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Abstract— This study presents the results of research that was conducted in the city of 
Tehran, located in the subtropics (35° N.) in a semi-desert climate in southwest Asia. The 
purpose was to analyze the relationship between land use/cover change (LULC) and the 
spatiotemporal dynamics of surface urban heat islands (SUHIs) and give results regarding 
the structure of the UHI in the city of Tehran. Using Landsat-5 TM data from 1986 to 2010, 
we quantified the spatiotemporal variability of the SUHI and LULC in the city of Tehran. 
The spatial distribution of land surface temperature (LST) showed the most extensive SUHI 
as spatially located in the western and southwestern areas of Tehran in 1986. In 2010, the 
spatial extent of SUHI had increased. The occurrence of LULC changes in the southern, 
southwestern, and especially the western parts of Tehran have played the most important 
role in expanding and intensifying the SUHI effect. These areas experienced two major 
alterations: (a) The area lost about 14 km2 from green cover; and (b) the industrial and 
commercial land use, and transportation network extended significantly in these areas. 
Based on LULC and LST distribution patterns, barren lands, industrial and commercial 
land use, and transportation network have the major roles in the formation and expansion 
of the SUHI effect in Tehran. The SUHI of Tehran, like that of other arid or semi-arid cities, 
does not exhibit the classical pattern of SUHI: that is, the hot spots usually are not found in 
the downtown, as occurs in humid climates. Rather, the SUHI tends to situate over desert 
areas or barren lands that surround these cities. Therefore, an inversion of the standard 
SUHI phenomenon during daytime has been observed in Tehran. Research conducted in 
arid and semi-arid cities suggests that we should refine our point of view on the concept of 
the UHI in such cities and consider this issue in future studies. 
 
Key-words: surface urban heat island, land use/cover change, land surface temperature, 
remote sensing, Tehran 
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1. Introduction 

The urban heat island effect (UHI) is a critically important environmental disaster 
that has attracted researchers’ attention for more than 150 years (Streutker, 2003). 
It refers to the phenomenon in which the air and surface temperature in an urban 
area is higher than that in its surrounding rural areas (Yuan and Bauer, 2007) and 
may be accompanied by a series of undesirable environmental effects such as 
adverse climate, urban diseases, and epidemics, worsened habitability, and greater 
energy demand for cooling. In other words, the UHI is the clearest expression of 
the effects of anthropogenic activity on climate at a local level (Garcia-Cueto et al., 
2007).  

Various methods applied to investigate the UHI effect in later decades 
generally comprised two approaches: conventional and remote sensing-based 
methods. The conventional techniques mostly have depended on mathematical 
and statistical methods (Peterson, 2003; Arifwidodo and Tanaka, 2015). Two 
types of indicators, air UHI (AUHI) and surface UHI (SUHI), have been widely 
used to study UHI (Li et al., 2017). The AUHI was calculated from the weather 
station network (Chow and Roth, 2006; Karl and Quayle, 1988; Park et al., 2017). 
The SUHI has been estimated from thermal infrared remote sensing techniques 
(Dickinson et al., 2010; Li et al., 2017; Voogt and Oke, 2003; Zhou et al., 2014). 
Voogt and Oke (2003) described in detail the use of thermal remote sensing in the 
study of urban climates, and believed that the thermal remote sensing techniques 
are suitable to study SUHI. First, SUHI were studied using NOAA AVHRR data 
(Balling and Brazel, 1988; Dousset, 1989; Gallo et al., 1993; Gallo and Tarpley, 
1996; Owen, 1998); more recently, Landsat TM, ETM+, and ASTER data have 
been utilized for their higher spatial resolution (Dai et al., 2010; Hamdi, 2010; Li 
et al., 2009, 2017; Liu and Zhang, 2011; Lu and Weng, 2006; Ranagalage et al., 
2017; Sun et al., 2010; Weng, 2001, 2003; Weng et al., 2006, 2007; Weng and Lu, 
2008; Xiao et al., 2008; Zhang et al., 2007). Considering the close correspondence 
between the distribution of land surface temperature (LST) and land use and land 
cover (LULC) characteristics (Weng and Lu, 2008), numerous research articles 
have focused on exploring the relationship between LST and urban LULC change 
(Amiri et al., 2009; Ifatimehin, 2011; Lazzarini et al., 2013; Lu and Weng, 2006; 
Pal and Ziaul, 2017; Weng, 2003, Weng and Lu, 2008; Zhou et al., 2014). 
Understanding the relationships between LULC and LST can assist in urban 
planning for a better scientific understanding of how the encroachment of the 
urban land use can form and extend patterns of SUHI (Weng, 2003). Urban 
climate research has investigated the relationship with LST of factors such as 
vegetation abundance, soil moisture, and the roughness properties of the land 
surface (Lo et al., 1997; Park et al., 2017; Soltani and Sharifi, 2017). Meanwhile, 
the NDVI-LST relationships more than other indices have been examined (Kim et 
al., 2005; Liu and Zhang, 2011; Ranagalage et al., 2017; Weng et al., 2004). 
Recently, much attention has been paid to the NDBI–LST relationship in urban 
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areas. For example, Liu and Zhang (2011) showed that the negative correlation of 
LST and NDVI means that green land weakens the SUHI effect, whereas the 
positive correlation between LST and NDBI means that increased development 
strengthens it (Liu and Zhang, 2011). Most studies of changes in LST and LULC 
have emphasized that overdevelopment and degradation of vegetation cover have 
played an important role in strengthening and intensifying the SUHI effect (Chen 
et al., 2006).  

