The homogenization of GPS Integrated Water Vapour time series: methodology and benchmarking the algorithms on synthetic datasets

R. Van Malderen¹, E. Pottiaux², A. Klos³, O. Bock⁴, J. Bogusz³, B. Chimani⁵, M. Elias⁶, M. Gruszczynska³, J. Guijarro⁷, S. Zengin Kazancı⁸ and T. Ning⁹

× Nem jeleníthető meg a kép Lehet, hogy nincs elegendő

9

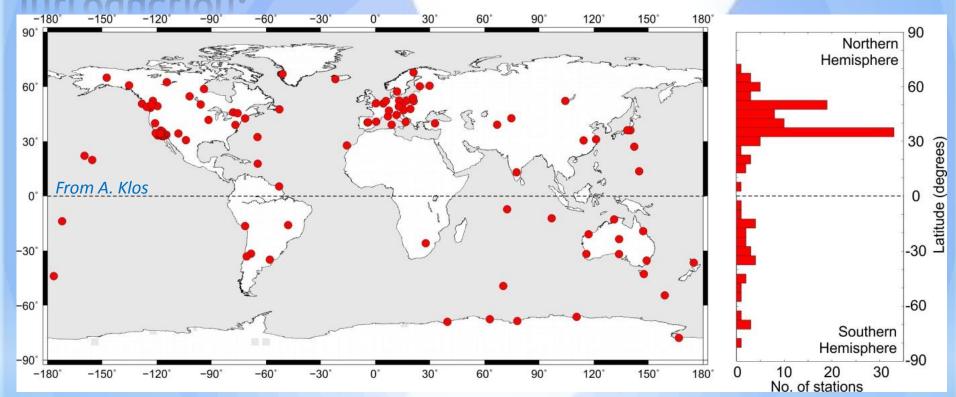
Outline

- 1. Motivation and introduction
- 2. Methodology
- 3. Synthetic dataset generation
- 4. Assessment of the performance of the homogenization tools on the synthetic dataset
- 5. Outlook

Motivation

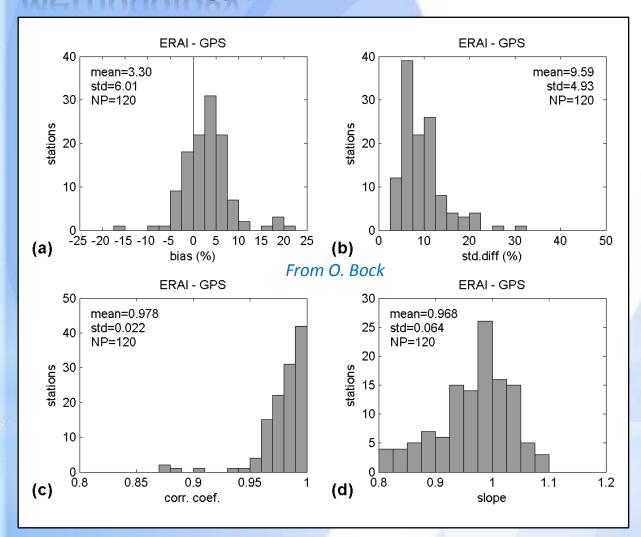
- COST action GNSS4SWEC 'Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate'
- WG3: Use of GNSS tropospheric products for climate monitoring (e.g. Integrated Water Vapour (IWV) = Precipitable Water (PW))

- From different presentations at different GNSS4SWEC workshops, it turned out that different groups were showing results from time series analyses, sometimes based on the same datasets.
- They were dealing/struggling with the homogenization of their datasets.
- → common activity, on a reference IWV dataset.



