The deleted chapter on future research needs

(Of the WMO Guidance on Homogenization)

Victor Venema Victor.Venema@grassroots.is @variabilityBlog https://fediscience.org/@VictorVenema

Outline

- Introduction
- Physical understanding
- Break detection
- Computing uncertainties
- Deterministic or stochastic corrections?
- Correction as model selection problem

Low SNR

• Theory

 Lindau, R. and Venema, V.K.C., 2018: The joint influence of break and noise variance on the break detection capability in time series homogenization. Advances in Statistical Climatology, Meteorology and Oceanography, 4, p. 1–18. https://doi.org/10.5194/ascmo-4-1-2018

• Statistical properties of inhomogeneities

- Lindau, R, Venema, V., 2019: A new method to study inhomogeneities in climate records: Brownian motion or random deviations? International Journal Climatology, 39: p. 4769–4783. Manuscript. https://eartharxiv.org/vjnbd/ https://doi.org/10.1002/joc.6105
- Lindau, R, Venema, V., 2020: Random trend errors in climate station data due to inhomogeneities. International Journal Climatology, 40, pp. 2393-2402. Open Access. https://doi.org/10.1002/joc.6340

• Numerical confirmation

- Gubler, S., Hunziker, S., Begert, M., Croci-Maspoli, M., Konzelmann, T., Brönnimann, S., Schwierz, C., Oria, C. and Rosas, G., 2017: The influence of station density on climate data homogenization. Int. J. Climatol., 37: 4670–4683. doi: 10.1002/joc.5114.
- Statistical homogenization under-corrects any station network-wide trend biases
 - https://variable-variability.blogspot.com/2020/05/statistical-homogenization-undercorrection-trends.html

Climate elements

- We work too much on temperature
 - Other variables often have a lower SNR
- Combined dataset with all elements
 - Copernicus project
 - Help in understanding reasons for inhomogeneities
 - Help for detection?

Scales & goals

- Station, regional, network, continental, global
- Different scales need different methods
- Example:
 - Imagine a network-wide inhomogeneity
 - Important for the network average, but small compared to station noise
 - Most stations it will not be statistically significant, correction likely have a larger error than the break size
 - Correcting it would increase error on a station scale
 - But would decrease the error on the network scale
- Estimate statistical properties of inhomogeneities from raw data

Independent lines of evidence

- Climatology is an observational science
- Independent lines of evidence
- Warming
 - Station record
 - SST observations (lake & river temperatures)
 - Radiosonde observations
 - Satellite retrievals (many different kinds)
 - Paleo reconstructions (many different kinds)
 - Changes in nature and agriculture
 - Sea level rise
 - Melting glaciers
 - Theoretical expectation

Independent lines of evidence

- Station warming estimates
 - Different station classes
 - Comparison with neighbouring networks
 - Comparison of the corrections with parallel measurements

Physical understanding

- Parallel measurements
 - KNMI (Brandsma) wrote a WMO report
- Physical modelling (RT, flow)
- Historical information on measurement methods
 - Marine data community has this
 - Room observation
 - Window observations
 - Sheds, stands and huts
 - Stevenson screens
 - AWS
 - Surrounding (urbanization, airports, irrigation)

Break detection

- Multiple breakpoint problem
 - Multi-test
- Inhomogeneous reference problem
- Compute the SNR before you homogenize
 - Another significance level does not solve the SNR problem
 - Compute statistical properties of the inhomogeneities from raw data
 - Temporal correlations (in the difference series)
- Joint detection

Break detection

• Network-wide breaks

Computing uncertainties

• Source:

- Also after homogenisation uncertainties remain in the data due to various problems: Not all breaks in the candidate station have been and can be detected.
- False alarms are an unavoidable trade-off for detecting many real breaks.
- Uncertainty in the estimation of correction parameters due to limited data.
- Uncertainties in the corrections due to limited information on the break positions.
- We have estimate from benchmarking high SNR networks
 - Only few on: difficult situations (islands, El Nino, mountains, ...)
- Brohan et al. (2006): Errors from a few known inhomogeneities assumed to be similar world-wide

Deterministic or stochastic corrections?

- Authors of daily correction methods find their method improve estimates
- Independent validation is less optimistic
- Purely deterministic
 - For example, a calibration problem:
 - 0°C before and after the break the same
 - At 30°C after the break 2°C warmer
- Purely stochastic
 - For example, a new response time
- How to estimate this from data?
 - Noise in the difference series for identical instruments

Correction as model selection problem

- The number of degrees of freedom (DOF) of the various correction methods varies widely.
 - From just one DOF for annual corrections,
 - 12 DOF for monthly correction
 - 24 DOF for monthly mean and standard deviation
 - 40 DOF for decile corrections applied to every season
 - Large number of DOF for quantile/percentile matching
- HOME, with PRODIGE & for Europe
 - Temperature: monthly
 - Precipitation: annual
 - Will depend on the SNR, on the break
- Model selection problem, with a penalty for complexity

- Physical understanding
- Break detection
- Computing uncertainties
- Deterministic or stochastic corrections?
- Correction as model selection problem
- https://variable-variability.blogspot.com/2020/10/ deleted-chapter.html
- https://fediscience.org