 189 data, respectively. 
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In case of the 3-day maxima, the presence of a slight periodicity was identified in 
the autocorrelation function of the stochastic time series (Fig. 4). However, the 
autocorrelation function of maxima for 7 days verifies the statistically 
independences of events clearly (Fig. 5). The detailed results for the 7-day 
maxima are presented in Section 4. 
 
 

 
Fig. 4. Autocorrelation function of maxima for 3 days. 

 

 
Fig. 5. Autocorrelation function of maxima for 7 days. 

 

 

3.2. Extreme value theory 

According to the classical extreme value theory (Fisher and Tippett, 1928; 
Gnedenko, 1943), the distribution of extreme wind speeds has an asymptotic limit. 
Moreover, the only possible limit F is the generalized extreme value distribution 
(GEV), which has the following cumulative distribution function (CDF): 
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ሻݔక,ఙ,ఎሺܨ =
۔ۖەۖ
ቌ−ቆ1݌ݔ݁ۓ + ݔሺߦ − ߪሻߟ ቇିଵకቍ ߦ	ݎ݋݂	 ≠ 0
݌ݔ݁ ൭−݁݌ݔ ቆ− ሺݔ − ߪሻߟ ቇ൱ ߦ	ݎ݋݂		 = 0,  (1) 

 
where ξ, σ, and η are the shape, scale, and location parameters, respectively. The 
shape parameter determines the type of the distribution. The three distributions 
are Gumbel (ξ = 0), Fréchet (ξ > 0), and Weibull (ξ < 0), also known as type I, II, 
and III extreme value distributions. The Fréchet distribution has a lower limit and 
the Gumbel distribution is unlimited which results unlimited values as the return 
period increases. Thus, the Weibull distribution can be more appropriate to model 
extreme wind speeds for geophysical reasons (Holmes and Moriarty, 1999, 2001; 
Cook and Harris, 2001). The fundamental value of the basic wind velocity of 
Hungary has been determined using Gumbel distribution. However, the Joint 
Committee on Structural Safety recommends Weibull distribution in the 
Probabilistic Model Code. 

A traditional approach of applying classical extreme value theory is the 
method of annual maxima. A major drawback of this approach is the data 
reduction, therefore, the wind measurement must be long. Cook (1985) advises 
that at least 20 extremes should be used to determine reliable results. To improve 
the efficiency, three main techniques have been developed: block method, peaks-
over threshold (POT) method, and method of independent storms (MIS). In this 
study, we focus on the POT method, which is based on a conditional distribution, 
i.e., the exceedances over a specified threshold. The generalized Pareto 
distribution (GPD) is the asymptotic distribution to model the tails of the 
generalized extreme value (GEV) distribution under certain condition 
(Pickands III, 1975). Several papers deal with the application of GPD to extreme 
value analysis (Holmes and Moriarty, 1999, 2001; Cook and Harris, 2001). The 
CDF of the GPD is 

 

ሻݔక,ఙ,ఎሺܨ = ൞1− ቆ1 + ݔሺߦ − ߪሻߟ ቇିଵక ߦ	ݎ݋݂	 ≠ 01− ݁ି௭																											݂ݎ݋	ߦ = 0,  (2) 

 

where ξ, σ, and η are the shape, scale, and location parameters, respectively. The 
shape parameter ξ of the GPD is the same as for the GEV (Pickands III, 1975). The 
threshold selection has a great influence on the result, and it is a compromise between 
bias and variance. While the variance decreases and the bias increases with lower 
threshold, higher threshold results that the bias decreases and the variance increases. 
The performance of threshold selection on visual basis is widely used, e.g., mean 
excess plot (or mean residual life plot; by plotting the mean of the excesses over the 
selected threshold against the wind velocity) which may cause associate errors. 
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3.3. Automatic threshold selection method for GPD 

An automatic threshold selection method was proposed in (Thompson et al., 
2009), which was implemented in this study. This automated technique is simple 
and computationally inexpensive. They recommend that the suitable values of 
thresholds (uj, j = 1…,n) should be chosen between the median and the 98% 
quantile of the data (unless fewer than 100 values exceed it). Let us define 
 ߬௨ೕ = ො௨ೕߪ − ௝ݑመ௨ೕߦ , ݆ = 1,… ,݊, (3) 
 
where the differences 
 ߬௨ೕ − ߬௨ೕషభ , ݆ = 2,… ,݊, (4) 
 
should approximately follows normal distribution with zero mean. 