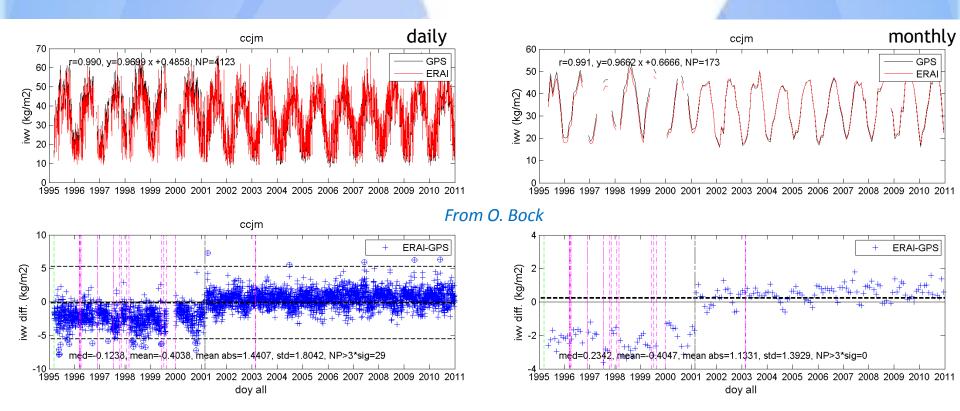
Introduction: the reference IWV dataset

- 120 sites worldwide, with homogeneous reprocessing from 1995 2010
- IGS repro 1: International GNSS Service, first reprocessing
- screened, outlier removed, and ZTD converted to IWV by O. Bock



Methodology: use of a reference IWV dataset (ERA-interim)

- good correlation between IGS repro 1 and ERA-interim model output
- but: not fully independent datasets
 - ✓ ERA-interim is used to screen the GPS data.
 - ✓ ERA-interim is used to convert the Zenith Total Delay from GPS to IWV (surface pressure, weighted mean temperature).
- ERA-interim not homogenous either!



Methodology: use of a reference IWV dataset (ERA-interim)

We will look for break points/change points in the GPS - ERA-interim IWV differences series.

Generation of synthetic dataset: how?

- based on the comparison of the epochs identified by different tools decided to build synthetic datasets with known inserted offsets for
 - ✓ the assessment of the performance of the different tools
 - ✓ a sensitivity analysis of this performance on the properties of the datasets
- synthetic datasets of the IWV differences,
 - 1. based on the characteristics of the real GPS ERA-interim IWV differences:
 - ✓ analysis of significant frequencies
 - ✓ noise model
 - √ linear trends
 - ✓ gaps
 - 2. based on the characteristics of the offsets in the real IWV differences:
 - ✓ number
 - ✓ typical amplitudes

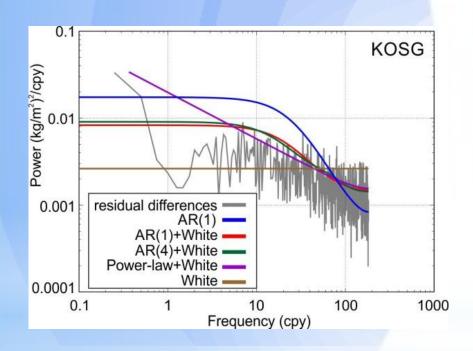
around 1000 epochs of instrumental changes, reported if the stations metadata, were manually checked in the IWV inferences (164 confirmed + 57 new ones)

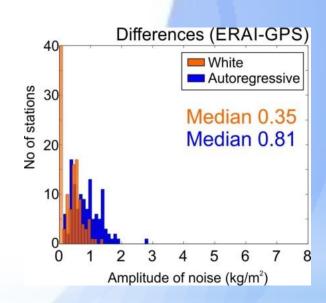
computations were performed with Maximum

Likelihood Estimation (MLE) in the Hect r software

→ also used for 1st order correction of the data

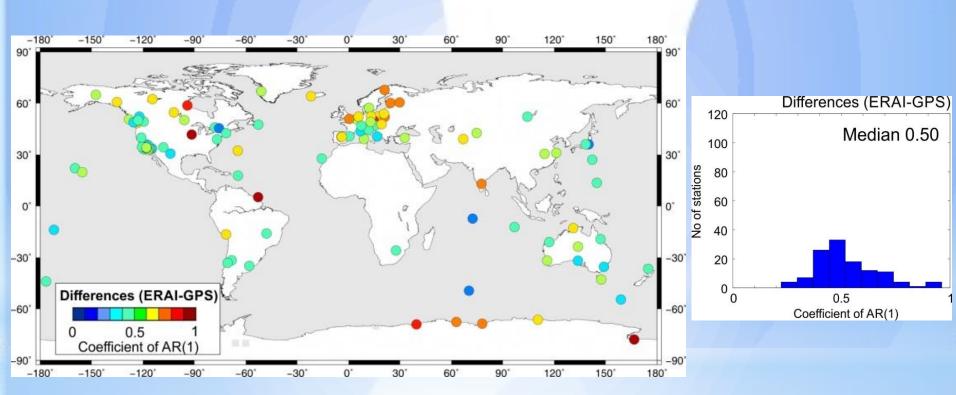
(Bos et al., 2013).