There is a need to utilize remote sensing data in investigating the LST of 
cities in dry and semi-dry environment; because these cities experience extremely 
high temperatures in warm seasons (Rasul et al., 2017). The remote sensing 
techniques have been utilized to study some of the few SUHI studies in arid 
regions (Amiri et al., 2009; Balling and Brazil, 1988; Falahatkar, 2011; Garcia-
Cueto et al., 2007; Haashemi et al., 2016; Lazzarini et al., 2013). The study of 
UHI, both atmospheric and surface, in the city of Mexicali showed a daily cycle 
in which the AUHI develops during the night but disappears in the daytime, giving 
way to an urban cold island. Comparing the LST of the urban area of Mexicali 
with its surrounding environs demonstrated that Mexicali does not show the 
classical pattern of AUHI; that is, higher surface temperatures are not only found 
closer to the urban center, as occurs in humid climates, but in this case, are also 
found in the surrounding desert areas.  

The results of some UHI studies in arid regions were similar to those of 
Garcia-Cueto in the city of Mexicali (Haashemi et al., 2016; Lazzarini et al., 
2013; Zhou et al., 2015). Lazzarani et al. (2013) used remote sensing data from 
MODIS, ASTER, and LANDSAT7 to assess land cover–temperature interactions 
in the Abu Dhabi metropolitan area. Their results showed an inversion of the 
standard SUHI phenomenon in daytime, where the downtown areas appeared 
cooler than the suburbs with a daily difference of 5–6 °K in summer and 2–3 °K 
in winter. Zhou et al. (2015) examined the UHI effect in 32 major cities distributed 
throughout different climatic zones in China using MODIS, TM, ETM+ images 
during the period 2003–2012. They noted that the LST differences between urban 
and rural areas were significantly larger than those between urban and suburban 
areas during the day and night for the cities, except for Lanzhou and Tianjin in 
the daytime. In particular, Lanzhou demonstrated a cold island effect in 
comparison with surrounding rural areas.  

Many scholars have explored UHI in the Tehran metropolitan area. In 
general, these studies had the following objectives: to study spatiotemporal 
variability of the UHI (Bokaie et al., 2019; Haashemi et al., 2016); to identify the 
possible causes of UHI in Tehran (Shahmohamadi et al., 2015; Shamsipour et al., 
2012); to assess the relationship between LST and LULC (Bokaie et al., 2016; 
Rousta et al., 2018); to investigate the severity and impact of UHI on the 
environmental conditions of Tehran metropolitan area (Shahmohamadi et al., 
2013); and to explore the various models that could be implemented to mitigate 
the UHI effects in Tehran (Shahmohamadi et al., 2013; Sodoudi et al., 2014). 
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Despite these previous studies, the Tehran SUHI requires more research. 
Apparently, a more detailed assessment of the spatial patterns of UHI is needed 
to better understand the structure of the Tehran UHI. Our main objectives were 
(1) to explore the spatiotemporal variability of the Tehran SUHI between 1986 
and 2010; (2) to analyze the spatial distribution of LST and its relationship with 
LULC; and (3) to analyze the structure of the Tehran SUHI as a semi-desert city. 

2. Data and methodology 

2.1. Study area 

This research was conducted in a semi-desert area located in southwestern Asia, 
in the city of Tehran, the capital of Iran. Tehran (Fig. 1), with 8 million people, 
has the geographical coordinates of 35°33’10“N to 35°50’12“N and 51°05’17“E 
to 51°37’36“E with an average elevation of 1600 m and the high Alborz 
Mountains in its north and northeast. The Alborz Mountains partially reduce the 
area of dryness. The city has poor vegetation cover. In addition, the distribution 
of green spaces in the city is heterogeneous (Haashemi et al., 2016). This area is 
on the subtropical high pressure belt during the summer, which makes it warm 
and dry. Tehran has a cold semiarid climate (Köppen climate classification: BSK) 
with continental climate characteristics and a Mediterranean climate precipitation 
pattern. Tehran's climate can be generally described as mild in spring and autumn, 
hot and dry in summer, and cold and wet in winter. Most of the light annual 
precipitation occurs from late autumn to mid-spring, but no one month is 
particularly wet. The hottest month is July, and the coldest is January. 
 
