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Abstract— The joint examination of the climate time series may be efficient methodology 
for the characterization of extreme weather and climate events. In general, the main 
difficulties are connected with the different probability distribution of the variables and the 
handling of the stochastic connection between them. 

The first problem can be solved by the standardization procedures, i.e., to transform the 
variables into standard normal ones. For example, there are the Standardized Precipitation 
Index (SPI) series for the precipitation sums assuming gamma distribution, or the 
standardization of temperature series assuming normal distribution. In case of more 
variables, the problem of stochastic connection can be solved on the basis of the vector 
norm of the transformed variables defined by their covariance matrix. 

We will present the developed mathematical methodology and some examples for its 
meteorological applications. 
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1. Introduction 

In the case of joint examination of several climate time series, extreme values can 
no longer be interpreted by the simple concepts of maximum and minimum 
values. However, among the element sets or vectors, there may obviously be some 
that are considered natural, and there may be some that seem unusual to us. The 
latter can also be conceivable without any extraordinariness of the individual 
elements, but their co-occurrence can already be considered an extreme 
phenomenon. Moreover, it can be assumed that the examination of such 
multidimensional extremes is a more effective tool for examining and 
characterizing climate change than dealing only with one-dimensional cases. 

We began to deal with this topic and the development of the mathematical 
foundations more than twenty years ago (Szentimrey, 1999), and we have carried 
out a number of such examinations during this time (Szentimrey et al., 2014). Now 
we want to present a summary of the mathematical results and give some 
examples for their meteorological applications. 

2. Problems of the concept of multidimensional extreme 

2.1 Statistical model 

Let 𝐗(𝑡) = ሾ𝑋ଵ(𝑡), . . . . ,𝑋ே(𝑡)ሿ் (𝑡 = 1,2, . . . . . ,𝑛) be a multidimensional time 
series, which are totally independent and identically distributed probability vector 
variables. The distribution functions of the components are 𝐹௝(𝑥)  (𝑗 = 1,2, . . . . . ,𝑁), the vector of expectations is E(𝐗(t)) = 𝐄 = ሾ𝐸ଵ, . . . . ,𝐸ேሿ் (𝑡 = 1,2, . . . . . ,𝑛), and the vector of standard deviations is D(𝐗(t)) = 𝐃 =ሾ𝐷ଵ, . . . . ,𝐷ேሿ் (𝑡 = 1,2, . . . . . ,𝑛). 

2.2 "Basic" questions, problems 

– The joint examination of the vector components may be efficient for the 
characterization of extreme events. In general the main difficulties are 
connected with their different probability distribution and the handling of the 
stochastic connection between them. 

– Which vector variable can be considered extreme? 
– How can be tested the null hypothesis of the identical distribution of the 

vector variables on the basis of the analysis of extremes? 
– How can be explained the extremity by the subsystems of the components? 
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2.3 Transformation of the vector components 

One of the problems is that the vector components have different probability 
distributions and scales. This, however, can be solved by some transformation 
procedure. 
The transformed vector variables are 

 
  𝐙(𝑡) = 𝐡(𝐗(𝑡)) = ሾℎଵ(𝑋ଵ(𝑡)), . . . . , ℎே(𝑋ே(𝑡))ሿ்        (𝑡 = 1,2, . . ,𝑛) , 
 

where we assume that, P ቀ𝑋௝(𝑡) ∈ ൫𝑎௝ , 𝑏௝൯ቁ = 1, and ℎ௝(𝑥) is a strictly 
monotonically increasing function on interval ൫𝑎௝ , 𝑏௝൯ (𝑗 = 1,2, . . . . . ,𝑁). 

Remark 2.3.1 

If the components were examined separately, the use of the variables 𝑋௝(𝑡) or 𝑍௝(𝑡) = ℎ௝൫𝑋௝(𝑡)൯  (𝑡 = 1,2, . . . . . ,𝑛) would be equivalent in respect of extremity. 
However, at the joint examination it is important that none of the components play 
a dominant role, so the “similarity” of the distributions should be aimed. 
 

2.4 Postulates to the definition of multidimensional extreme 

Let 𝐙(t) = 𝐡(𝐗(𝑡))(𝑡 = 1,2, . . ,𝑛) be transformed vector variables according to 
Section 2.3. 

i. 𝐗(𝑡௘) is extreme, i.e., extreme realization, if and only if  𝐙(𝑡௘) = 𝐡(𝐗(𝑡௘)) 
is extreme. This postulate can be accepted because of the deterministic 
cause-and-effect relationship. 

ii. Let us assume that, there exist ℎ௝(𝑥) (𝑗 = 1,2, . . . . . ,𝑁), that fulfil 𝑍௝(𝑡) == ℎ௝൫𝑋௝(𝑡)൯ ∈ 𝑁(0,1), i.e., they are standard normal variables. Then, 
according to the above 𝑿(𝑡௘) is extreme, if and only if 𝐙(𝑡௘) == ሾZଵ(𝑡௘), . . . . , Z୒(𝑡௘)ሿ୘is extreme. 

iii.  Let us assume further that, the joint distribution of the vector components 𝑍ଵ(𝑡), . . . . ,𝑍ே(𝑡) is also normal, i.e., 𝐙(𝑡) ∈ 𝑁(𝟎,𝐑), where  𝐑 = E(𝐙(𝑡)𝐙(𝑡)୘) is the correlation matrix assuming the existence of the 
inverse matrix 𝐑ିଵ. Then the joint density function is 𝑔(𝒛) = (2𝜋)ି మಿ |𝐑|ି భమ exp ቀ− ଵଶ 𝐳୘𝐑ିଵ𝐳ቁ. 

This means, the density function 𝑔(𝒛) is a strictly monotonous decreasing 
function of the 𝑹ିଵ-norm ‖𝐳‖𝐑షభ = (𝐳୘𝐑ିଵ𝐳)భమ. Consequently, 𝒁(𝑡௘) is extreme, 
if and only if ‖𝐙(𝑡௘)‖𝐑షభ = maxଵஸ୲ஸ୬ ‖𝐙(𝑡)‖𝐑షభ. 
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2.5 Definition of the multidimensional extreme 

In summary, the multidimensional extreme can be defined as follows.  