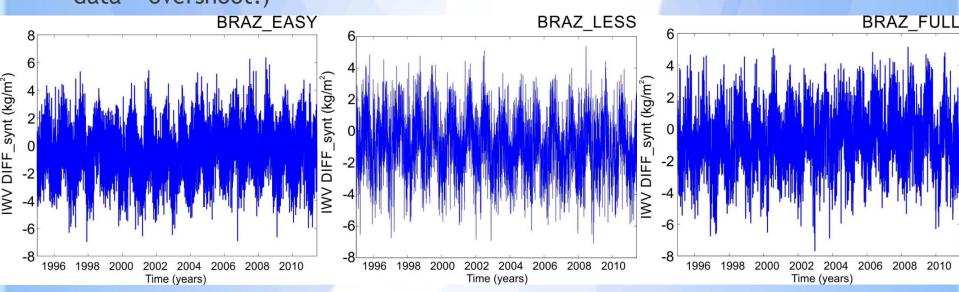
Noise model

combination of autoregressive process of first order plus white noise (AR(1)+WN)
characterized by: coefficient, fraction and amplitude (AR), amplitude (WN).



Noise model

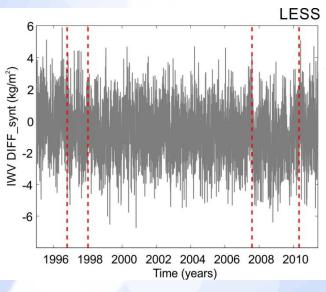
 combination of autoregressive process of first order plus white noise (AR(1)+WN) characterized by: coefficient, fraction and amplitude (AR), amplitude (WN).

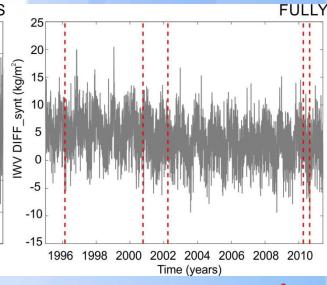


3 variants of synthetic time series of IWV differences

For every station (120 stations!), 3 variants of synthetic time series were created:

- 1. 'easy' dataset: seasonal signals (annual, semi-annual, ter- and quater-annual, if present for a particular station) + offsets + white noise (WN)
- 2. 'less-complicated' dataset: same as 1. + autoregressive process of the first order (noise model = AR(1)+WN)
- **3.** 'fully-complicated' dataset: same as 2. + trend + gaps (up to 20% of missing data = overshoot!)




3 variants of synthetic time series of IWV differences

For every station (120 stations!), 3 variants of synthetic time series were created:

- 1. 'easy' dataset: seasonal signals (annual, semi-annual, ter- and quater-annual, if present for a particular station) + offsets + white noise (WN)
- 2. 'less-complicated' dataset: same as 1. + autoregressive process of the first order (noise model = AR(1)+WN)
- **3.** 'fully-complicated' dataset: same as **2.** + trend + gaps (up to **20**% of missing data)

Which homogenization tools?