 
 
 

 

Fig 1. The study area. The most effective land use types for the establishment of UHI are 
presented on the map by their initials. The numbers represent the 22 districts of Tehran. 
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Tehran is divided into 22 municipal districts, each with its own 
administrative center. Fig. 1 show the spatial distribution of 22 districts, industrial 
and commercial area, the central bazaar, the Mehrabad and Dooshantapeh 
airports, urban main terminals of railway stations, and other important phenomena 
that contribute to the formation of hot spots in the Tehran metropolitan area. 
Tehran is the most important center of population, culture, industry, commerce, 
and transportation in Iran, encroaching on the limited surrounding agricultural 
areas (Malekpour et al., 2010). Because of its complicated expansion, structure, 
and function, temperature variations are very important for its life and existence. 
Thus, this study has tried to analyze the relationship between the spatiotemporal 
distribution of SUHI and LULC change in Tehran. 

2.2. Data and image preprocessing 

Change detection can be defined as the process of identifying differences in the 
state of an object or phenomenon by observing it at different times. Using multi-
sensor images to change detection is a challenge in terms of designing a suitable 
procedure. Ideally, change detection is conducted with multi-temporal images 
from the same sensor (Lu et al., 2014). In this paper, two landasat-5 TM images 
acquired on June 2, 1986 and June 4, 2010 were used to extract LST and LULC 
information. Some assistant data such as the air temperature and the air moisture 
were collected from five weather stations on June 2, 1986 and June 4, 2010 used 
as the input parameters to retrieve LST. The data preprocessing and other analyses 
were performed using ERDAS Imagine 9.2 and ArcGIS 9.3 software. 

2.3. Derivation of LST 

Two Landsat-5 TM images acquired on June 2, 1986 and June 4, 2010, 
respectively, were used to extract LST and LULC information. Some auxiliary 
data such as the air temperature and air moisture were collected from five weather 
stations on June 2, 1986 and June 4, 2010 used as the input parameters to retrieve 
LST. Data preprocessing and other analyses were performed using ERDAS 
Imagine 9.2 and ArcGIS 9.3 software. 

A mono-window algorithm was applied to obtain LST from the thermal band 
(band 6) of Landsat TM images (Qin et al., 2001): 

 
 𝑇௦ = ሼ𝑎ሺ1 − 𝐶 − 𝐷ሻሾ𝑏ሺ1 − 𝐶 − 𝐷ሻ + 𝐶 + 𝐷ሿ𝑇௜ − 𝐷𝑇௔ሽ/𝐶  (1) 
 

With  𝐶 = 𝜀௜ × 𝜏௜ , = ሺ1 − 𝜏௜ሻሾ1 + ሺ𝜀௜ሻ × 𝜏௜ሿ , a = -67.355351 and b=0.458606, 
where εi is emissivity, τi is the total atmospheric transmittance, Ti is the at-sensor 
brightness temperature (in K), and Ta represents the effective mean atmospheric 
temperature given by 
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 Ta = 16.0110 + 0.92621 × To (2) 
 
where To is the near surface temperature.  

Qin et al. (2001) estimated the atmospheric transmittance from the 
atmospheric water vapor content (w) according to Table 1. Both To and w were 
obtained from local meteorological stations. 

 
 
 
Table 1. Estimation of atmospheric transmittance (Qin et al., 2001) 

Profiles equation (τi)                   water vapor (w) (g/cm2)           Transmittance estimation  
High air temperature                       0.4 - 1.6                                            0.974290 – 0.08007 w 
                                                        1.6 - 3.0                                            1.031412 – 0.11536 w 
Low air temperature                       0.4 - 1.6                                            0.982007 - 0.09611 w 
                                                        1.6 - 3.0                                            1.053710 - 0.14142 w 

 

The emissivity can be estimated using the Normalized Difference Vegetation 
Index, NDVI (Van De Griend and Owe, 2003). A complete land surface emissivity 
estimation method proposed by Zhang et al. (2006) was utilized to calculate 
emissivity for each pixel (Table 2). 