Definition 2.5.1 

Let 𝐗(𝑡) = ሾ𝑋ଵ(𝑡), . . . . ,𝑋ே(𝑡)ሿ்(𝑡 = 1,2, . . . . . ,𝑛) be totally independent and 
identically distributed probability vector variables. 
Let us assume that ℎ௝(𝑥) are strictly monotonous increasing functions on the 
intervals ൫𝑎௝ , 𝑏௝൯ where P ቀ𝑋௝(𝑡) ∈ ൫𝑎௝ , 𝑏௝൯ቁ = 1 (𝑗 = 1,2, . . . . . ,𝑁).  
Let us assume further that the components of the vector variables 𝐙(𝑡) = 𝐡(𝐗(𝑡)) = ሾℎଵ(𝑋ଵ(𝑡)), . . . . , ℎே(𝑋ே(𝑡))ሿ் (𝑡 = 1,2, . . . . . ,𝑛) are standard 
normal, i.e., 𝑍௝(𝑡) = ℎ௝൫𝑋௝(𝑡)൯ ∈ 𝑁(0,1) (𝑗 = 1,2, . . ,𝑁), and their common 
correlation matrix 𝐑 = E(𝐙(𝑡)𝐙(𝑡)୘) has the inverse matrix 𝐑ିଵ(𝑡 = 1,2, . . . . . ,𝑛).  
Then, 𝐗(𝑡௘) is extreme, if and only if  ‖𝐙(𝑡௘)‖𝐑షభ = maxଵஸ୲ஸ୬ ‖𝐙(𝑡)‖𝐑షభ, where ‖𝐙(𝑡)‖𝑹షభ = (𝐙(𝑡)୘𝐑ିଵ𝐙(𝑡))భమ is the 𝐑ିଵ-norm of vector variable 𝐙(𝑡). 
 

3. Examples for the transformation of climate data series and standard indexes 

Various type of climate data can be transformed for standard normal distributed 
variable on the basis of the following well known theorem. 

Theorem 3.1 

Let us assume that P ቀ𝑋௝(𝑡) ∈ ൫𝑎௝ , 𝑏௝൯ቁ = 1, moreover, the distribution function 𝐹௝(𝑥) of variable  𝑋௝(𝑡) is strictly monotonous increasing and continuous on the 
interval ൫𝑎௝ , 𝑏௝൯ (𝑗 = 1,2, . . . . . ,𝑁). Then ℎ௝(𝑥) = 𝛷ିଵ൫𝐹௝(𝑥)൯ is also strictly 
monotonous increasing and continuous function on the interval ൫𝑎௝ , 𝑏௝൯, 
furthermore, 𝑍௝(𝑡) = ℎ௝൫𝑋௝(𝑡)൯ ∈ 𝑁(0,1) (𝑗 = 1,2, . . . . . ,𝑁), where 𝛷(𝑥) is the 
standard normal distribution function. 
 
Proof. 
 P൫𝑍௝(𝑡) < 𝑧൯=P൫ℎ௝൫𝑋௝(𝑡)൯ < 𝑧൯=P ቀ𝛷ିଵ ቀ𝐹௝൫𝑋௝(𝑡)൯ቁ < 𝑧ቁ = P ቀ𝐹௝൫𝑋௝(𝑡)൯ < 𝛷(𝑧)ቁ = = P ቀ𝑋௝(𝑡) < 𝐹௝ି ଵ൫𝛷(𝑧)൯ቁ = 𝐹௝ ቀ𝐹௝ି ଵ൫𝛷(𝑧)൯ቁ = 𝛷(𝑧). 
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3.1 Annual precipitation sum 𝑋ଵ(𝑡) ∈ 𝛤(𝑝, 𝜆)       (𝑡 = 1,2, . . . . . ,𝑛) and 𝑍ଵ(𝑡) = 𝛷ିଵ൫𝐺(𝑋ଵ(𝑡))൯ ∈ 𝑁(0,1)        (𝑡 = 1,2, . . . . . ,𝑛), 
where 𝐺(𝑥)  notates the 𝛤(𝑝, 𝜆) distribution function and 𝛷ିଵ(𝑥) is the inverse 
of the standard normal distribution function. In fact, 𝑍ଵ(𝑡) is the SPI 
(Standardized Precipitation Index) well known in meteorology for 
characterization of the drought events. 

3.2 Annual mean temperature 𝑋ଶ(𝑡) ∈ 𝑁(𝐸ଶ,𝐷ଶ)      (𝑡 = 1,2, . . . . . ,𝑛) and  𝑍ଶ(𝑡) = 𝛷ିଵ ቆ𝛷 ቀ௑మ(௧)ିாమ஽మ ቁቇ = ௑మ(௧)ିாమ஽మ ∈ 𝑁(0,1)   (𝑡 = 1,2, . . . . . ,𝑛) , 

where 𝛷 ቀ௫ିாమ஽మ ቁ is the 𝑁(𝐸ଶ,𝐷ଶ) distribution function. We defined this index as 
STI (Standardized Temperature Index). 
 

3.3 Annual precipitation sum and mean temperature together  𝑿(𝑡) = ሾ𝑋ଵ(𝑡),𝑋ଶ(𝑡)ሿ்  (𝑡 = 1,2, . . ,𝑛)  and the 
SPI, STI indexes together are  𝒁(𝑡) = ሾ𝑍ଵ(𝑡),𝑍ଶ(𝑡)ሿ்     (𝑡 = 1,2, . . ,𝑛) .  
 

Definition 3.3.1 

The SPTI (Standardized Precipitation and Temperature Index) can be defined as  
 ‖𝐙(𝑡)‖𝐑షభ = (𝐙(𝑡)୘𝐑ିଵ𝐙(𝑡))భమ     (𝑡 = 1,2, . . ,𝑛) , 
 
where 𝐑 is the common correlation matrix of the vector variables 𝐙(𝑡).  

