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Abstract— Nowadays, the use of probabilistic modeling for the design of engineering
structures is becoming more and more widespread due to the advances in computer
technology. In order to have a comprehensive picture about a meteorological phenomenon,
e.g., wind actions on structures, uncertainties must be taken into account. From structural
engineering and practical points of view, the effect of the length of short time series
available for the analysis on the final results can be interesting to define a minimum
observation-length. In this way, the real condition at the site can be utilized to assess wind
loading effects on the structure.

This paper deals with the effect of uncertainties associated with the parameter
estimation and threshold selection. A four-year record of wind speed data of Szddliget is
analyzed, and these results are compared with the results of neighboring sites, Penc, and
Budapest. The peak over threshold (POT) method with maximum likelihood estimation are
selected to obtain the basic wind velocity. The suitable threshold is chosen using an
automatic threshold selection approach.

According to our results, the applied automated threshold selection method provide
reliable results, and it is simple and computationally inexpensive. This method may reduce
associate errors of threshold selection in the future. It was found that at least approximately
100 realizations should exceed the specified threshold to earn reliable results. It means that
1—1.5-year and 4-year records of wind speeds are necessary for statistical inference in case
of weakly dependent observations and for statistically independent events, respectively.

Key-words: extreme wind speed, basic wind velocity, generalized Pareto distribution,
automated threshold selection, parameter estimation uncertainty
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1. Introduction

Most design codes are based on the semi-probabilistic partial factor method,
where design values should be conservative estimates. However, the advances in
computer technology suggests the introduction of alternative design procedures
based on fully probabilistic approaches and simulation techniques. This has led to
the development of a promising design methodology, the Performance-based
Wind Engineering (PBWE). The PBWE was first published in 2004 (Paulotto et
al., 2004), that paper provides a general framework for these investigations. After
that, the major parameters and uncertainties were summarized in Ciampoli et al.
(2011), Petrini and Ciampoli (2012), and Tessari et al. (2017). These publications
help to understand of many aspects of structural behavior and its modeling. A cell
tower equipped with wind speed (and strain) sensors in Szddliget (Central
Hungary) is selected as the subject of this research, which is used as a radio tower.
According to the experience of expert engineers and our observations, the
utilization of the structure can be even smaller with precise modeling of wind
load, thus, more antenna can be placed on the structure. The aim of the present
study is to determine the point estimate and the parameter estimation uncertainty
in the environmental field in case of Hungarian climate.

A lattice tower can be used as an electricity transmission tower (especially
for voltages above 100 kilovolts), as a radio tower (a self-radiating tower or as a
carrier for aerials), or as an observation tower. As reported in Ducloux and
Figueroa (2016), the structural behavior and response of a tangent suspension
tower and a radio tower are quite different. Furthermore, major international wind
codes and standards were compared in previous studies to identify the differences
and similarities between them Kwon and Kareem (2013), Lungu et al. (1996), and
Gatey and Miller (2007). One of the main conclusions is that alongwind responses
are fairly consistent in the codes/standards, but there are discrepancies in
acrosswind responses. Moreover, most of these codes use the global method, i.e.,
the solidity ratio and global shielding factors. Although this approach is very
effective for conventional structures, it is difficult to apply for atypical
configurations. As recommended by Prud'homme et al. (2018), an empirical local
method could be used to determine the wind loads in such a case. Their approach
is based on the reduction of wind velocity in a turbulent wake accounting the
shielding effect on each member.

Future extreme wind speeds should be considered in a reliable design. The
available techniques to determine the 50-year return period wind speed was
reviewed and summarized in Palutikof et al. (1999) and Cooley (2016). In this
paper, the measured data of a 50-meter-high steel structure antenna tower
equipped with wind speed sensors is analyzed and compared to the data provided
by the Hungarian Meteorological Service (OMSZ). The fundamental value of the
basic wind velocity defined at 10m above ground of terrain category Il
(EN 1991-1-4 (2010) and EN 1990 (2002)) is determined.
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2. Measured data

The data from the abovementioned antenna tower was provided by Hungarian
Telekom Telecommunications Plc.. The wind speed was measured for the period
between August 2011 and March 2015, with a sampling interval of 0.9 s at 25 m,
and 50 m height above ground. The lattice tower

is located in Szddliget, and the nearest meteorological station is in Penc. To
identify terrain categories, the map is shown in Fig. /. Terrain category III are
chosen for both sites. The following data from Penc and Budapest were provided
by the OMSZ:

e 1999-2017 annual maxima of 10 minutes mean wind velocity,
e 2012-2017 daily maxima of 10 minutes mean wind velocity,

e 1998-2017 annual maxima of wind gusts.

Fig. 1. Map and terrain category of Sz6dliget and Penc.