 
 
 
 
Table 2. Estimation of emissivity by using NDVI (Zhang et al., 2006) 

NDVI                                            Land surface emissivity (𝜺𝒊) 
NDVI< -0.185                                           0.995 
-0.185≤ NDVI≤ 0.157                                0.97 
0.157≤ NDVI ≤ 0.727                 1.0094 + 0.047 ln  (NDVI) 
NDVI > 0.727                                           0.99 

 
 
 

2.4. Detection of LST spatiotemporal dynamics  

To examine the spatial distribution of LST data during the study period and reduce 
the influence of seasonal difference, the resultant LST images are divided into 
three levels, high- (L3), normal- (L2), and low-temperature (L1) ranges (three 
levels), using a robust statistical method proposed by Zhang et al. (2007). The 
proposed method can be applied when the LST images follow a normal 
distribution. Based on Fig. 2, the histogram distribution of LST images for both 
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1986 and 2010 follow a normal distribution. In this method, the average 
temperature(u) ±1 standard deviation (std) is set as two threshold values that 
divide the LST into three ranges. Table 3 shows the temperature classification 
method. The area with LST above u+std would be defined as a heat island; by 
contrast, the area with LST below u-std would be defined as a cold island. The 
annual difference between the mean surface temperature of the heat and cold 
islands could be propounded as the SUHI intensity in the study area. 
 

 

  

Fig 2. Distribution of LST (C°) for June 2, 1986 and June 4, 2010. 

 
 
 
 
 

Table 3. Temperature ranges for classification of LST images 

temperature classification interval of temperature classification 

high temperature area (L3) LST > u + std 

normal temperature area (L2) u – std < LST < u + std 

low temperature area (L1) LST < u – std 

 

2.5. LULC classification 

The proposed method by Xu (2007) was used to classify the LULC types in the 
study area. Based on the previous studies, the urban ecosystem can be broken 
down into several components, including impervious surface material, green 
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vegetation, exposed soil, and water (Chen et al., 2006; Xu, 2007). Accordingly, 
the urban area can reasonably be classified into four generalized categories (i.e., 
built-up land, green cover, bare land, and water). In this study, to characterize 
these categories, the Normalized Difference Built-up Index (NDBI), Soil Adjusted 
Vegetation Index (SAVI), Normalized Difference Bareness Index (NDBaI) and 
Modified Normalized Difference Water Index (MNDWI) were applied. MNDWI 
can be employed to detect water features in an urban area. Xu (2007) showed that 
MNDWI can enhance the contrast between water and other land use (built-up, bare 
land and green cover) because other categories reflect MIR (TM5) radiation much 
higher than NIR (TM2) radiation. In the MNDWI image, the built-up land, bare 
land, and green land have negative values, but the water has a positive value. 
Therefore, MNDWI helps distinguish the water class from the others. MNDWI is 
expressed as follows (Xu, 2005): 
 
 𝑀𝑁𝐷𝑊𝐼 = 𝐺𝑟𝑒𝑒𝑛−𝑀𝐼𝑅𝐺𝑟𝑒𝑒𝑛+𝑀𝐼𝑅 . (3) 
 

Then, a simple logic statement can easily extract the water pixels from other 
land uses. According to the spatial model maker tools in ERDAS 9.1, the function 
is as follows: 

 
EITHER 1 IF (MNDWI>0) OR 0 OTHERWISE. 

 
Although NDVI is the most important vegetation index, in this study the 

SAVI index was employed to highlight vegetation features because SAVI is more 
suitable in an area with low plant cover such as urban areas (Ray, 1994; Xu, 2007). 
SAVI can work in areas with plant cover as low as 15%, whereas NDVI can only 
work effectively in areas with plant cover above 30% (Ray, 1994). The SAVI can 
be calculated using the following equation (Huete, 1988): 

 
 𝑆𝐴𝑉𝐼 = (ேூோିோ௘ௗ)(ଵାூ)ேூோାோ௘ௗାூ   , (4) 
 

Where I is a correction factor that ranges from 0 for very high densities to 1 for 
very low densities. Given an intermediate vegetation density in the study area, a 
value of 0.5 was used. As for water, a simple logic statement could be used to 
extract vegetation pixels from others:  
 

EITHER 1 IF (SAVI>0) OR 0 OTHERWISE. 
 

Our studies showed numberless mixed pixels mostly comprising vegetation 
in combination with bare or built-up land. To prevent noise, these pixels were 
extracted through determination of a suitable threshold for SAVI. The logic 
calculation can be expressed as follows: 
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EITHER 1 IF (SAVI>-0.1 and SAVI<0) OR 0 OTHERWISE. 
 