4. Hypothesis testing, statistical test based on norm 

4.1  Basic properties of the norms of vector variables   

Theorem 4.1.1 

Let us assume about the vector variables 𝐙(𝑡) = ሾZଵ(𝑡), . . . , Z୒(𝑡)ሿ୘  (𝑡 = 1,2, . . . . . ,𝑛), that the vector of expectations is E(𝐙(𝑡)) = 𝟎, the vector of 
standard deviations is D(𝐙(𝑡)) = 𝟏, and the correlation matrix is  E(𝐙(𝑡)𝐙(𝑡)୘) = 𝐑. 
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Then the following properties are true: 

i. Let 𝐑భమ = ቀ𝐑భమቁ୘,𝐑భమ𝐑భమ = 𝐑. Then the covariance matrix of  𝐑ି భమ𝐙(𝑡) is the 
identity matrix 𝐈. 

ii. If matrix 𝐏 satisfies that the covariance matrix of 𝐏𝐙(𝑡) is 𝐈, then ‖𝐏𝐙(𝑡)‖ = (𝐙(𝑡)୘𝐑ିଵ𝐙(𝑡))భమ = ‖𝐙(𝑡)‖𝐑షభ, where ‖𝐏𝐙(𝑡)‖ is the 
Euclidean norm.  

iii. If 𝐙(𝑡) ∈ 𝑁(𝟎,𝐑), that means that the joint distribution of the components 
is normal, then ‖𝐙(𝑡)‖𝐑షభ ∈ 𝜒ே, i.e., this 𝐑ିଵ-norm is chi distributed with 
degrees of freedom N. 

 
Proof. 

i. If E(𝐙(𝑡)𝐙(𝑡)୘) = 𝐑 ,   then         E൭ቀ𝐑ି భమ𝐙(𝑡)ቁ ቀ𝐑ି భమ𝐙(𝑡)ቁ୘൱ =  

= E ቀ𝐑ି భమ𝐙(𝑡)𝐙(𝑡)୘𝐑ି భమቁ = 𝐑ି భమE(𝐙(𝑡)𝐙(𝑡)୘)𝐑ି భమ = 𝐑ି భమ𝐑𝐑ି భమ = 𝐈. 
ii. If E ቀ(𝐏𝐙(𝑡))(𝐏𝐙(𝑡))୘ቁ = 𝐈, then 𝐏𝐑𝐏୘ = 𝐈, since 

 𝐏𝐑𝐏୘=E ቀ(𝐏𝐙(𝑡))(𝐏𝐙(𝑡))୘ቁ. Therefore, 𝐑 = 𝐏ିଵ(𝐏୘)ିଵ, and so 

 𝐑ିଵ = 𝐏୘𝐏. Consequently,         ‖𝐏𝐙(𝑡)‖ = (𝐙(𝑡)୘𝐏୘𝐏𝐙(𝑡))భమ = = (𝐙(𝑡)୘𝐑ିଵ𝐙(𝑡))భమ = ‖𝐙(𝑡)‖𝐑షభ. 

iii. If 𝐙(𝑡) ∈ 𝑁(𝟎,𝐑) then 𝐑ି భమ𝐙(𝑡) ∈ 𝑁(𝟎, 𝐈) by item (i) and therefore, ቛ𝐑ି భమ𝐙(𝑡)ቛ ∈ 𝜒ே according to the definition of chi distribution. 

Furthermore, ‖𝐙(𝑡)‖𝐑షభ = ቛ𝐑ି భమ𝐙(𝑡)ቛ as a consequence of item (ii). 

4.2 Statistical test 

Using the concept of multidimensional extreme, the hypothesis test for the 
identical distribution of vector variables can be implemented as follows. 
Let us assume that the vector variables 𝐗(𝑡) (𝑡 = 1,2, . . . . . ,𝑛) are totally 
independent. Then the null hypothesis for their identical distribution can be 
accepted if and only if  

 ‖𝐙(𝑡௘)‖𝐑షభ = maxଵஸ௧ஸ௡ ‖𝐙(𝑡)‖𝐑షభ < 𝑐𝑟, 
 
where cr  is a critical value on a given significance level. This critical value can 
be calculated on the basis of the chi distribution. 
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Remark 4.2.1 

The question may arise as to whether the application of 𝐑ିଵ-norm is optimal, as 
other 𝐀-norm ‖𝐙(𝑡)‖𝐀 = (𝐙(𝑡)୘𝐀𝐙(𝑡))భమ could be used, where 𝐀 = 𝐀୘ is a 
positive definite square matrix. According to the following theorem, if a different 𝐀-norm were used, the efficiency of the test would be expected to decrease. 
 

Theorem 4.2.1 ("minimal" acceptance region) 

Let us assume about the vector variable 𝐙 = ሾ𝑍ଵ, . . . ,𝑍ேሿ், that the vector of 
expectations is E(𝐙) = 𝟎, the vector of standard deviations is D(𝐙) = 𝟏, and the 
correlation matrix is E(𝐙𝐙୘) = 𝐑. Let us assume further, that the positive definite 
matrix 𝐀 = 𝐀୘satisfies the following criterion for the expected value of the norm 
square: E(𝐙୘𝐀𝐙) = E(𝐙୘𝐑ିଵ𝐙) = 𝑁. 
Then the inequality |𝐑| ≤ |𝐀ିଵ| is true for the determinants, consequently 

׬  1𝐳౐𝐑షభ𝐳ழఈ  d𝐳 = |𝐑|భమ ׬ 1𝐲౐𝐲ழఈ  d𝐲 ≤ |𝐀ିଵ|భమ ׬ 1𝐲౐𝐲ழఈ  d𝐲 = ׬ 1𝐳౐𝐀𝐳ழఈ  d𝐳. 
 
Proof. 
 
First it needs to be seen that the determinants fulfil the inequality |𝐑| ≤ |𝐀ିଵ|. 
According to our assumption: E(𝐙୘𝐀𝐙) = E൭ቀ𝐀భమ𝐙ቁ୘ ቀ𝐀భమ𝐙ቁ൱ = 𝑁. 

Consequently, the sum of the diagonal elements of matrix 𝐀భమ𝐑𝐀భమ is also equals 
to 𝑁, since 𝐀భమ𝐑𝐀భమ = E൭ቀ𝐀భమ𝐙ቁ ቀ𝐀భమ𝐙ቁ୘൱ = E ቀ𝐀భమ𝐙𝐙୘𝐀భమቁ. 

Therefore, the arithmetic mean of the eigenvalues of matrix 𝐀భమ𝐑𝐀భమ equals to 1, 
consequently their geometric mean and their product are less or equal to 1. Using 
that the product of the eigenvalues equals to the determinant of the matrix we 
obtain,  ቚ𝐀భమ𝐑𝐀భమቚ = |𝐑||𝐀| ≤ 1, and so  |𝐑| ≤ |𝐀ିଵ|. 