Climatol

J. Guijarro

HOMOP

B. Chimani

PMTred

T. Ning

Nonparametric tests

R. Van Malderen

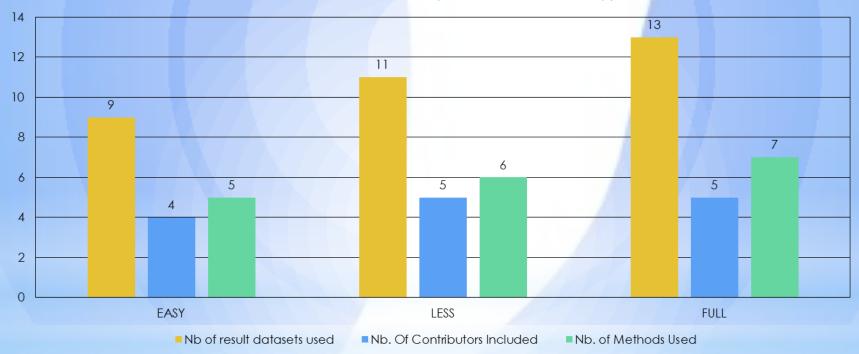
2-sample ttest

M. Elias

Pettitt test

S. Zengin Kazancı

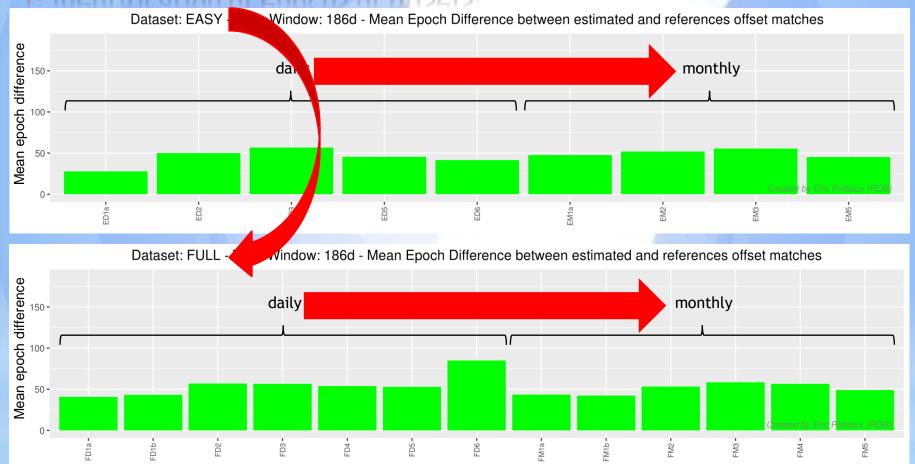
	Method 1	Method 2	Method 3	Method 4	Method 5	Method 6	Method 7
Operator	M. Elias	R. Van Malderen	R. Van Malderen	J. Guijarro	T. Ning	S. Zengin	B. Chimani
Method / SW	2-sample t- test	2 of 3	PMW	CLIMATOL	PMTred	Pettitt	НОМОР
Daily/Monthly	D+M	D+M	D+M	D+M	D+M	D	X
Easy/Less/Full	E+L+F	E+L+F	E+L+F	L+F	E+L+F	E+L+F	E+F



Which homogenization tools?

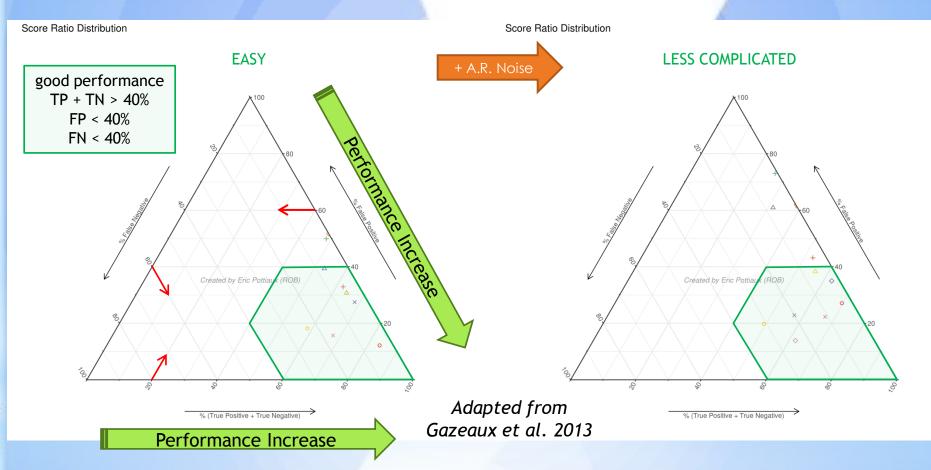
Submission Info. w.r.t. Synthetic Dataset Type

Assessment of the performance of tools on...


- 1. ... the identification of the **epochs** of the inserted breakpoints (+ sensitivity analysis) in the synthetic datasets.
- 2. ... the estimation of the **trends** that were or were not imposed to the 3 sets of synthetic IWV differences.
- → Venema et al. 2012, Benchmarking homogenization algorithms for monthly data, Climate of the Past, 8, 89-115, doi:10.5194/cp-8-89-2012.
- → Gazeaux et al. 2013, Detecting offsets in GPS time series: first results from the detection of offsets in GPS experiment, J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50152.