3.4. Wind velocity profile 

Finally, since available wind time series are measured at different heights, a 
conversion is required. The logarithmic law is utilized for wind velocity profile to 
calculate the basic wind velocity at 10 m height: 
 ܸሺݖሻ = 0.4∗ݑ ݈݊ ൬ ଴൰ݖݖ ଴ܸ, (5) 

 
where u* is the friction velocity, z is the height of interest, and z0 is the roughness 
length. 

4. Results and discussion 

4.1. Traditional graphical diagnostics 

The decreasing behavior of the mean excess plot (Fig. 6) indicates lighter tail 
(shape parameter ξ < 0). The conditional distribution is in the domain of attraction 
of GPD if the mean excess plot follows a straight line. Hence, one should select 
the proper threshold beyond the graph appears to be linear. In this case, linearity 
occurs between 7 and 12. The dotted lines indicate the upper and lower 95% 
confidence intervals. 
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Fig. 6. Mean excess plot of the maxima for 7 days and the associated 95% confidence 
envelope. 

 
 
 

Six estimation methods were considered and compared in Kang and Song 
(2017). Two methods are based on the maximum likelihood estimation (MLE), 
three methods are based on the nonlinear least squares (NLS), and the last one is 
the Hill estimator. They found that the MLE performs well and better than the 
others in most cases. However, the MLE only hold when ξ > –0.5 (Cooley, 2016). 
Therefore, the estimated parameters were calculated using MLE.  

Furthermore, the suitable threshold can be selected with the help of shape 
and scale parameter plots presented in Figs. 7 and 8. One should find the point 
where the shape parameter is constant (approx. 11–13) and the scale parameter is 
linear (about 7–13). 

 
 
 

 

Fig. 7: Shape parameter for 7-day maxima. 
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Fig. 8: Scale parameter for 7-day maxima. 

 
 

4.2. Automatic threshold selection for GPD 

The differences τuj - τuj-1 are calculated (Fig. 9) and the Pearson's chi-square test is 
used to establish whether or not the observed differences follow a normal 
distribution with zero mean. The red vertical line indicates the automated 
threshold selection choice of 11.73 m/s. 
 
 
 

  
Fig. 9. Graph of the differences τuj - τuj-1 for 7-day maxima. 

 
 
 
Fig. 10 shows the empirical and fitted cumulative distribution functions. 

Although the case of ξ < 0 (belongs to Weibull distribution) would be more 
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appropriate, the case of ξ = 0 (Gumbel distribution) can be considered to be on the 
safe side (results greater basic wind velocity). 

 
 
 

 
Fig. 10. Empirical and fitted cumulative distribution functions. 

 
 
 
The quantile plot (Fig. 11) shows the quantiles of resampled estimates versus 

theoretical quantiles from a normal distribution. Hence, one can check that the 
estimated parameter follows the normal distribution, and the delta method (Coles, 
2011) can be applied. This quantile plot indicates that the fitted GPD model is 
satisfactory. 

 
 
 
 

 
Fig. 11. Quantile plot. 
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4.3. Wind return level plot 

After the parameter estimates were determined, the wind speed for a return period 
is calculated from the GPD as 
 

ோܸ = ۔ۖەۖ
ߤۓ + ߦߪ ቈ൬1ܴ൰ିక቉ ߦ	ݎ݋݂	 ≠ ߤ0 − ߪ ln ൬1ܴ൰ ߦ	ݎ݋݂			 = 0, (6) 

 
where R is the return period. In this research, 95% confidence intervals were 
calculated using the delta method. The wind return period is obtained with the 
estimated shape parameter (Fig. 12) and zero shape parameter Fig. 13 as well, and 
it is plotted with a logarithmic scale for the horizontal axis. In these plots, the 
bounded and unbounded behavior of the two distributions can be clearly seen. 
 