 

Then applying the substitutions 𝐲 = 𝐑ିభమ𝐳 and 𝐲 = 𝐀భమ𝐳  , respectively, we have 
proved the following relation, 

׬  1𝐳౐𝐑షభ𝐳ழఈ  d𝐳 = |𝐑|భమ ׬ 1𝐲౐𝐲ழఈ  d𝐲 ≤ |𝐀ିଵ|భమ ׬ 1𝐲౐𝐲ழఈ  d𝐲 = ׬ 1𝐳౐𝐀𝐳ழఈ  d𝐳. 
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Remarks 4.2.2  

1. According to Theorem 4.2.1, applying a different 𝐀-norm for which the 
probability of the first type error would be similar to that of the 𝐑ିଵ-norm 
would increase the probability of the second type error, therefore, it would 
decrease the efficiency of the test. In addition, the test is expected to be more 
effective if the determinant is smaller, that means a stronger linear 
connection between the components of the vector variable 𝐙. 

2. Consequently, in respect of the second type error, the following series of 
statistics are optimal for testing: 𝑆𝑇(𝑡) = ‖𝐙(𝑡)‖𝐑షభ = (𝐙(𝑡)୘𝐑ିଵ𝐙(𝑡))భమ (𝑡 = 1,2, . . . . . ,𝑛). 

3. In order to determine and select the extremes optimally, it is expedient also 
to examine the subsystems of the components. 

5. Analysis of the subsystems of the components 

5.1 The subsystems of the components and their properties 

According to the former notations, let 𝐙(𝑡) = ሾ𝑍ଵ(𝑡), . . . ,𝑍ே(𝑡)ሿ்  (𝑡 = 1,2, . . . . . ,𝑛) be vector variables, assuming that the vector of expectations is E(𝐙(𝑡)) = 𝟎, the vector of standard deviations is D(𝐙(𝑡)) = 𝟏, and the 
correlation matrix is E(𝐙(𝑡)𝐙(𝑡)୘) = 𝐑. 
The subsystem of the components can be defined by the subsets of indexes 𝐽 =ሼ𝑗ଵ, . . . , 𝑗௅ሽ ⊆ ሼ1, . . . ,𝑁ሽ, and the appropriate subsystem vector variables are, 𝐙௃(𝑡) = ൣZ௝ଵ(𝑡), . . . , Z௝௅(𝑡)൧୘        (𝑡 = 1,2, . . . . . ,𝑛). 
The correlation matrix is  E൫𝐙௃(𝑡)𝐙௃(𝑡)୘൯ = 𝐑௃          (𝑡 = 1,2, . . . . . ,𝑛) . 

The series of the statistics characterizing the extremity of the subsystem vector 
variables defined by the index subset J are as follows:  𝑆𝑇(𝑡, 𝐽) = ฮ𝐙௃(𝑡)ฮ𝐑಻షభ = ൫𝐙௃(𝑡)்𝐑௃ି ଵ𝐙௃(𝑡)൯భమ        (𝑡 = 1,2, . . . . . ,𝑛) . 
Theorem 5.1.1 

If 𝐽ଵ = ൛𝑗ଵ, . . . , 𝑗௅భൟ ⊆ 𝐽ଶ = ൛𝑗ଵ, . . . , 𝑗௅భାଵ, . . , 𝑗௅మൟ ⊆ ሼ1, . . . ,𝑁ሽ, then with 
probability 1,  𝑆𝑇(𝑡, 𝐽ଵ) = ฮ𝐙௃భ(𝑡)ฮ𝐑಻భషభ  ≤ ฮ𝐙௃మ(𝑡)ฮ𝐑಻మషభ = 𝑆𝑇(𝑡, 𝐽ଶ)            (𝑡 = 1,2, . . . . . ,𝑛) 

 
Proof. 
According to our notations, 𝐙௃భ(𝑡) = ൣZ௝ଵ(𝑡), . . , Z௝௅భ(𝑡)൧்,         
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𝐙௃మ(𝑡) = ൣZ௝ଵ(𝑡), . . , Z௝௅భ(𝑡), . . , Z௝௅మ(𝑡)൧୘. 

Let us see the linear Euclidean space generated by the components Z௝ଵ(𝑡), . . , Z௝௅భ(𝑡), . . , Z௝௅మ(𝑡) of the vector variable 𝐙௃మ(𝑡), where the scalar 
product is the covariance.  

In this space, the components of the vector variable 𝐑௃భି భమ𝐙௃భ(𝑡) form an 
orthonormal system by item (i) of Theorem 4.1.1. Then according to the 
orthonormalization procedure, there exists such orthonormal basis in the space, 
whose first 𝐿ଵ elements are exactly these components. 
Formalized, there is a matrix 𝐏 = ൣ𝐏ଵ୘,𝐏ଶ୘൧୘ that the covariance matrix of the 

vector variable 𝐏𝐙௃మ(𝑡) = ቂ൫𝐏ଵ𝐙௃మ(𝑡)൯୘, ൫𝐏ଶ𝐙௃మ(𝑡)൯୘ቃ୘is the identity matrix 𝐈, 
and 𝐏ଵ𝒁௃మ(𝑡) = 𝐑௃భି భమ𝐙௃భ(𝑡). 

 
Consequently, according to item (ii) of Theorem 4.1.1.:   ฮ𝐙௃మ(𝑡)ฮ𝐑಻మషభ = ฮ𝐏𝐙௃మ(𝑡)ฮ   and  ฮ𝐙௃భ(𝑡)ฮ𝐑಻భషభ = ብ𝐑௃భିభమ𝐙௃భ(𝑡)ብ , therefore  ฮ𝐙௃మ(𝑡)ฮ𝑹಻మషభଶ = ฮ𝐏𝐙௃మ(𝑡)ฮଶ =  

= ൥ቆ𝐑௃భି ଵଶ𝐙௃భ(𝑡)ቇ୘ , ൫𝐏ଶ𝐙௃మ(𝑡)൯୘൩ ൥ቆ𝐑௃భି ଵଶ𝐙௃భ(𝑡)ቇ୘ , ൫𝐏ଶ𝐙௃మ(𝑡)൯୘൩୘ = 

= ൭𝐑௃భି ଵଶ𝒁௃భ(𝑡)൱୘ ൭𝐑௃భି ଵଶ𝐙௃భ(𝑡)൱ + ቀ𝐏ଶ𝐙௃మ(𝑡)ቁ୘ ቀ𝐏ଶ𝐙௃మ(𝑡)ቁ = = ฮ𝐙௃భ(𝑡)ฮ𝐑಻భషభଶ + ฮ𝐏ଶ𝐙௃మ(𝑡)ฮଶ. 