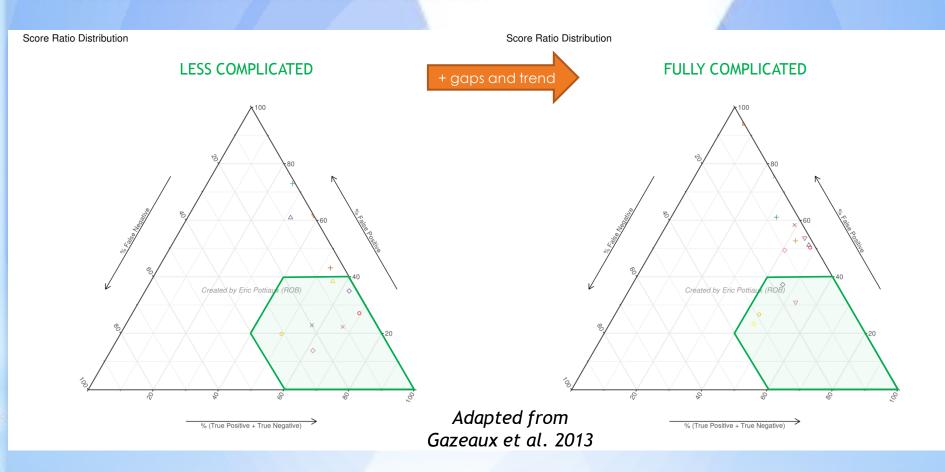
1. Identification of epochs of offsets: defining a proper time window

→ In this presentation, a time window of 62d (2 months), will be assumed.



1. Identification of epochs of offsets: detection scores

good performance for the majority of the tools for the easy and less complicated dataset



1. Identification of epochs of offsets: detection scores

performance decreases drastically for almost all the tools when adding gaps and a trend in the benchmark time series