  
Fig. 12: Wind return plot, ξ < 0. 

 
Fig. 13: Wind return plot, ξ = 0. 
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The ξ = 0 shape parameter yields 17% greater basic wind velocity than the 
estimation of ξ < 0. The range of 95% confidence intervals of the 50-year return 
period wind velocities are about 7% and 13% of the associated point estimate for 
3- and 7-day maxima, respectively. Certainly, this value is increasing with 
increasing return periods. 

4.4. 4.4 Basic wind velocity and parameter estimation uncertainties 

The maximum likelihood estimations and the 95% confidence intervals of the 
50-year return period for 3- and 7-day maxima of 10 min mean wind speed 
measured at 10 m height are shown in Fig. 14. The detailed results (e.g., number 
of observations) can be found in Appendix A, Tables A.1 to A.5. The automated 
threshold selection choices are 11.93 m/s and 11.73 m/s for 3- and 7-day maxima, 
respectively. 
 
 

 

Fig. 14: Point estimates and confidence intervals of wind extremes for Sződliget. 

 
 
 
While the point estimate calculated by shape parameter ξ = 0 decreases with 

increasing threshold, maximum likelihood estimations calculated by shape 
parameter ξ < 0 increases with increasing threshold due to the decreasing shape 
parameter. Moreover, the increasing confidence interval can be clearly seen. 

Nevertheless, in case of threshold of 8 m/s for 7-day maxima, bias was 
observed in the quantile plot. Reliable results are obtained in the range of 8.5 m/s 
and 12.5 m/s for 3-day maxima, 10.5 m/s and 13 m/s for 7-day maxima. Although 
there are only small differences (max 5%) between estimations with shape 
parameter ξ < 0 of the 3- and 7-day maxima, the differences of these estimates 
with shape parameter ξ = 0 are statistically significant (4 –25%). The range of 
95% confidence intervals are about 7–10% of the associated point estimates. 
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Furthermore, instantaneous wind speeds are analyzed to make simple 
comparison between the two cases (Fig. 15). It is transformed to the basic wind 
velocity (10 min mean) by the exposure factor provided by Eurocode 1991-1-4 
(EN 1991, 2010). Similar consequences can be stated for these results, and the 
two calculations are in good agreement. The estimated basic wind velocity 
calculated from 10 min mean wind data and instantaneous wind speeds are 18.0–
21.1 m/s and 17.2–21.7 m/s, respectively. The automated threshold selection 
choices are 15.37 m/s and 17.75 m/s for 3- and 7-day maxima. 

 
 

 
Fig. 15: Point estimates and confidence intervals of wind extremes for Sződliget  
(1s measured values are converted to 10 min mean). 

 
 

In case of Penc, wind speeds with estimated 50-year return period are much 
lower than the estimates for Sződliget (about 30%). Moreover, these values 
(12-16 m/s) are also substantially lower than the basic wind velocity of Hungary 
(23.6 m/s). The automated threshold selections are 5.42 m/s 7.16 m/s for 3- and 
7-day maxima, respectively. For Penc, the range of 95% confidence intervals are 
about 4-5% of the associated point estimates due to the higher number of 
observations and lower estimated values (Fig. 16).  

