

DROUGHT IMPACT: DATA AVAILABILITY AND USE FOR ESTIMATION OF DROUGHT RISK

Dr.ir. Anne Gobin

Drought Risk Assessment 6-8 November 2018 Budapest

Acknowledgements: MERINOVA, cordex.be, iPOT, BELCAM, AFTER Colleagues from VITO Remote Sensing Unit

CURRENT DATA SERVICES @ VITO

MONITORING WITH DIFFERENT TYPES OF SENSORS

 Current services range from very high to very low resolution monitoring, increasingly combined with statistical information and other geo-data

RESOLUTION	VERY LOW	LOW	MEDIUM	HIGH	VERY HIGH
Pixel size	±5 km	±1 km	250-500m	10-30m	1-5m
Frequency			e - + +		
Image size			415	the state	
Examples		High spa	satemites itio-tempor ngly combin	al resolution ed with mod	lelting
			E The		2 A A A

Scales: Global \leftarrow Continental \leftarrow National \leftarrow Regional \leftarrow

Field + UAV

SATELLITE DATA ARCHIVES AT LOW RESOLUTION

http://www.vito-eodata.be (free download of products 5PB)

http://proba-v-mep.esa.int/ (Jupyter Notebooks)

91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

SPOT VEGETATION 1 SPOT VEGETATION 2 Probe/ Bot defined as a Data betweet VIITO

20y Archive of Vegetation Products at VITO

Daily acquisitions 10-daily cloudfree composite

Worldwide harmonised data (cross-boundary)!

METOP C

proba

1 km

VEGETATION

FREE DOWNLOAD OF PRODUCTS

http://www.vito-eodata.be

COPERNICUS GLOBAL LAND MONITORING SERVICE

https://land.copernicus.eu/

vegetation, energy budget at surface, water and cryosphere & its distribution component

Copernicus Global Land service web site is hosted by VITO NV. All rights reserv

-vito

GLOBAL VEGETATION INDEX - SEASONALITY

MEP PLATFORM (PRIMARILY FOR PROBA-V) BIG DATA PROCESSING ON DEMAND

https://proba-v-mep.esa.int/

GLOBAL VEGETATION DEVELOPMENT

"Land Surface Phenology"

SPOT-VGT/Proba-V

Indication of Vegetation Development

UN-FAO ASIS: AGRICULTURAL STRESS INDEX SYSTEM

SENTINEL 2 FOR AGRICULTURE - THE GAME CHANGER!

↑ Spatial resolution versus wavelength: Sentinel-2's span of 13 spectral bands, from the visible and the near-infrared to the shortwave infrared at different spatial resolutions ranging from 10 to 60 m on the ground, takes land monitoring to an unprecedented level

Source: http://esamultimedia.esa.int/docs/EarthObservation/Sentinel-2_ESA_Bulletin161.pdf

TERRASCOPE

terrascope.be

- Belgian Collaborative Ground Segment for Sentinel Data
- Coverage: Belgium
- Processing S2:
 - Geometric correction
 - Cloud/shadow: SEN2COR
 - iCOR for atmospherical correction
 - Biopar (~S2-Toolbox)
- TOC + LAI, FAPAR, FCOVER, NDVI

SATELLITE DATA

Powered by

TERRASCOPE: COLLABORATIVE GROUND SEGMENT FOR BELGIUM (COPERNICUS SENTINEI

CROP DEVELOPMENT

REMOTE SENSING DERIVED VARIABLES AT THE PARCEL LEVEL

RS data => vegetation variables => Input in soil-crop-atmosphere models

Soil-crop-atmosphere models: Weather time series => bio-meteorological variables Soil information => water balance Crop development information Field management

¹⁶ Piccard, I., Gobin, A., Wellens, J., Tychon, B., Goffart, J.P., Curnel, Y., Planchon, V., Leclef, A., Cools, R., Cattoor, N., 2017. Potato monitoring in Belgium with "WatchITGrow". In Analysis of Multitemporal Remote Sensing Images (MultiTemp), June 2017: 9th International Workshop (pp. 1-4). IEEE; doi: 10.1109/Multi-Temp.2017.8035229.