The time series records of maxima for 3 and 7 days are shown in Figs. 2 and 3.
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Fig. 2. Time series plot of 3-day maxima of wind speed measured at Szédliget.
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Fig. 3. Time series plot of 7-day maxima of wind speed measured at Szédliget.

3. Applied methods
3.1. Independent events

First, an autocorrelation analysis is adopted to obtain the dependencies among the
data and determine statistically independent events. A previous paper (Liu et al.,
2016) deals with repeating patterns and wind characteristics. Since an obvious
daily periodicity of the change rate was recognized, the maxima for 3 and 7 days
are analyzed in this study. This selection results in 441 and 189 data, respectively.
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In case of the 3-day maxima, the presence of a slight periodicity was identified in
the autocorrelation function of the stochastic time series (Fig. 4). However, the
autocorrelation function of maxima for 7 days verifies the statistically
independences of events clearly (Fig. 5). The detailed results for the 7-day

maxima are presented in Section 4.

Fig 4.
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Fig. 5. Autocorrelation function of maxima for 7 days.

3.2. Extreme value theory

140

160 180

According to the classical extreme value theory (Fisher and Tippett, 1928;
Gnedenko, 1943), the distribution of extreme wind speeds has an asymptotic limit.
Moreover, the only possible limit F is the generalized extreme value distribution
(GEV), which has the following cumulative distribution function (CDF):
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where ¢, o, and 1 are the shape, scale, and location parameters, respectively. The
shape parameter determines the type of the distribution. The three distributions
are Gumbel (& = 0), Fréchet (¢ > 0), and Weibull (¢ < 0), also known as type I, II,
and III extreme value distributions. The Fréchet distribution has a lower limit and
the Gumbel distribution is unlimited which results unlimited values as the return
period increases. Thus, the Weibull distribution can be more appropriate to model
extreme wind speeds for geophysical reasons (Holmes and Moriarty, 1999, 2001,
Cook and Harris, 2001). The fundamental value of the basic wind velocity of
Hungary has been determined using Gumbel distribution. However, the Joint
Committee on Structural Safety recommends Weibull distribution in the
Probabilistic Model Code.

A traditional approach of applying classical extreme value theory is the
method of annual maxima. A major drawback of this approach is the data
reduction, therefore, the wind measurement must be long. Cook (1985) advises
that at least 20 extremes should be used to determine reliable results. To improve
the efficiency, three main techniques have been developed: block method, peaks-
over threshold (POT) method, and method of independent storms (MIS). In this
study, we focus on the POT method, which is based on a conditional distribution,
i.e., the exceedances over a specified threshold. The generalized Pareto
distribution (GPD) is the asymptotic distribution to model the tails of the
generalized extreme value (GEV) distribution under certain condition
(Pickands 111, 1975). Several papers deal with the application of GPD to extreme
value analysis (Holmes and Moriarty, 1999, 2001; Cook and Harris, 2001). The
CDF of the GPD is

FSEJO'J? (X) = 4

(1)

1
(x—m\ ¢
Fr g (%) = 1_<1+€x077> foré&+#0 (2)

1—e 2 for& =0,

where & o, and n are the shape, scale, and location parameters, respectively. The
shape parameter & of the GPD is the same as for the GEV (Pickands 111, 1975). The
threshold selection has a great influence on the result, and it is a compromise between
bias and variance. While the variance decreases and the bias increases with lower
threshold, higher threshold results that the bias decreases and the variance increases.
The performance of threshold selection on visual basis is widely used, e.g., mean
excess plot (or mean residual life plot; by plotting the mean of the excesses over the
selected threshold against the wind velocity) which may cause associate errors.
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3.3. Automatic threshold selection method for GPD

An automatic threshold selection method was proposed in (Thompson et al.,
2009), which was implemented in this study. This automated technique is simple
and computationally inexpensive. They recommend that the suitable values of
thresholds (uj, j = 1...,n) should be chosen between the median and the 98%
quantile of the data (unless fewer than 100 values exceed it). Let us define

Ty, = 6uj - Eujuj» j=1,..,n (3)
where the differences

Ty, = Tu;_y

Jj=2,..,n, 4)

should approximately follows normal distribution with zero mean.
3.4. Wind velocity profile

Finally, since available wind time series are measured at different heights, a
conversion is required. The logarithmic law is utilized for wind velocity profile to
calculate the basic wind velocity at 10 m height:

V(z) = % In (Zi) v, 5)

0

where u* is the friction velocity, z is the height of interest, and zy is the roughness
length.