The assessed basic wind speed of Budapest is in good agreement with results 
of Sződliget. The automated choices are 11.22 m/s and 10.93 m/s for 3- and 7-day 
maxima, respectively. The range of 95% confidence intervals of these 50-year 
return period wind velocities are about 5% and 14% of the associated point 
estimate for 3- and 7-day maxima, respectively. The ξ = 0 shape parameter yields 
approximately 20% greater basic wind velocity than the estimation of ξ < 0. The 
result of the 3- and 7-day maxima data are quite equivalent for ξ < 0. A previous 
study (Rózsás and Sýkora, 2016) investigated the probabilistic modeling of basic 
wind speeds for Budapest based on Carpatclim data covering a 50-year 
observation period. Although, the point estimates of 20.9–21.4 m/s are obtained 
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using the POT method, the uncertainty interval is narrower due to the greater 
sample size (3–4 times more observations). 

 
 

 
Fig. 16. Point estimates and confidence intervals of wind extremes for Penc. 

 
 

Moreover, 20 years of annual maxima are analyzed using the classical GEV 
method for Penc and Budapest as it was suggested in Cook (1985). However, 
discrepancies were found in these results. Basic wind velocities calculated from 
10 min mean annual maxima (see Table A.3) are slightly greater (differences are 
12–15%, about 2 m/s) than results calculated using the POT method, but still 
lower than the basic wind velocity of Hungary. Nevertheless, wind extremes 
calculated from instantaneous wind speeds are much greater (differences are 
30-94%) and these values are also greater than the fundamental basic wind 
velocity of Hungary.  

 
 

 

Fig. 17: Point estimates and confidence intervals of wind extremes for Budapest 



325 

5. Concluding remarks 

Eurocodes are based on the limit state concept used in conjunction with a partial 
factor method, where the basic variables (i.e., actions, resistances and geometrical 
properties) are given through the use of partial factors and design values (1990, 
2002). If one would like to apply alternative design procedures based on fully 
probabilistic approaches, uncertainties must be taken into account. From 
structural engineering point of view, the effect of the length of short time series 
available for the analysis can be interesting to define a minimum observation-
length, i.e., minimum number of realizations or exceedances. 

In this study, uncertainties associated with the parameter estimation of the 
50-year return period wind velocity was assessed using frequentist statistical 
approach. This uncertainty is quantified by 95% confidence intervals. The peak 
over threshold (POT) method with maximum likelihood estimation are applied to 
analyze a four-year record of wind speed data. The threshold selection may have 
a great influence on the result, and it is a compromise between bias and variance. 
In this paper, the suitable threshold for the POT method is chosen using an 
automatic threshold selection approach. The following statements are valid for the 
dataset under consideration, since different climatic conditions can cause different 
behavior. 

The applied automated threshold selection method provides reliable results 
in our case. All automated threshold choices are in the linear range in the mean 
excess plot, i.e., in the domain of attraction of the GPD. This automated method 
is simple and computationally inexpensive, and it may be able to reduce associate 
errors of threshold selection in the future. It was found that at least 100 realizations 
should exceed the specified threshold to earn reliable results. It means that 1–1.5-
year and 4-year records of wind speeds are necessary in case of weakly dependent 
observations and for statistically independent events, respectively. The range of 
95% confidence intervals are about 7–10% of the associated point estimates in 
case of about 100 exceedances. This confidence intervals reduce to 3–5% when 
the number of exceedances increases by 2–3-times.  

The GPD with shape parameter ξ = 0 yields about 10–20% greater 50-return 
period wind speeds than with ξ < 0. The former one is unbounded and 
conservative. The difference between point estimates calculated using the shape 
parameter ξ < 0 with various thresholds is approximately 0.1–5% and the 
difference is 3–12% for ξ = 0. Thus, the effect of number of realizations and the 
determination of independent events have greater influence on the results of shape 
parameter ξ = 0. According to present results, more than 20 extremes should be 
used for the classical GEV method to obtain reliable results. While basic wind 
velocities of GPD with ξ = 0 approximate the standard basic wind velocity of 
Hungary (23.6 m/s), wind velocities of GPD with ξ < 0 are also substantially lower 
than the standard value. 
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However, the effect of parameter estimation uncertainty in extreme wind 
speeds on the assessed reliability index should be investigated later to see its 
influence on the final result. If this impact is considerable, then this uncertainty 
should be taken into account in the model. 
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