Another index, NDBI, is sensitive to the built-up area (Zha et al., 2003). The 
NDBI image is calculated by the following equation: 

 
 𝑁𝐷𝐵𝐼 = 𝑀𝐼𝑅−𝑁𝐼𝑅𝑀𝐼𝑅+𝑁𝐼𝑅 . (5) 
 
NDBI is a suitable index for extracting the built-up land from urban areas 

(Liu and Zhang, 2011), because the built-up lands have higher reflectance in MIR 
than NIR (Xu, 2007). However, Gao (1996) and Xu (2007) showed that in some 
circumstances, drier vegetation and water with high suspended matter 
concentration can also reflect MIR more strongly than NIR and, as a result, they 
will have positive NDBI values and present as noise in an NDBI image. 
Additionally, Chen et al. (2006) also found that NDBI is not sufficient to 
differentiate the bare land from the built-up area, because both have relatively 
similar spectral characteristics. Consequently, the contrast of the NDBI image is 
not as good as SAVI and MNDWI images, because many pixels of vegetation, 
water and bare land to be mixed with built-up area. 

The last index used in this study is NDBaI, proposed by Zhao and Chen 
(2005) to retrieve bare land from the Landsat imagery. NDBaI can be calculated 
for Landsat imagery using the following equation: 

 
 𝑁𝐷𝐵𝑎𝐼 = 𝑏𝑎𝑛𝑑 5−𝑏𝑎𝑛𝑑 6𝑏𝑎𝑛𝑑 5+𝑏𝑎𝑛𝑑 6  . (6) 
 
In Landsat imagery, the spectral characteristic of band 5 – band 6 > 0 is 

highly consistent with bare land, so bare land can be distinguished approximately 
using images with NDBaI>0.  However, the proposed threshold (NDBaI>0) is not 
constant; it will change little in different regions or in different conditions of 
atmosphere and precipitation (Chen et al., 2006). Despite NDBaI’s relative 
efficiency, it is not enough to differentiate the bare land from the built-up area. 
Based on the explanations mentioned, urban built-up and bare land could not be 
extracted merely based on NDBI and NDBaI images. Therefore, this study 
combines the NDBI, NDBaI, SAVI, and MNDWI to extract built-up and bare land 
area. Based on the previous studies (Xu, 2007), this method can improve 
classification accuracy. 

To achieve this object, first the SAVI, MNDWI, NDBI, and NDBaI images 
were produced, and then a new four band image was created through a layered 
stack of four images. Two methods were used to extract built-up and bare land 
from the new images (the new four-band image): principal component analysis 
(PCA) and logic calculation. First, PCA was performed on the two new images 
(June 2, 1986 and June 4, 2010). Table 4 shows the results of the PC 
transformation on the new images based on the covariance matrix. The values in 
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the table provide the basis for determining which PC has the greatest loadings 
(values) for NDBI or NDBaI bands (representing the built-up and bare land 
classes), and there is also a considerable difference between loadings of bands. It 
is obvious that in PC1 and PC2, MNDWI and SAVI have the greatest loadings, 
respectively; consequently, built-up and bare land cannot be identified from PC1 
and PC2. In PC4, although the NDBI band has a big loading (0.81, 0.83), the 
SAVI and MNDWI bands also have positive loadings in the two image and are 
difficult to separate from one another. Our exploration also confirmed that PC4 is 
not suitable for extracting built-up and bare land. Therefore, PC3 is more suitable 
than the others for separating built-up and bare land because the NDBaI band has 
a strong positive loading and the NDBI band has a small positive loading, in 
addition to the MNDWI band, which has a strong negative loading in PC3 that 
entirely helps to differentiate LULC types. Spectral signature analysis represented 
by the mean of urban land use for 1986/6/2 also confirmed that PC3 is more 
efficient than PC4 for extracting both built-up and bare land, because built-up 
features have negative values, whereas bare lands have negative values in PC3 
(see Fig. 3). Finally, the suitable threshold values were used to extract built-up 
and bare land from the PC3 image. According to the spatial model maker tools in 
ERDAS 9.1 software, the conditional function is as follows: 

 
CONDITIONAL {(PC3< 0) <1>, (PC3>= 0) <2>}, 

 
where <1> and <2> are built-up and bare land respectively. 

To evaluate classification accuracy, a random sampling method was used, 
with a total of 150 pixels sampled for each image. Then, the accuracy of the 
classification maps was verified by field study or by comparing with existing 
LULC maps. The overall accuracy was 89.1% for 1986 and 90.7% for 2010. The 
Kappa coefficient was 0.87 and 0.89 for 1986 and 2010, respectively. The 
precision of the classification results show that they are good enough for further 
spatiotemporal analysis. 

 
 

 

 
Table 4. Principal component analysis on the two new four-band images 

 June 2, 1986 image June 4 2010 image 

  PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

Eigenvectors 

SAVI-band 
NDBI-band 
NDBaI-band 
MNDWI-band 

0.47 
-0.5 
0.31 
0.64 

0.67 
-0.25 
-0.55 
-0.41 

0.35 
0.13 
0.76 
-0.52 

0.45 
0.81 
-0.10 
0.35 

0.49 
-0.42 
0.41 
0.64 

0.7 
-0.27 
-0.49 
-0.41 

0.27 
0.21 
0.74 
-0.56 

0.41 
0.83 
-0.14 
0.32 
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Fig 3. Spectral signatures represented by the mean of urban land use classes of Tehran for 
June 2, 1986 as an example. 