Thus,  ฮ𝐙௃మ(𝑡)ฮ𝐑಻మషభଶ ≥ ฮ𝐙௃భ(𝑡)ฮ𝐑಻భషభଶ . 

 

5.2 Extreme subsystems 

As a consequence of Theorem 5.1.1, if a subsystem of the components is 
"extreme", then it is presumably visible throughout the system. 
A further consequence is that this theorem allows a meaningful, consistent 
definition of the series of the L-element (𝐿 = 1,2, . . . . . ,𝑁) extreme subsystems. 
Let 𝐽𝐿(𝑡) ⊆ ሼ1, … ,𝑁ሽ (#𝐽𝐿(𝑡) = 𝐿), where # denotes cardinality be the index set 
of the L-element extreme subsystem at time t (𝐿 = 1,2, … . . ,𝑁 ;   𝑡 = 1,2, . . . ,𝑛), if 
 𝑆𝑇(𝑡, 𝐽𝐿(𝑡)) = 𝑆𝑇𝐿(𝑡) = max(𝑆𝑇(𝑡, 𝐽)| 𝐽 ⊆ ሼ1, . . . ,𝑁ሽ,  #𝐽 = 𝐿) . 
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According to the notations, the L-element extreme subsystem at time t is 𝐙௃௅(௧)(𝑡). 
Furthermore, as a consequence of Theorem 5.1.1, it is true for the series of 
statistics 𝑆𝑇𝐿(𝑡) (𝑡 = 1,2, . . . . . ,𝑛) belonging to the L-element extreme 
subsystems that maxଵஸ௝ஸேห𝑍௝(𝑡)ห = 𝑆𝑇1(𝑡) ≤ 𝑆𝑇2(𝑡) ≤ ⋯… ≤ 𝑆𝑇𝑁(𝑡) = ‖𝐙(𝑡)‖𝐑షభ (𝑡 = 1,2, . . . . . ,𝑛). 
 

5.3 Methodological basis for the analysis procedure 

1. Examination of the series of the statistics 𝑆𝑇𝐿(𝑡) (𝑡 = 1, . . . ,𝑛) showing 
which series (𝐿 = 1, . . ,𝑁) majorize each other, followed by the looking for 
the extremes and testing them on the basis of the critical values.  

2. Calculation of the critical values on the given significance level assuming 
the chi distribution. 

3. Examination of the subsystems 𝐽𝐿(𝑡) belonging to the statistics 
 𝑆𝑇𝐿(𝑡) = 𝑆𝑇(𝑡, 𝐽𝐿(𝑡)) (𝑡 = 1, . . . ,𝑛;     𝐿 = 1, . . ,𝑁). 

4. Comparison of the statistics 𝑆𝑇𝐿(𝑡)   (𝑡 = 1, . . . ,𝑛;     𝐿 = 1, . . ,𝑁) for 
different L can be done on the basis of the following probabilities:  𝑝(𝑆𝑇𝐿(𝑡)) = 1 − 𝐻௅(𝑆𝑇𝐿(𝑡))   (𝑡 = 1, . . . ,𝑛;     𝐿 = 1, . . ,𝑁), where 𝐻௅(𝑥) 
is the chi distribution function with degrees of freedom L. The less 
probability 𝑝(𝑆𝑇𝐿(𝑡)) is the more extreme value. 

5. Examination of the climate indexes SPI, STI, and SPTI is also recommended. 

6. Meteorological applications 

6.1 Data 

For our study, we used daily data from the last 151 years. For temperature, this 
means 11 stations from January 1, 1870, 33 from January 1, 1901, 55 from January 
1, 1951, and 114 from January 1, 1975 to December 31, 2020. For precipitation, 
we used data from 11 precipitation stations from January 1, 1870, 131 from 
January 1, 1901, and 461 from January 1, 1951 to December 31, 2020 (Figs. 1 
and 2). 
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Fig. 1. Location of the stations in case of temperature. 
 

 
Fig. 2. Location of the stations in the case of precipitation. 

 
 

As a first step, representative time series had to be produced from the raw 
measurements. Climate studies, in particular those related to climate change, 
require long, high-quality, controlled data sets which are both spatially and 
temporally representative. Changing the context in which the measurements were 
taken, for example relocating the station, or a change in the frequency of 
measurements or in the instruments used may result in an unduly fractured time 
series (Izsák and Szentimrey, 2020). Data errors and inhomogeneities are 
eliminated and data gaps are filled in using the MASH (Multiple Analysis of 
Series for Homogenization; Szentimrey, 2017) homogenization procedure. The 
homogenized station data series were interpolated to a regular grid covering the 
whole area of Hungary using the MISH (Meteorological Interpolation based on 
Surface Homogenized Data Basis; Szentimrey and Bihari, 2014) method, thus 
obtaining a high quality, representative data set. The method was used for both 
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temperature and precipitation amount series, thus we obtained a grid point time 
series system with daily data at a resolution of 0.1 × 0.1 degrees. The grid point 
system is shown in Fig. 3. In order to use the longest measurement data from as 
many stations as possible for our dataset, we harmonized four MASH systems 
during homogenization and used the grid point data set interpolated using the most 
stations at each time point during interpolation (Izsák et al., 2022). 

 
 

 
 
Fig. 3. Spatial location of the gridpoints.  
 
 
In the next step, the SPI (Section 3.1) and STI (Section 3.2) variable series 

are calculated from the grid point data series (WMO, 2012; Szentimrey et al., 
2014). For annual studies, we will have SPI12, i.e., calculated for 12-month 
precipitation accumulation periods, similarly STI12 for temperature as our 
transformed data series. For seasonal studies, we calculate SPI3 and STI3 for all 
1233 grid points, correspondingly to a resolution of 0.1 degrees. If we perform 
our analyses in space, we compute the grid point SPTI series (Definition 3.3.1) 
from the corresponding SPI and STI series. This is shown for two-dimensional 
studies in Section 6.3. and for eight-dimensional studies in Section 6.4. 