4. Results and discussion
4.1. Traditional graphical diagnostics

The decreasing behavior of the mean excess plot (Fig. 6) indicates lighter tail
(shape parameter £ < 0). The conditional distribution is in the domain of attraction
of GPD if the mean excess plot follows a straight line. Hence, one should select
the proper threshold beyond the graph appears to be linear. In this case, linearity
occurs between 7 and 12. The dotted lines indicate the upper and lower 95%
confidence intervals.
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Fig. 6. Mean excess plot of the maxima for 7 days and the associated 95% confidence
envelope.
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Six estimation methods were considered and compared in Kang and Song
(2017). Two methods are based on the maximum likelihood estimation (MLE),
three methods are based on the nonlinear least squares (NLS), and the last one is
the Hill estimator. They found that the MLE performs well and better than the
others in most cases. However, the MLE only hold when &> —0.5 (Cooley, 2016).
Therefore, the estimated parameters were calculated using MLE.

Furthermore, the suitable threshold can be selected with the help of shape
and scale parameter plots presented in Figs. 7 and 8. One should find the point
where the shape parameter is constant (approx. 11-13) and the scale parameter is
linear (about 7—13).
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Fig. 7: Shape parameter for 7-day maxima.
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Fig. 8: Scale parameter for 7-day maxima.

4.2. Automatic threshold selection for GPD

The differences 1y - 141 are calculated (Fig. 9) and the Pearson's chi-square test is
used to establish whether or not the observed differences follow a normal
distribution with zero mean. The red vertical line indicates the automated
threshold selection choice of 11.73 m/s.
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Fig. 9. Graph of the differences 7, - 7,1 for 7-day maxima.

Fig. 10 shows the empirical and fitted cumulative distribution functions.
Although the case of £<0 (belongs to Weibull distribution) would be more
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appropriate, the case of =0 (Gumbel distribution) can be considered to be on the
safe side (results greater basic wind velocity).
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Fig. 10. Empirical and fitted cumulative distribution functions.

The quantile plot (Fig. 11) shows the quantiles of resampled estimates versus
theoretical quantiles from a normal distribution. Hence, one can check that the
estimated parameter follows the normal distribution, and the delta method (Coles,
2011) can be applied. This quantile plot indicates that the fitted GPD model is
satisfactory.
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Fig. 11. Quantile plot.
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4.3. Wind return level plot

After the parameter estimates were determined, the wind speed for a return period
is calculated from the GPD as

- u+§l(%>_fl for&#0

(6)

,u—aln(l) foré&=0

R )

where R is the return period. In this research, 95% confidence intervals were

calculated using the delta method. The wind return period is obtained with the

estimated shape parameter (Fig. 12) and zero shape parameter Fig. 13 as well, and

it 1s plotted with a logarithmic scale for the horizontal axis. In these plots, the
bounded and unbounded behavior of the two distributions can be clearly seen.
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Fig. 12: Wind return plot, £< 0.
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Fig. 13: Wind return plot, £=0.
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The ¢ = 0 shape parameter yields 17% greater basic wind velocity than the
estimation of ¢ < 0. The range of 95% confidence intervals of the 50-year return
period wind velocities are about 7% and 13% of the associated point estimate for
3- and 7-day maxima, respectively. Certainly, this value is increasing with
increasing return periods.

4.4. 4.4 Basic wind velocity and parameter estimation uncertainties

The maximum likelihood estimations and the 95% confidence intervals of the
50-year return period for 3- and 7-day maxima of 10 min mean wind speed
measured at 10 m height are shown in Fig. /4. The detailed results (e.g., number
of observations) can be found in Appendix A, Tables A.1 to A.5. The automated
threshold selection choices are 11.93 m/s and 11.73 m/s for 3- and 7-day maxima,
respectively.
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Fig. 14: Point estimates and confidence intervals of wind extremes for Szdédliget.

While the point estimate calculated by shape parameter ¢ = 0 decreases with
increasing threshold, maximum likelihood estimations calculated by shape
parameter ¢ < 0 increases with increasing threshold due to the decreasing shape
parameter. Moreover, the increasing confidence interval can be clearly seen.

Nevertheless, in case of threshold of 8 m/s for 7-day maxima, bias was
observed in the quantile plot. Reliable results are obtained in the range of 8.5 m/s
and 12.5 m/s for 3-day maxima, 10.5 m/s and 13 m/s for 7-day maxima. Although
there are only small differences (max 5%) between estimations with shape
parameter ¢ < 0 of the 3- and 7-day maxima, the differences of these estimates
with shape parameter ¢ = 0 are statistically significant (4—-25%). The range of
95% confidence intervals are about 7-10% of the associated point estimates.
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Furthermore, instantaneous wind speeds are analyzed to make simple
comparison between the two cases (Fig. 15). It is transformed to the basic wind
velocity (10 min mean) by the exposure factor provided by Eurocode 1991-1-4
(EN 1991, 2010). Similar consequences can be stated for these results, and the
two calculations are in good agreement. The estimated basic wind velocity
calculated from 10 min mean wind data and instantaneous wind speeds are 18.0—
21.1 m/s and 17.2-21.7 m/s, respectively. The automated threshold selection
choices are 15.37 m/s and 17.75 m/s for 3- and 7-day maxima.
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Fig. 15: Point estimates and confidence intervals of wind extremes for Szddliget
(1s measured values are converted to 10 min mean).