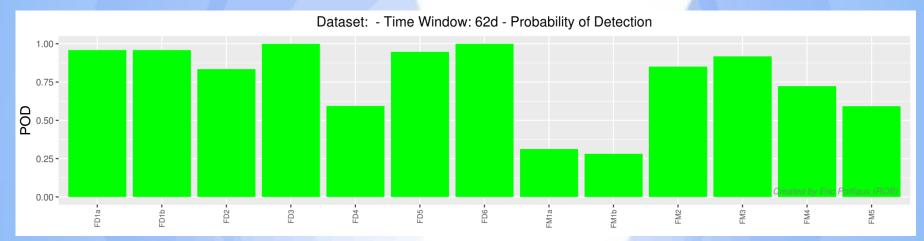
Motivation & introduction

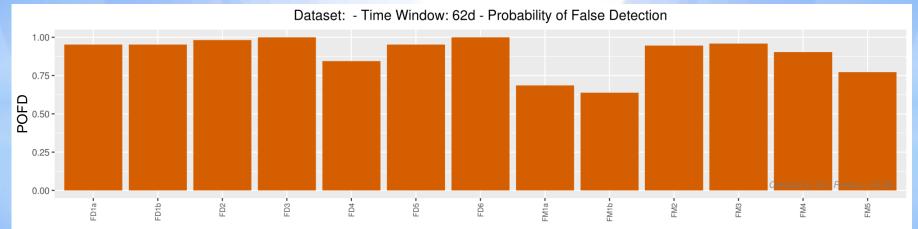
Methodology

Synthetic datasets

Performance of homogen tools

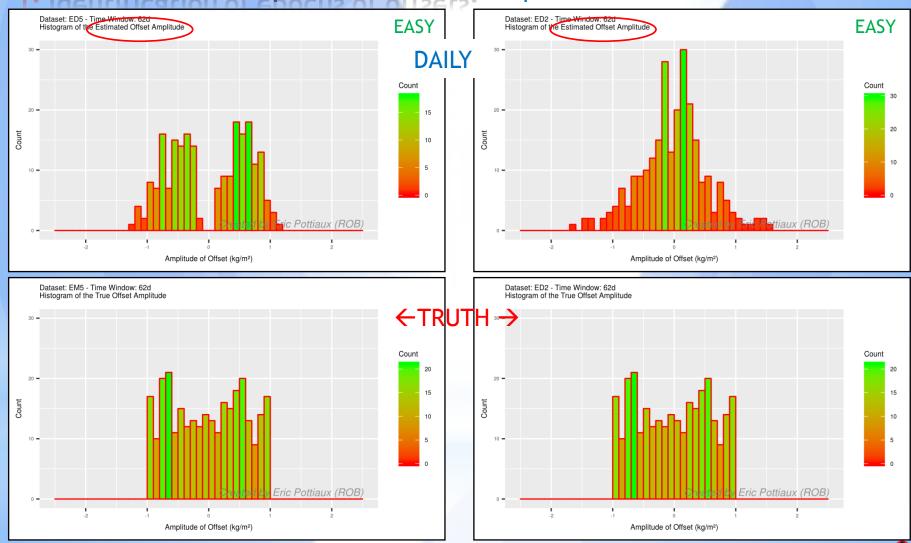
Outlook


1. Identification of epochs of offsets: detection scores



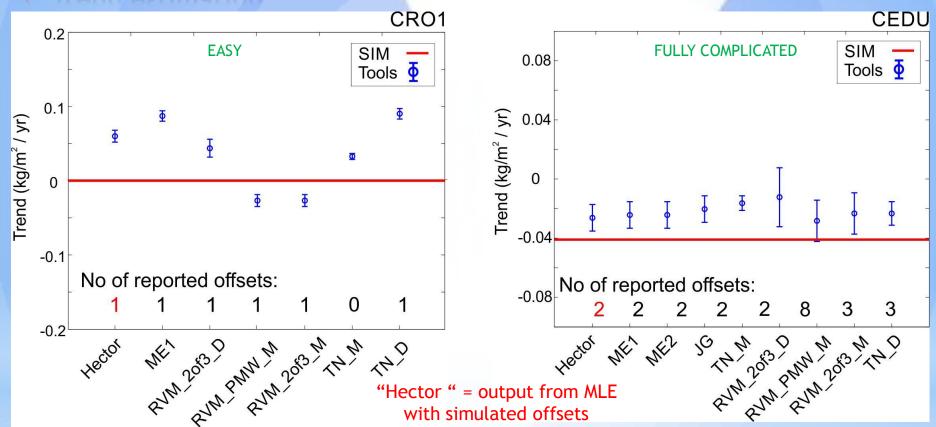
1. Identification of epochs of offsets: detection scores

FULLY COMPLICATED



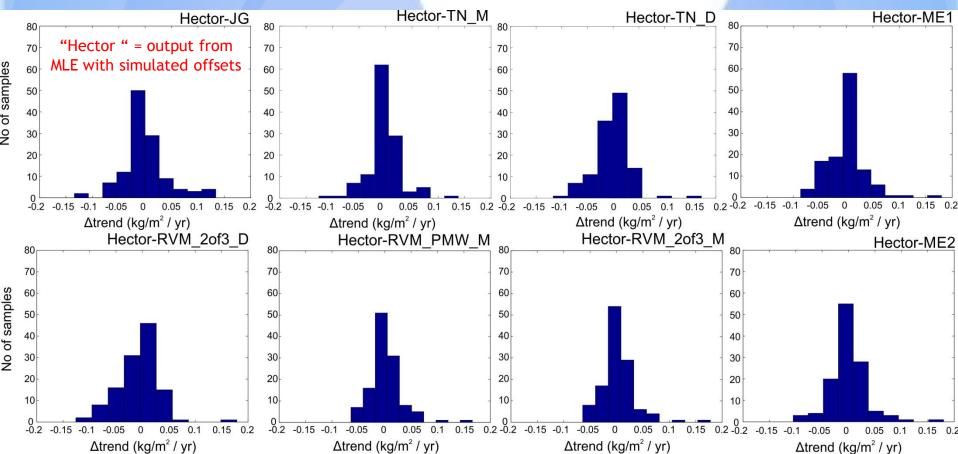
1. Identification of epochs of offsets: amplitudes of offsets

1. Identification of epochs of offsets: amplitudes of offsets



2. Trend estimation

→ large variety of trends (and uncertainties) for the different corrected time series



2. Trend estimation

→ most trends differ within ±0.05 mm/yr.