CROP DEVELOPMENT => SENTINEL SATELLITE IMAGERY

Variability inter and intra parcel Sentinel-2 of 23 June 2016

Opportunities for

- Detecting crops,
- Detecting varieties
- Field zoning for management purposes

17 Piccard, I., Gobin, A., Wellens, J., Tychon, B., Goffart, J.P., Curnel, Y., Planchon, V., Leclef, A., Cools, R., Cattoor, N., 2017. Potato monitoring in Belgium with "WatchITGrow". In Analysis of Multitemporal Remote Sensing Images (MultiTemp), June 2017: 9th International Workshop (pp. 1-4). IEEE; doi: 10.1109/Multi-Temp.2017.8035229.

WATCHITGROW www.watchitgrow.be

Crop development monitoring from Sentinel-2 imagery

For potato processing industry BE: largest exporter of frozen potato products

Crop yield modelling from meteo, soil, crop characteristics

CROP DEVELOPMENT AND PROBA-V IMAGERY

¹⁹ Durgun, Y.Ö., Gobin, A., Gilliams, S., Duveiller, G., Tychon, B., 2016. Testing the Contribution of Stress Factors to Improve Wheat and Maize Yield Estimations Derived from Remotely-Sensed Dry Matter Productivity. Remote Sensing 8(3), 170 Durgun, Y.Ö., Gobin, A., Vandekerchove, R., Tychon, B., 2016. Crop Area Mapping using 100m PROBA-V time series. Remote Sensing 8(7), 585

DROUGHT MONITORING WITH SENTINEL IMAGERY

20/07/2016

15/07/2018

Drought causes early senescence

IMPROVED CROP MAPPING

Different phenological activity between crops

Classification Accuracy increases with spectral, spatial and temporal resolution

²¹ Van Tricht, K., Gobin, A., Gilliams, S., Piccard, I., 2018. Synergistic use of Sentinel-1 radar and Sentinel-2 optical imagery for mapping crops at large scale: a case study for Belgium. Remote Sensing.
 Durgun, Y.Ö., Gobin, A., Vandekerchove, R., Tychon, B., 2016. Crop Area Mapping using 100m PROBA-V time series. Remote Sensing 8(7), 585; https://doi.org/10.3390/rs8070585

DROUGHT IMPACT ON CROPS

MAGNITUDE OF IMPACT ON AGRICULTURE

- Impact depends on
 - the occurrence of the event during the agricultural season
 - the location of the event vs system
 - the magnitude and duration of the event
 - the vulnerability/resilience of the system
 - Agro-ecosystem component

yield, biomass, soil quality, soil moisture, greenness, ...

Farming calendar

SOIL-CROP-ATM MODELLING TO CAPTURE GROWTH DYNAMICS

ADVERSE WEATHER CONDITIONS ALTER CROP DEVELOPMENT

1. Trend analysis of time series and fitting distributions of individual stations

$$G(z; \mu_i, \sigma_i, \xi_i) = exp[-(1 + \xi_i(z - \mu_i)/\sigma_i)^{-1/\xi_i}]$$

2. Return period (*T*) and value (z_T)

$$z_T = \mu_i - \sigma_i / \xi_i (1 - [-log(1 - 1/T)]^{-\xi_i})$$

$$T = 1 / (1 - G(z_T))$$

Cumulative precipitation deficit = f(ET, P)

Grass 50 km 50 km 72

20y RP for precipitation deficit

²⁵ Zamani, S., Gobin, A., Van de Vyver, H., Gerlo, J., 2015. Atmospheric drought in Belgium - Statistical analysis of precipitation deficit. International Journal of Climatology 36(8): 3056-3071, DOI: 10.1002/joc.4536.

CLIMATE IMPACT: SHIFT IN CROP DEVELOPMENT

Growth stages occur significantly earlier after 1987, shift in phenology!

Implications for the coincidence between an extreme event (heat stress) and the sensitive stage

²⁶ Gobin, A., 2012. Impact of heat and drought stress on arable crop production in Belgium. Natural Hazards and Earth System Sciences 12, 1911-1922.