In case of Penc, wind speeds with estimated 50-year return period are much
lower than the estimates for Szddliget (about 30%). Moreover, these values
(12-16 m/s) are also substantially lower than the basic wind velocity of Hungary
(23.6 m/s). The automated threshold selections are 5.42 m/s 7.16 m/s for 3- and
7-day maxima, respectively. For Penc, the range of 95% confidence intervals are
about 4-5% of the associated point estimates due to the higher number of
observations and lower estimated values (Fig. 16).

The assessed basic wind speed of Budapest is in good agreement with results
of Szbdliget. The automated choices are 11.22 m/s and 10.93 m/s for 3- and 7-day
maxima, respectively. The range of 95% confidence intervals of these 50-year
return period wind velocities are about 5% and 14% of the associated point
estimate for 3- and 7-day maxima, respectively. The = 0 shape parameter yields
approximately 20% greater basic wind velocity than the estimation of £ < 0. The
result of the 3- and 7-day maxima data are quite equivalent for £ < 0. A previous
study (Rozsds and Sykora, 2016) investigated the probabilistic modeling of basic
wind speeds for Budapest based on Carpatclim data covering a 50-year
observation period. Although, the point estimates of 20.9-21.4 m/s are obtained
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using the POT method, the uncertainty interval is narrower due to the greater
sample size (3—4 times more observations).
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Fig. 16. Point estimates and confidence intervals of wind extremes for Penc.

Moreover, 20 years of annual maxima are analyzed using the classical GEV
method for Penc and Budapest as it was suggested in Cook (1985). However,
discrepancies were found in these results. Basic wind velocities calculated from
10 min mean annual maxima (see Table A.3) are slightly greater (differences are
12—-15%, about 2 m/s) than results calculated using the POT method, but still
lower than the basic wind velocity of Hungary. Nevertheless, wind extremes
calculated from instantanecous wind speeds are much greater (differences are
30-94%) and these values are also greater than the fundamental basic wind
velocity of Hungary.
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Fig. 17: Point estimates and confidence intervals of wind extremes for Budapest
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5. Concluding remarks

Eurocodes are based on the limit state concept used in conjunction with a partial
factor method, where the basic variables (i.e., actions, resistances and geometrical
properties) are given through the use of partial factors and design values (1990,
2002). If one would like to apply alternative design procedures based on fully
probabilistic approaches, uncertainties must be taken into account. From
structural engineering point of view, the effect of the length of short time series
available for the analysis can be interesting to define a minimum observation-
length, i.e., minimum number of realizations or exceedances.

In this study, uncertainties associated with the parameter estimation of the
50-year return period wind velocity was assessed using frequentist statistical
approach. This uncertainty is quantified by 95% confidence intervals. The peak
over threshold (POT) method with maximum likelihood estimation are applied to
analyze a four-year record of wind speed data. The threshold selection may have
a great influence on the result, and it is a compromise between bias and variance.
In this paper, the suitable threshold for the POT method is chosen using an
automatic threshold selection approach. The following statements are valid for the
dataset under consideration, since different climatic conditions can cause different
behavior.

The applied automated threshold selection method provides reliable results
in our case. All automated threshold choices are in the linear range in the mean
excess plot, i.e., in the domain of attraction of the GPD. This automated method
is simple and computationally inexpensive, and it may be able to reduce associate
errors of threshold selection in the future. It was found that at least 100 realizations
should exceed the specified threshold to earn reliable results. It means that 1-1.5-
year and 4-year records of wind speeds are necessary in case of weakly dependent
observations and for statistically independent events, respectively. The range of
95% confidence intervals are about 7-10% of the associated point estimates in
case of about 100 exceedances. This confidence intervals reduce to 3—5% when
the number of exceedances increases by 2—3-times.

The GPD with shape parameter & = 0 yields about 10-20% greater 50-return
period wind speeds than with ¢<0. The former one is unbounded and
conservative. The difference between point estimates calculated using the shape
parameter ¢ < 0 with various thresholds is approximately 0.1-5% and the
difference is 3—12% for &= 0. Thus, the effect of number of realizations and the
determination of independent events have greater influence on the results of shape
parameter ¢ = 0. According to present results, more than 20 extremes should be
used for the classical GEV method to obtain reliable results. While basic wind
velocities of GPD with =0 approximate the standard basic wind velocity of
Hungary (23.6 m/s), wind velocities of GPD with £ <0 are also substantially lower
than the standard value.
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However, the effect of parameter estimation uncertainty in extreme wind
speeds on the assessed reliability index should be investigated later to see its
influence on the final result. If this impact is considerable, then this uncertainty
should be taken into account in the model.
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