Workplan

- more detailed assessment of the performance of the different tools (and sensitivity analysis): CRMSE, ...
- The epochs and amplitudes (and feedback) of the offsets in the synthetic datasets is given to the participants who already provided their solutions
 → fine-tuning of their tools
- We highly welcome other contributions (tools, solutions) in our activity! Interested? Please contact me at roeland@meteo.be.
- A next generation of a fully complicated synthetic dataset will be generated:
 - √ fully complicated II?
 - ✓ gaps decoupled from trend(s)?
 - ✓ based on the difference of the synthetic IGS repro 1 minus the real ERA-interim?
- A second round of blind homogenization on this next generation dataset(s) will end in September.

Outlook

- application of the good performing tools on the IGS repro 1
- define a common strategy to correct the IGS repro 1 dataset, based on criteria as (examples!):
 - ✓ break points should be detected by a minimum of homogenization tools.
 - ✓ break point should be present in the metadata file of the station.
 - ✓ the amplitude of the offset should be above a certain limit.
 - ✓ break points should be detected in other IWV differences time series (e.g. IGS minus NCEPNCAR reanalysis)
- Thereafter, the focus will be on a GNSS IWV dataset centred above Europe, homogeneously reprocessed, with about 100 sites (out of 280) with data from 1996-2014 (→ neighbour-based approach possible?)
- We are looking forward to getting feedback/input/participation from your community!

Thank you for your attention

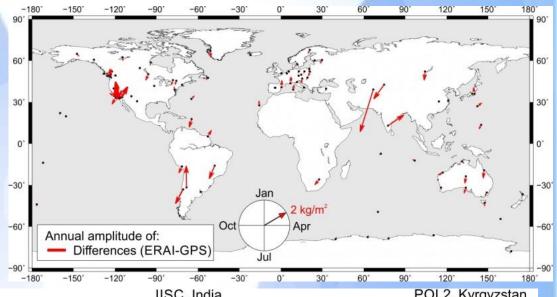
	Ning	Elias		Van Malderen et al.		Bock et al.	KTU (Tanır Kay	Klos et al.	
	monthly	monthly	daily	monthly	daily	daily	daily	manual	
albh				15/10/2002	15/10/2002	2/05/1998	18/05/2002		
albh				15/03/2000		9/07/1998			
albh					15/02/2006	2/07/2000			
albh						12/03/2001			
albh						18/01/2005			
algo						7/02/2008	17/05/1997	12/10/2007	1
alic			20/04/2006	15/04/2006	15/04/2006	21/08/1999	26/10/2008	31/07/1999	1
alic				15/08/1999	15/08/1999	20/04/2006		15/06/2003	1
alic								6/05/2010	1
alic								11/10/1999	3
ankr	15/09/2000	15/10/2001	15/10/2001	15/10/2001	15/10/2001	3/01/2001	18/05/2005	7/02/1996	1
ankr				15/08/2000	15/09/2000	11/05/2008		23/07/1996	1
ankr				15/09/2008	15/09/2008			24/07/1997	1
ankr								16/09/1998	1
ankr								4/07/2000	1
ankr								24/11/2000	1
ankr								6/05/2008	1
ankr								4/06/1999	3
ankr								16/09/2000	3
ankr								26/11/2007	3

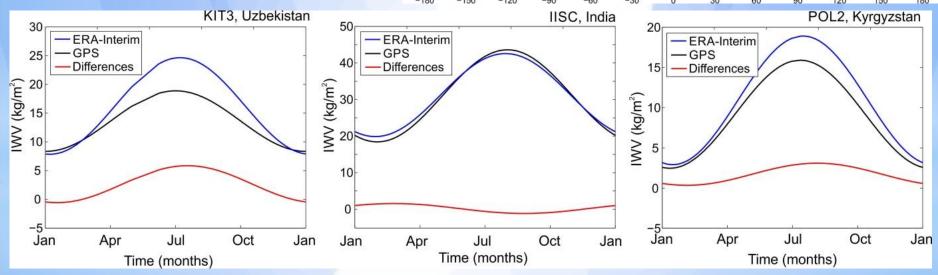
- breakpoints detected in metadata & visual inspection, but not by any of the groups?
- breakpoints detected by a number (all) tools, but no metadata information?
- time window! When are breakpoints coincident?