 

 

 

3. Results 

3.1. Spatiotemporal distribution of SUHI  

Fig.  4 represents the general pattern of LST spatial distribution in Tehran for both 
1986 and 2010. In these maps, the LST data were classified into three groups 
based on the classification scheme of standard deviation that aforesaid in 
methodology section. The LST patterns show significant differences between the 
western and southwestern parts of Tehran in comparison with the northern part. 
The statistics of LST of each image are summarized in Table 5. 
 

 
 

 
Table 5. Summary statistics of LST data for Tehran (°C) 

Date of image  mean maximum minimum Standard 
deviation 

SUHI 
intensity 

June 2, 1986 
June 4, 2010 

 37.2 
41.6 

47 
54 

11 
27 

3.02 
3.3 

10 
10.15 

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9
PC1 PC2 PC3 PC4

vegetation water built-up bare land
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Fig 4. LST distribution images in June 2, 1986 (a) and June 4, 2010 (b). 
 

 
 
 
The statistics of LST on June 2, 1986 indicates that the lowest LST was 

11 °C, the highest LST was 47 °C, and the mean was 37.2 °C, with a standard 
deviation of 3.02. In 1986, some hot spots can be clearly observed (Fig 5a). The 
most extensive hot spots were distributed in the western and southwestern parts 
of Tehran, over Mehrabad international airport, its surrounding barren land, and 
a special industrial zone in the west of Tehran. The hottest part of the Tehran 
SUHI is located over the Mehrabad international airport with approximate area of 
900 hectares in district 9. The other hot spots are dispersed all over the city, 
especially in the old downtown and central bazaar, Dooshantappeh airport, the 
railway station, bus terminals, grain silo, and factories (see Fig. 1 for their spatial 
positions). However, the coldest area of Tehran (cold island) was located in the 
green land area north of Tehran, especially in the Shemiranat and considerable 
portions of districts 2, 3 and 4. The other dispersed cold spots mostly correspond 
to green areas and urban parks, with the parks being the coolest spots. The spatial 
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pattern of LST on June 4, 2010 differs markedly from that of June 2, 1986, as 
Fig. 4 shows. The statistics of LST on June 4, 2010 indicates that the lowest LST 
was 27 °C, the highest LST was 54 °C, and the mean was 41.6 °C, with a standard 
deviation of 3.3 (Table 5). The most significant difference between 1986 and 2010 
is seen in the western, southwestern, and southern parts of Tehran. Although the 
most extensive SUHI, previously located in the western and southwestern area of 
the study area, has slightly shifted to the westward in 2010, its extent has 
increased. Two major hot spots appeared in the south of district 19 (the southern 
part of Tehran), and a major hot spot was formed in the southwestern part of the 
city over district 18. Several hot spots also appeared in the western area over 
districts 21 and 22.  

 
 

 

Fig. 5. the LULC distribution in June 2, 1986 (a) and June 4, 2021 (b) 
 
 
 
Based on the distribution pattern of hot spots in the period 1986–2010 that 

characterized the Tehran SUHI, it does not exhibit the classical SUHI pattern like 
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that of other cities that have been located in arid or semiarid climates; that is, the 
hot spots usually are not found in central parts of cities, as occurs in humid 
climates, but instead they tend to situate over desert areas and surrounding bare 
lands. Therefore, an inversion of the standard SUHI phenomenon has been 
observed during daytime in Tehran, where the downtown area appears colder than 
the western, southwestern, and southern areas. This finding confirms the results of 
Haashemi et al. (2016) regarding the structure of the Tehran SUHI. 

The result described above has also been observed in other arid and semi-
arid cities such as Phoenix (Balling and Brazil, 1988), Mexicali (Garcia-Cueto et 
al., 2007), and Abu Dhabi (Lazzarini et al., 2013). 

The results of three temperature areas and the associated changes in each 
class from 1986 to 2010 are listed in Table 6. Class 1 (L1) comprises values with 
more than one standard deviation below the mean that shows cold islands; class 2 
(L2) values are normal values situated between the mean and one standard 
deviation below or above the mean; and class 3 (L3) values are heat islands with 
more than one standard deviation above the mean. According to the resulting 
table, the high-temperature area (L3) has increased about 31 km2 from 1986 to 
2010; in contrast, the low-temperature area has decreased about 3 km2. The values 
in Table 3 also show that SUHI intensity has increased slightly over time, from 
10 °C in 1986 to 10.2 °C in 2010. Furthermore, based on the evolution process of 
LST data pattern from 1986 to 2010, the area and intensity of the Tehran SUHI 
has rapidly spread and strengthened, while the cold urban island has weakened.  