If we are studying a regional average, we compute the spatial average of the 
STI and SPI series, and then standardize these, since the average of standard 
normal series will no longer necessarily have a standard normal distribution. Then 
these standardized spatial average SPI and STI series will be the components of 
the multivariate spatial average vector variable series. Consequently, the spatial 
average norm and SPTI series are computed also from the standardized spatial 
averages of SPI and STI series. Specifically, for the eight-dimensional studies, the 
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standardized spatial average SPI3 and STI3 for the seasons are the eight 
components of the vector variable. From this we compute the eight-dimensional 
ST8 norms (Definition 2.5.1) and the extreme subsystems ST1, ST2,..., ST8 
(Section 5.2). The corresponding values are presented in Section 6.4. Calibration 
period for both the two- and eight-dimensional statistics presented in this paper is 
the period 1871–1900. 

6.2 Statistical tests  

As indicated in Sections 4.2 and 5.3, to accept the null hypothesis of identical 
distribution of vector variables, the critical value for a given significance level 
must be specified. In the present case, certain critical values have been defined at 
a significance level of 0.1. Three different statistical tests are used to see whether 
climate change can be detected by analyzing different meteorological elements 
together. In the following subsections, the procedure for determining the tests and 
their corresponding critical values is described. 

6.2.1 Test 1 

In this test, we seek to answer the question: are extreme events more frequent than 
would be expected for the identical distribution? 

The first critical value is defined as follows:  
– For any STN(t) (t = 1, 2, ..., n) statistic, there is a probability of 0.1 that the 

critical value Cr1 is reached, i.e., it is expected to occur in 10% of the 
statistics.  

Cr1 values are given in Table 1 determined assuming joint normality of the 
transformed components, therefore, the chi distribution was applied for the 
statistics STN(t) according to item (iii) of Theorem 4.1.1.  

The test procedure is as follows: 
– Calculate the STN(t) norms and then to determine the frequency of norms 

exceeding the Cr1 value for the total period. This frequency is denoted by ν.  
– If the null hypothesis is true then ν ∈ B(n,p), where B(n,p) denotes the 

Binomial distribution with parameters n and p, specifically n=150 and p=0.1. 
– Consequently, according to the central limit theorem, the standardized value 

TS1 of the frequency ν converges to the standard normal distribution.  
– This gives the critical value Cr3=1.65 for the standardized value TS1 at the 

significance level 0.1. If TS1≥ Cr3, the null hypothesis for the identical 
distribution is not accepted, if TS1<Cr3, it is accepted.  
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6.2.2 Test 2 

In the second test, we seek to answer the question whether there are extreme cases 
in the data set that would have a low probability of occurring if the distribution 
were identical.  

This test is detailed in Section 4.2, and the critical value Cr2 is defined as 
follows: 

– The maximum of the statistics STN(t) (t = 1, 2, ..., n) with probability at most 
0.1 can reach the critical value Cr2.  

Table 1 shows these Cr2 values as a function of the different degrees of 
freedom. For the present study, the Cr2 critical values refer to the n=150 years 
data set. In determining the critical values, the chi distribution was assumed for 
the statistics STN(t) according to item (iii) of Theorem 4.1.1.  

 
 
Table 1. Critical values 

 
 

6.2.3 Test 3 

Trend analysis is used to answer the question: is there a one-way change in 
extremality over time that would occur with low probability given the same 
distribution? 

We fit an exponential trend to STN(t) statistics. We test the significance of 
the resulting trend coefficient. If the one-way change is significant, we reject the 
null hypothesis at the given significance level. The significance level in the 
present case is 0.1. 

6.3 Two-dimensional application: the SPTI index 

In the analysis, we consider the SPTI (Definition 3.3.1) series defined above, both 
for the spatial average and for grid points.  In the two-dimensional case, Cr1=2.15 
and Cr2=3.81 for n=150 (Table 1). Based on Section 6.2, statistical tests were 
carried out to see if there is a change in climate when the two elements are 
considered together. 

Fig. 4 shows the spatial average SPI, STI and SPTI values based on annual 
precipitation sum and mean temperature. It can be clearly seen that there are 

Degrees of freedom 2 3 4 6 8 12 24 

Cr1 2.15 2.50 2.79 3.26 3.66 4.31 5.76 

Cr2  3.81 4.12 4.39 4.83 5.20 5.82 7.24 
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values above both Cr1 and Cr2, suggesting that there is climate change when 
looking at spatial average annual mean temperature and precipitation sum series 
together. The change in the SPTI index over 150 years was determined using 
exponential trend estimation. On spatial average, this index increased by 100% 
over the whole period. This change is significant at the 0.1 significance level. This 
is indicated by the green line in Fig. 4. Based on Section 6.2.1, the value of TS1 
was determined (Table 3). The null hypothesis of an identical distribution for the 
annual values, a spatial average, cannot be accepted on the basis of this test either, 
since a TS1 value well above the critical value was obtained. 

 
 

 
Fig. 4. Spatial average of SPI, STI and SPTI values, based on annual precipitation sum and 
mean temperature. 
 
 
If the SPTI values are calculated as grid points instead of spatial averages, 

we can get an idea of which areas of Hungary are experiencing climate change at 
the 0.1 significance level, when the precipitation and temperature series are taken 
into account. In Fig. 5 we show the areas where the maximum of the SPTI values 
exceeds Cr2, these are the red colored areas, while in the green colored areas, 
these statistics exceed only Cr1. 

On a spatial average, 2010 was the extreme year with the highest 
precipitation but average temperature (Table 2) If we look at individual areas, 
Fig. 6 shows that the year 2014 is still the one with the largest area. This year is 
markedly extreme in the sense that it is recorded in the yearbooks as a hot and wet 
year. The extreme drought and heat of the year 2000 makes it appear in even larger 
areas. Generally speaking, recent years appear as extreme. The largest areas are 
dominated by warm years with precipitation, but dry hot years also appear on the 
list. In the case of annual studies, the pairs of dry and cool years are not listed as 
extreme, but will only appear in seasonal studies.  
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Fig. 5. Maximum of the SPTI values, based on annual precipitation sum and mean 
temperature, 1870–2020. 

 
 

Table 2. Extreme years and seasons by SPTI, spatial average, 1871–2020 

 

 
Fig. 6. Year of maximum SPTI values, based on annual precipitation sum and mean 
temperature, 1870–2020. 