$$IWV(t_{i}) = a + b \cdot (t_{i} - t_{0}) + c \cdot \sin(2\pi \cdot (t_{i} - t_{0})) + d \cdot \cos(2\pi \cdot (t_{i} - t_{0})) + e \cdot \sin(4\pi \cdot (t_{i} - t_{0})) + f \cdot \cos(4\pi \cdot (t_{i} - t_{0})) + e \cdot \sin(6\pi \cdot (t_{i} - t_{0})) + h \cdot \cos(6\pi \cdot (t_{i} - t_{0})) + e \cdot \sin(8\pi \cdot (t_{i} - t_{0})) + f \cdot \cos(8\pi \cdot (t_{i} - t_{0})) + e \cdot \sin(8\pi \cdot (t_{i} - t_{0})) + f \cdot \cos(8\pi \cdot (t_{i} - t_{0})) + e \cdot \sin(8\pi \cdot (t_{i} - t_{0})) + f \cdot \cos(8\pi \cdot (t_{i} - t_{0})) + e \cdot \sin(8\pi \cdot (t_{i} - t_{0})) + f \cdot \cos(8\pi \cdot (t_{i} - t_{0})) + e \cdot \sin(8\pi \cdot (t_{i} - t_{0})) + f \cdot \cos(8\pi \cdot (t_{i} - t_{0})) + e \cdot \sin(8\pi \cdot (t_{i} - t_{0})) + f \cdot \cos(8\pi \cdot (t_{i} - t_{0}$$

If significant frequencies were not accounted for, it may lead to wrong trend estimates.

Computations were performed with Maximum Likelihood Estimation (MLE) in the Hector software.

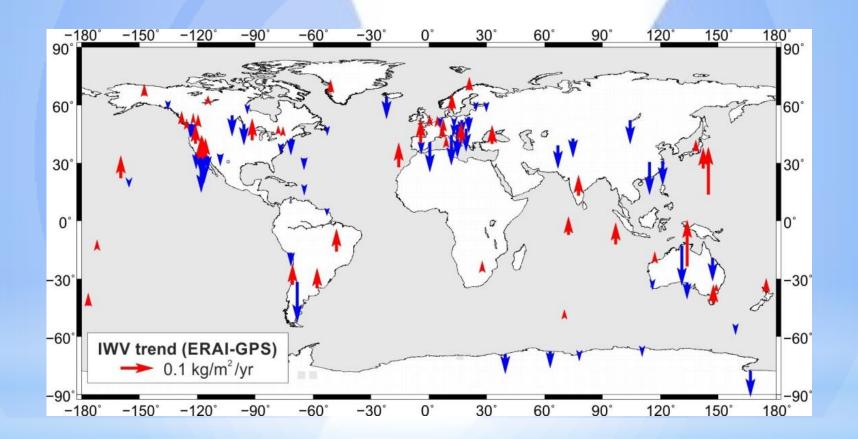


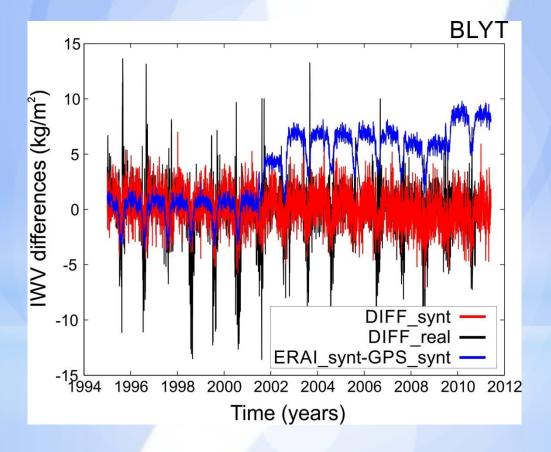


Characterization of real data:

Annual signal.

The largest differences between seasonal curves were found for KIT3, IISC and POL2 due to a shift in phase.





Why did we go for synthetic differences (DIFF_synt)?

We examined **ERAI_synt-GPS_synt** and we couldn't have covered some part of power...

There is remaining unmodelled "signals and noise" in the time series of the real

differences.