 
 
 
 
Table 6. Area in different temperature scales from 1986 to 2010 (km2) 

Range Area in 1986 Area in 2010 Change between 1986 to 2010 

High temperature area (L3) 83 114 +31 
Normal temperature area (L2) 449 421 -28 
Low temperature area (L1) 82 79 -3 
 

3.2. Relationship between LULC characteristics and SUHI patterns 

Table 7 summarizes the average LST value of LULC types. The highest and 
lowest surface temperature relate to bare lands and water bodies, respectively. 
After bare lands, which exhibited the highest surface temperature in the study area 
(38.3 °C in 1986 and 43.3 in 2010), built-up areas had the highest surface 
temperature (37.8 °C in 1986 and 41.5 °C in 2010), followed by mixed pixels 
(35.4 °C in 1986 and 39.8 °C in 2010), green cover (32.9 °C in 1986 and 37.6 °C 
in 2010), and water bodies (30.3 °C in 1986 and 33.2 °C in 2010). The maximum 
LST difference of LULC types was 8 °C and 10 °C in 1986 and 2010, respectively. 
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Therefore, the difference between the average value of surface temperature of 
water bodies (the coldest of land cover) and bare lands (the hottest land cover) has 
increased about 2 °C. The average values of LULC types for both 1986 and 2010 
implies that bare lands and built-up areas have played the major roles in forming 
and expanding SUHI effects in Tehran. Of course, all the built-up areas did not 
exhibit the same surface temperature; some land use, such as transport and 
industrial land use, displayed higher surface temperatures than residential land 
use. Apparently, residential land use is less effective in promoting hot spots in 
Tehran. Spatially, the Tehran SUHI has been closely related to bare lands and to 
transport and industrial land use. These areas mostly have been covered with non-
evaporating, non-transpiring materials such as asphalt, metal, concrete, and stone. 
In contrast, green lands showed considerably lower LST, because vegetation can 
reduce the amount of stored heat in the land surface through evapotranspiration 
and shadow. Extensive green spaces in the northern part of Tehran (districts 1, 2, 
3, and 4) contributed to lower surface temperatures and the formation of an urban 
cold island there. 
 
 

Table 7. The mean value of LST of LULC types 

LULC types Mean temperature 
(1986) 

Mean temperature 
(2010) 

Water 
Green cover 
Mixed pixel 
Built-up 
Bare land 

30.3 
32.9 
35.4 
37.8 
38.3 

33.2 
37.6 
39.8 
41.5 
43.3 

 
 
Fig. 5 shows LULC distribution in Tehran for 1986 and 2010. The built-up 

areas dominated in both 1986 and 2010, occupying about 247.2 km2 (40%) and 
310.7 km2 (50%), respectively (Table 8). Although the built-up area has increased 
about 64 km2 from 1986 to 2010, areas of other LULC have decreased. Water 
bodies can be disregarded, because they have very small surface area. Because 
built-up areas have expanded in all directions, the bare lands and green lands lost 
about 37.5 km2 and 23.9 km2, respectively. LULC changes in the southern, 
southwestern, and particularly the western parts have played an important role in 
expanding and intensifying the SUHI effect in our study area. Because of the 
expansion of industrial and commercial land use and the development of the 
transportation network in the western and southwestern parts, several hot spots 
(or urban heat islands) have appeared. The most expansion of the industrial land 
use has occurred along the western highways, such as the Karaj highway and the 
old Karaj road. Similar changes have also occurred in district 18 (southwest of 
Tehran) and 19 (the south of Tehran). The other important alteration has occurred 
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in the vegetation cover areas of districts 18, 19, 20, 21, and 22 (the west, south, 
and southwest of Tehran). Based on our analysis, these districts lost vegetation 
cover of about 4.6, 1.3, 2.0, 2.8, and 3.3 km2 respectively. The largest LST pattern 
alteration occurred in areas in which dark (asphalt, tar, concrete, etc.) and metallic 
materials (galvanized or aluminum roofs) replaced the concentrated vegetation 
cover. The industrial and commercial land use areas, transportation network, and 
warehouses are mostly covered by dark materials and metallic roofs; 
consequently, they are associated with a high LST. In the bare lands and desert 
areas, because of the dry nature of non-evaporating materials, the LST is high.  
 