Annual Winter Spring Summer Autumn 

2010 4.69 2006/07 2.7 1934 3.8 1984 4.13 1986 4.08 
2014 4.4 1909/10 2.62 1875 3.25 2019 4.07 1920 3.95 
2000 4.14 1935/36 2.56 2003 3.02 2003 3.81 1908 3.69 
2019 4.11 1989/90 2.49 1946 2.9 1976 3.57 2011 3.62 
2018 3.85 1950/51 2.47 1920 2.85 1978 3.5 2006 3.31 
2011 3.61 1976/77 2.44 2018 2.79 2018 3.49 1978 3.01 
1940 3.43 1879/80 2.41 1872 2.78 1962 3.46 1947 2.93 
2015 3.31 1962/63 2.4 1937 2.7 2012 3.46 1959 2.84 
1994 3.26 1881/82 2.35 2007 2.66 1919 3.45 1953 2.76 
2007 3.21 1997/98 2.25 2010 2.65 1923 3.43 1912 2.75 
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Similar to annual studies, seasons and months can be considered together in 
terms of precipitation sum and mean temperature. 

If only the seasonal precipitation sums and mean temperatures are 
considered, the winter norm values (SPTI) are the lowest and exceed only the 
mildest Cr1 critical value (Fig. 7). If we want to decide on the basis of the first 
test (Section 6.2.1), we can see the TS1 values in Table 3. Only the winter value 
remains below the critical value. The other two tests (Sections 6.2.2 and 6.2.3) 
were also applied to the seasonal SPTI values. None of the spring norm values 
reaches Cr2, but here relatively many values exceed Cr1. The summer norm 
values are the highest and there are values exceeding Cr2. The autumn values also 
include some norms above Cr2, but on average they are lower than in the summer 
study. When an exponential trend is fitted to the SPTI values, significant changes 
are observed only in spring and summer. When the temperature and precipitation 
time series are considered together, significant increases are observed in both 
cases. Summer norm values increased by 90% and spring values by 55%. 

 

 

 
Fig 7. SPTI values by season, standardised spatial average. 

 
 
 

Table 3. TS1 values for Test1, the critical value is Cr3=1.65 

1871-2020 Annual Summer Autumn Winter Spring 

TS1 9.25 8.16 2.72 0.27 2.99 
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Of course, the seasonal analyses also examined the areas where the 
maximum SPTI values exceeded each critical value. The areas exceeding Cr1 and 
Cr2 are shown in Fig. 8. In all cases, the milder Cr1 critical value is exceeded 
everywhere by the maximum of the normal values, these are the areas marked in 
green. Where the SPTI maxima exceed the more severe Cr2 critical value, the area 
is red colored. 

It can be clearly seen in Fig. 8A that the winter values do not reach Cr2 
anywhere, while for the autumn (Fig. 8D) and summer (Fig. 8B) maxima we get 
the largest areas with maximum SPTI values above the more stringent critical 
value. 

 

 
Fig. 8. Maximum SPTI values by season: winter (A), spring (B), summer (C), and autumn 
(D), based on seasonal precipitation sum and mean temperature, 1871–2020. 
 
 
 
Let us look at the spring extremes for grid point data (Fig. 9). The hot, dry 

spring of 1934 is the most unusual spatial average, and the largest area for this 
year is shown on the map. Dry, hot springs occur over an even larger area in 2003 
and 2012. A wet, warm spring is 2010, while the dry, cool feature that was missing 

A B 

C D 
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in the annual surveys appears here: the springs of 1956 and 1875, for example. 
There is also an example of a wet, cool spring: 1919 was just such a spring, but it 
is only shown in one small area on the map (Fig. 9).  

 
 

 
Fig. 9. Spring: year of maximum SPTI values. 
 
 
The palette of summers is the most colorful (Fig. 10). On spatial average, the 

dry, cold summer of 1984 is the extreme. Although a large area of Fig. 10 shows 
the summer of that year, it is the hot, dry summer of 2003 that is the most extreme 
over the largest area, precisely in areas where wet, less hot summers are otherwise 
common, namely the southern and western parts of the Transdanubian region. In 
general, dry, cool summers dominate the extreme lists, with a large number of 
dry, hot summers still on the map. Wet, cold summers include 1913 and wet, hot 
summers include, for example, 1999. 

 
 
 

 

 
Fig. 10. Summer: year of maximum SPTI values. 
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The autumn extremes are also shown in Table 2. Fig. 11 shows that the 
extreme dry and slightly warmer than average autumn of 1986 is the one with the 
largest area. It can also be said of the years shown in Fig. 11, that if we split the 
country in two parts imaginatively, the western half of the country has the most 
unusual cold, dry autumns, while the eastern half of the country has the most 
unusual dry, warm autumns. 

 
 

 
Fig. 11. Autumn: year of maximum SPTI values. 
 
 
Finally, let us consider the combined extremes of winter (Fig. 12). Whether 

averaged by area or grid point, the SPTI indices show that the warmest winter 
with average precipitation in 2006/2007 is the most unusual of the 150-year-long 
temperature and precipitation series. Similarly to the summer values, all possible 
combinations are shown in Fig. 12. Warm, wet extremes include the winters of 
1909/1910 and 1935/1936, while wet cool extremes include the winter of 
1890/1891, but there are also examples of dry, cold winters, such as the winter of 
1879/1880. 

 
 

 
Fig. 12. Winter: year of maximum SPTI values. 
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6.4 Eight-dimensional application 

As indicated in Section 6.1, SPI3 and STI3 values were derived from seasonal 
precipitation sum and mean temperature values for all four seasons. The 
standardized spatial averages become the components of the eight-dimensional 
vector variable. To determine the eight-dimensional extreme, the ST8 statistics 
were calculated (Sections 2.5, 5.3), and these statistics were applied to the full 
dataset to decide on the presence of climate change in eight dimensions. 
Performing the first test (Section 6.2.1), the TS1 was found to be 6.25, while the 
critical value is only 1.65, so the null hypothesis of an identical distribution in the 
eight-dimension cannot be accepted. Fig. 13 shows that Cr1=3.66 is exceeded in 
a relatively large number of years, but the more stringent Cr2=5.20 is only reached 
in 2018 and 2019. Therefore, we can say that there is climate change with respect 
to the spatial average, when the mean temperature and precipitation series for the 
four seasons are considered together. Using an exponential trend estimation for 
the eight-dimensional norm series, a significant change can be seen, with these 
values increasing by 37%, shown in green in Fig. 13. 2018 was the second 
warmest and drier than average year, while 2019 was the warmest and slightly 
wetter than average year. What is striking from Fig. 13 is that the last decade can 
be considered an extreme decade. If we plot the probability (Section 5.3) 
associated with the ST8 eight-dimensional norm values (Fig. 14), this extreme 
period is more distinct, showing how low probability events have occurred in the 
past period. In terms of the eight-dimensional norms, 1947 has the third highest 
norm: it was essentially a dry, hot year. Only winter was wetter and cooler than 
average, the other three seasons were dry and warm in 1947. The most unusual of 
the components for 1947 is the autumn precipitation, which is listed as the 5th 
driest autumn in the 150-year-long time series. The year 1920 and 2020 are not 
considered extreme on average, but when the eight variables are analyzed 
together, they can be considered extreme years. In order, they are the fourth and 
fifth highest ST8 values. In the year 1920, two seasons were cooler than average 
and two warmer, while in terms of precipitation, two seasons had above average 
precipitation and two were extremely dry. In 2020, we also had two very dry 
seasons and two seasons with above average precipitation, but temperatures were 
above average in all four seasons.  
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Fig. 13. ST8 values, spatial average. 