CROP DEVELOPMENT AND WEATHER IMPACT

Probability of exceedance and 20-y return period

Spatial return period

Consecutive rainy days

27 Gobin, A., 2018. Weather related risks in Belgian arable agriculture. Agricultural Systems 159: 225-236. https://doi.org/10.1016/j.agsy.2017.06.009

MAPPING VULNERABILITY AND RESILIENCE : e.g. DROUGHT IN GRASSLAND

Vanwindekens, F.M., Gobin, A., Curnel, Y., Planchon, V., 2018. New Approach for Mapping the Vulnerability of Agroecosystems Based on Expert Knowledge. Math Geosci (2018). https://doi.org/10.1007/s11004-018-9730-5

28

CLIMATE PROJECTIONS & ADAPTATION OPTIONS

CLIMATE IMPACT ON CROP GROWTH (CORDEX.BE)

 Projected shifts - observed weather 1960-1990 (Hist), GCM 1976-2005 (Base), and 2070-2100 (RCP45, RCP85). ALARO 12 km Downscaling. Model runs on locations of synoptic stations across Belgium.

ARTICLES https://doi.org/10.1038/s41477-018-0263-1

nature plants

Decreases in global beer supply due to extreme drought and heat

$$\label{eq:WeiXieo1} \begin{split} & \mathsf{WeiXieo1^*, WeiXieo2^{3.4}, JiePano2, Tariq Ali', Qi Cui^5, Dabo Guano4, '*, Jing Mengo8, Nathaniel D. Mueller', Erda Lino2* and Steven J. Davis^{9,10} \end{split}$$

CROP WATER DEMAND AND IRRIGATION - DROUGHT IN 2017

Wilting crops Total loss

FARM-LEVEL ADAPTATION OPTIONS & MEASURES

- Crop breeding variety trials!
- Cultivation techniques: irrigation and drainage
- Soil and water conservation measures: capping, mulching,
- Soil care!

Parcel monitoring

³³ De Frutos Cachorro, J., Gobin, A., Buysse, J., 2018. Farm-level adaptation to climate change: The case of the Loam region in Belgium. Agricultural Systems 165, 164-176.

STAKEHOLDERS' PERCEPTIONS

RISK PERCEPTION AND INSURANCES IN BELGIUM

RISK AND INSURANCE: YIELD VARIABILITY

Different yield datasets were used:

- Spatial yield variability increases at different scales agricultural regions - communities - parcels
- Distributions at the parcel level were used to define low yields for different arable crops

RISK AND INSURANCE - DISASTER FUND

FADN WHEAT YIELD

Yield anomalies

- Variability in claims
- Relation with yield ?
- Model allows for analysing weather impacts during sensitive growth stages

Relation with extremes during the growing season is clear

Drought

RISK AND INSURANCE: DAMAGE ASSESSMENT

Heavy rainfall of > 50mm/day: end May, 21 June, 23-24 June 2016

Cover remains low in july due to waterlogging

Drone Imagery

³⁸ Gobin, A., 2018. Weather related risks in Belgian arable agriculture. Agricultural Systems 159: 225-236. https://doi.org/10.1016/j.agsy.2017.06.009

RISK PERCEPTION: FARMERS

Eliciting farmers perceptions using participatory techniques:

- Focus group discussions
- Risk matrices
- Interviews, terrain visits
- Formal questionnaires

- Farmers perceive an increased risk:
 - Increase in extreme weather and adverse weather conditions in a changing climate
 - Decrease in direct income support
 - Directive on agricultural damage
 - Payment is reduced to 50% unless the farmer has a private insurance

RISK PERCEPTION AND ACTION: FARMERS

Strategy implementation

- Dependent on type of EWE
- Mostly on-farm strategies
- Market based strategy: hail insurance
- 1 policy strategy in the TOP 5

Mostly ON-FARM strategies

POLICY strategies more EFFICIENT ?

Insurances do not restrict on-farm measures!