 
 
 

Table 8. Area of LULC types in Tehran from 1986 to 2010 

LULC types Area (1986) 
km2 

Area (2010) 
km2 

Change in LULC 
between 1986 to 2010 

Water 
Green cover 
Mixed pixel 
Built-up 
Bare land 

0.35 
76.6 
49.8 

247.2 
237 

0.34 
52.7 
47.6 

310.7 
199.5 

-0.1 
-23.9 

-2.2 
63.5 

-37.5 
 

 

4. Conclusion  

In this study, the relationship between LULC changes and the spatiotemporal 
dynamics of the SUHI of Tehran, Iran were investigated for 1986 and 2010. The 
results showed that the area of SUHI has increased about 31 km2, whereas the 
urban cold island (UCI) area has decreased about 3 km2. The SUHI intensity 
(SUHII) also slightly increased. The most extensive SUHI was spatially located 
in the western and southwestern parts of Tehran in 1986. However, in 2010, SUHI 
has slightly shifted westward, and its extent has increased; new hot spots have 
appeared in the western, southwestern and southern parts of Tehran. The highest 
LST relates to bare lands and built-up areas, followed by mixed pixels, green 
cover, and water bodies. The precise consideration of LST in the study area 
indicates that bare lands, industrial and commercial land use areas, and the 
transportation network have played major roles in the formation and expansion of 
the SUHI effect in Tehran; in contrast, the residential land use area is less effective 
in promoting the SUHI effects. In the period 1986–2010, the built-up area 
increased about 64 km2, but the bare lands and green lands lost about 37.5 km2 
and 23.9 km2, respectively. The occurrence of LULC changes in the southern, 
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southwestern, and especially the western areas of Tehran have played the most 
important role in expanding and intensifying the SUHI effect. These areas 
experienced two major alterations: (a) districts 18, 19, 20, 21, and 22 lost about 
14 km2 from green vegetation cover from 1986 to 2010; (b) the industrial and 
commercial land use areas and the transportation network increased extensively 
in these areas. This study showed that in arid and semiarid cities, the largest 
alteration of LST occurs in areas where dark (asphalt, tar, concrete, etc.) and 
metallic materials (galvanized or aluminum roofs) replace the concentrated 
vegetation cover (similar to those changes in the western and southwestern areas 
of Tehran). Therefore, protection and expansion of vegetation cover has great 
importance in mitigating the SUHI effect. It seems that in semi-desert cities such 
as Tehran, where dry bare lands, industrial and commercial land use areas, and 
extensive transportation networks situated together on the city outskirts provide 
an opportunity for the emergence of an extensive SUHI.  

The spatial distribution pattern of the SUHI phenomenon in our study area 
indicated that the SUHI of arid and semiarid cities (such as Tehran) differ 
considerably from that of cities situated in humid climates, which usually exhibit 
the classical SUHI pattern. In other words, the SUHI is usually located downtown, 
but in arid and semiarid cities, the SUHI tends to be situated over desert areas or 
extensive bare lands located in the suburbs. Based on the spatial distribution of 
the LST in Tehran, the highest LST is not observed over the downtown area, but 
rather increases as we move from the downtown toward the west, southwest, 
south, and east. The change pattern from the downtown toward the north area 
differs from that in other directions. Toward the northern area (districts 1, 2, 3, 
and 4), the LST decreases away from the downtown, because the maximum 
vegetation rate is concentrated in the northern area of the city. Therefore, an 
inversion of the standard daytime SUHI phenomenon has been observed in 
Tehran. Our results regarding the structure of SUHI in Tehran correspond to the 
results of other research exploring the UHI in dry and semiarid cities (Balling and 
Brazil, 1988; Garcia-Cueto et al., 2007; Haashemi et al., 2016; Lazzarini et al., 
2013). For instance, Garcia-Cueto et al., (2007) examined AUHI and SUHI and 
their relationship with LULC in the city of Mexicali. Their results showed that 
during the daytime, in any season of the year, the city becomes a UCI. They found 
that Mexicali does not show the classical pattern of a UHI; that is, the higher 
surface temperatures are not only found toward the downtown, as occurs in humid 
climates (Garcia-Cueto et al., 2007). Also, the study of the Abu Dhabi SUHI 
showed a daytime inversion of the standard SUHI phenomenon in which the 
downtown areas appeared colder than the suburbs. Abu Dhabi has a hot desert 
climate (Lazzarini et al., 2013). Zhou et al., (2015) investigated the UHII in 32 
Chinese cities. Their results showed that the direction of the UHII might be 
reversed in cities such as Lanzhou located in an arid climate. Lanzhou presented 
the cold island effect (negative) in comparison with rural areas (Zhou et al., 2015). 
Our results resembled the findings of Haashemi et al., (2016), suggesting that, in 
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semiarid cities such as Tehran, with the urban–rural indicator, a surface urban 
cool island may be observed in daytime. Therefore, research conducted in arid 
and semiarid cities suggests the need to refine our point of view on the concept of 
UHI in arid and semiarid cities and consider this issue in future studies. 
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