 
 
 

 
Fig. 14. The probability of ST8 values. 

 
 
 

It is also interesting to look at the norm values for the extreme sub-systems 
(Section 5.2) in Fig. 15. For 2019, the two-dimensional extreme sub-system 
already exceeds the critical value Cr1 for the eight-dimensional norm values. If 
we want to know which subsystem is the most unusual, we consider the 
probabilities in Fig. 16B. For the total period and all eight elements, the lowest 
probability is for the temperature of summer 2003, while the most extreme two-
dimensional subsystem, with the addition of the spring drought of the same year, 
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is the most extreme two-dimensional subsystem, with all other extreme 
subsystems belongs to 2019. 

The lowest probability event belongs to the year 2019, of which this value 
also belongs to the four-element extreme subsystem: warm, dry summer, warm 
autumn, and wet spring. (Fig. 16A) 

 
 
 
 

 
 

Fig. 15. ST1-8 values for extreme subsystems (top) and their probabilities per year (bottom). 
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Fig. 16. A: Probability of extreme subsystems in 2019, B: Probability of extreme 
subsystems of the complete dataset.  
 
 
If we want to know which seasons and which elements are responsible for 

the extremes of a given year, we need to analyze the extreme subsystems (Section 
5.2), as we did above for the five extreme years (Figs. 15, 16A). For most of these, 
both elements deviated significantly from the average in all four seasons, resulting 
in high ST8 norm values. On the other hand, there are years with ST8 values above 
the critical value of Cr1, but the extremes are caused by only one or two elements. 
A good example of this is the year 1934 (Fig 17), when the probability of the one-
dimensional subsystem was the lowest. This is the extreme high mean temperature 
in spring. Also, Cr1 is above the norm for the year 1936, but here the two-
dimensional extreme subsystem has the lowest probability, and this is the two-
dimensional extreme subsystem of a wet winter and a warm spring (Fig 17). 

 
 

 

 
Fig. 17. Probability of ST1-8 norms for the years 1934 and 1936. 
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7. Summary 

The primary objective of this paper was to present a vector norm methodology 
based on the probability distribution of multidimensional climate time series, 
which can be used to complement our knowledge of the extremes of climate 
elements. We have shown why this method was developed in order to study 
climate elements together and how it works in practice to determine 
multidimensional extremes. 

The results of the statistical tests described in Section 6.2 are summarized in 
Table 4. For the first test (T1 in Section 6.2.1), the change in the distribution of 
the probability vector variables is not proven only for the winter temperature and 
precipitation values. For the second test (T2 in Section 6.2.2), the spring values 
do not exceed the Cr2 values in addition to the winter values. In the third test (T3 
in Section 6.2.3), no unidirectional change is observed for winter and autumn 
values. In summary, when looking at the two-dimensional annual and summer 
mean temperature and precipitation values together, all three tests result in 
rejecting the null hypothesis that there is climate change. The same is true for the 
four seasonal mean temperature and precipitation values, so that climate change 
can be detected in eight-dimensions with all three tests. In the case of the spring 
tests, the T1 and T3 tests were used to detect change, while for the autumn values 
the T1 and T2 tests were used. Only the winter tests can not demonstrate the 
change in the probability distribution of the vector variables over time. 

 
 
 Table 4. Summary table of which test and statistics have changes in probability 
distribution, 1871–2020 

 Annual ST2 Winter ST2 Spring ST2 Summer ST2 Autumn ST2 Annual ST8 

Test1  X     
Test2  X X    
Test3  X   X  

 
 
 

In general, we can say that in Hungary cooler years tend to have more 
precipitation, while drier years tend to be warmer. This makes it unusual to have 
a very hot, wet year and a dry, cool year. It is also clear that a very dry, very hot 
year is also unusual, while a very cold, very wet year can be considered extreme. 
Looking at the temperature and precipitation time series together, we could see 
examples of each of these cases. Multidimensional extremes included years that 
could be considered extreme in one dimension, e.g., 2019, 2010, and 1940, but 
also included years that were not particularly unusual in one dimension, e.g., 
1920, 1947, 2020. 
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Considering the spatial averages, years with hot, rainy weather are the least 
likely, followed by a series of dry, very hot years and only one case of a cool, 
rainy year. The top ten did not include a pair of dry, cool years. In the case of 
winters, the top ten is dominated by warm, wet winters, with dry, warm and cool, 
wet winters also found in Table 2. Most of the spring extremes are associated with 
dry, warm springs. There is one case of dry, cool spring and two cases of wet, 
warm spring in our list. For summers, the extremes are the dry, cool and dry, warm 
seasons. For autumn, these two combinations are also on the list. The exception 
is the 10th most extreme autumn, which has a very cold period with a lot of rainfall 
as an extreme. It is now accepted (Harangi, 2017), that the eruption of the Katmai-
Novarupta volcano in Alaska (June 6, 1912) is responsible for this extreme 
autumn. 

Of course, other elements and dimensions can be investigated further. Two-
dimensional studies can be complemented by six-dimensional studies. For 
example, summers have the largest statistics, in which case it is worth looking at 
the mean temperature and precipitation totals for the three summer months 
together. But it is also possible to look at the precipitation sum and temperature 
of a single month together, or to determine the SPTI index for the summer and 
winter semesters. After the mathematical description, we have presented only 
some meteorological applications, the aim of which was to illustrate, through 
examples, how the theoretical method works in practice. 
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