DATA AVAILABILITY AND USE FOR ESTIMATION OF DROUGHT RISK

- » Large archives of **global harmonised data** available at low resolution (< 1km)
 - » Global LUCC is possible, also at the country scale
 - » Vegetation indices as input into vegetation development monitoring
 - » Portals for free download of products
 - » Cloud computing
- » Links between low and high resolution (10-20 m) at the global scale!!!
 - » Sentinel suite of satellites: Unprecedented high temporal, spatial and spectral resolutions, including radar, at the global scale
 - » Identification of crop area, crop types, crop development, ...
 - » Assessment of hot spots in terms of stress, changes, degradation, ...
- » Synergy between monitoring and modelling
 - » Monitoring: time series of vegetation indices
 - » Modelling: input to soil-crop-atmosphere models in combination with soil and meteorology

CONCLUSION

Hazard characterisation (Meteo)

rainfall excess, drought, temperature extreme events, adverse weather

Impact (Remote Sensing)

crop development damage assessment

Adaptation (Modelling)

soil and water **resources use Vulnerability; Measures & Options**

Paradigm shift to data rich environments with unprecedented possibilities to monitor crop status at higher spatial, temporal and spectral resolutions

winter wheat

Legende % Cover 0.10000 0.30000 0.30000 0.40000 0.40000 0.40000 0.40000 0.40000 0.40000 0.40000

DROUGHT IMPACT: DATA AVAILABILITY AND USE FOR ESTIMATION OF DROUGHT RISK

Dr.ir. Anne Gobin

Acknowledgements: MERINOVA, cordex.be, iPOT, BELCAM, AFTER Colleagues from VITO Remote Sensing Unit

Drought Risk Assessment 6-8 November 2018 Budapest

REFERENCES

- De Frutos Cachorro, J., Gobin, A., Buysse, J., 2018. Farm-level adaptation to climate change: The case of the Loam region in Belgium. Agricultural Systems 165, 164-176.
- Durgun, Y.Ö., Gobin, A., Gilliams, S., Duveiller, G., Tychon, B., 2016. Testing the Contribution of Stress Factors to Improve Wheat and Maize Yield Estimations Derived from Remotely-Sensed Dry Matter Productivity. Remote Sensing 8(3), 170; https://doi.org/10.3390/rs8030170.
- Durgun, Y.Ö., Gobin, A., Vandekerchove, R., Tychon, B., 2016. Crop Area Mapping using 100m PROBA-V time series. Remote Sensing 8(7), 585; https://doi.org/10.3390/rs8070585.
- Gobin, A., 2010. Modelling climate impacts on arable yields in Belgium. Climate Research 44: 55-68.
- Gobin, A., 2012. Impact of heat and drought stress on arable crop production in Belgium. Natural Hazards and Earth System Sciences 12, 1911-1922.
- Gobin, A., 2018. Weather related risks in Belgian arable agriculture. Agricultural Systems 159: 225-236.
- Piccard, I., Gobin, A., Wellens, J., Tychon, B., Goffart, J.P., Curnel, Y., Planchon, V., Leclef, A., Cools, R., Cattoor, N., 2017. Potato monitoring in Belgium with "WatchITGrow". In Analysis of Multitemporal Remote Sensing Images (MultiTemp), June 2017: 9th International Workshop (pp. 1-4). IEEE.
- Van Tricht, K., Gobin, A., Gilliams, S., Piccard, I., 2018. Synergistic use of Sentinel-1 radar and Sentinel-2 optical imagery for mapping crops at large scale: a case study for Belgium. Remote Sensing.
- Vanwindekens, F.M., Gobin, A., Curnel, Y., Planchon, V., 2018. New Approach for Mapping the Vulnerability of Agroecosystems Based on Expert Knowledge. Math Geosci (2018). https://doi.org/10.1007/s11004-018-9730-5
- Zamani, S., Gobin, A., Van de Vyver, H., Gerlo, J., 2015. Atmospheric drought in Belgium Statistical analysis of precipitation deficit. International Journal of Climatology 36(8): 3056-3071, https://doi.org/10.1002/joc.4536.

