

The Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University 10th SEMINAR FOR HOMOGENIZATION AND QUALITY CONTROL AND 5th CONFERENCE ON SPATIAL INTERPOLATION TECHNIQUES IN CLIMATOLOGY AND METEOROLOGY 12-14 October 2020 (on-line)

LONG-TERM TRENDS IN EXTREME TEMPERATURE AND PRECIPITATION INDICES FOR ISRAEL BASED ON A NEW DAILY HOMOGENIZED DATABASE

<u>Yizhak Yosef</u>^{1,2}; Enric Aguilar³; Pinhas Alpert¹

(1) Department of Geophysics, Tel Aviv University, Tel Aviv, Israel

(2) Israel Meteorological Service, Bet Dagan, Israel

(3) Center for Climate Change (C3), Rovira i Virgili University, Tarragona, Spain

OUTLINES

- Methodology Distribution of stations, Homogenization routine,
 Extreme indices calculation
- **Results** Trends for a few temperature and precipitation indices for the

period 1950-2017 (and a glimpse to 2100)

Conclusions

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Homogeneous database

Expert Team on Climate Change Detection and Indices (ETCCDI) &

Expert Team on Sector-specific Climate Indices (ET-SCI)

<u>1950-2017</u>

TEMPERATURE INDICES

	Index	Indicator name	Definitions	ET	Unit
1	FD0	Frost days	Annual count when TN (daily minimum)<0°C	ETCCDI	Days
2	SU25	Summer days	Annual count when TX (daily maximum)>25°C	ETCCDI	Days
3	ID0	Ice days	Annual count when TX (daily maximum)<0°C	ETCCDI	Days
4	TR20	Tropical nights	Annual count when TN (daily minimum)>20°C	ETCCDI	Days
5	FD2	Frost days 2	Annual count when TN < 2°C	et-sci	Days
6	SU30	Hot days	Annual count when TX ≥ 30°C	et-sci	Days
7	SU35	Very hot days	Annual count when TX ≥ 35°C	et-sci	Days
8	TXx	Max Tmax	Monthly maximum value of daily maximum temperature	etccdi	°C
9	TNx	Max Tmin	Monthly maximum value of daily minimum temperature	etccdi	°C
10	TXn	Min Tmax	Monthly minimum value of daily maximum temperature	etccdi	°C
11	TNn	Min Tmin	Monthly minimum value of daily minimum temperature	etccdi	°C
12	TN10p	Cool nights	Percentage of days when TN<10 th percentile	ETCCDI	%
13	TX10p	Cool days	Percentage of days when TX<10 th percentile	ETCCDI	%
14	TN90p	Warm nights	Percentage of days when TN>90 th percentile	ETCCDI	%
15	ТХ90р	Warm days	Percentage of days when TX>90 th percentile	ETCCDI	%
16	WSDI	Warm spell duration indicator	Annual count of days with at least 6 consecutive days when TX>90 th percentile	etccdi	Days
71	WSD13	Warm spell duration indicator	Annual count of days with at least 3 consecutive days when TX>90 th percentile	etccdi	Days
18	CSDI	Cold spell duration indicator	Annual count of days with at least 6 consecutive days when TN<10 th percentile	etccdi	Days
19	CSD13	Cold spell duration indicator	Annual count of days with at least 3 consecutive days when TN<10 th percentile	et-sci	Days
20	DTR	Diurnal temperature range	Monthly mean difference between TX and TN	etccdi	°C
21	τχάτης	Hot days and nights	Annual count of 3 consecutive days where both TX > 95^{th} percentile and TN > 95^{th} percentile	et-sci	Numbe of even

PRECIPITATION INDICES

	Index	Indicator name	Definitions	ET	Unit
22	RX1day	Max 1-day precipitation amount	Monthly maximum 1-day precipitation	etccdi	mm
23	RX5day	Max 5-day precipitation amount	Monthly maximum consecutive 5-day precipitation	etccdi	mm
24	SDII	Simple daily intensity index	Annual total precipitation divided by the number of wet days (defined as precipitation ≥ 1 mm) in the year	etccdi	mm/day
25	R1mm	Number of wet days	Annual count of days when precipitation ≥ 1mm	ETCCDI	Days
26	R10mm	Number of heavy precipitation days	Annual count of days when precipitation ≥ 10mm	etccdi	Days
27	R20mm	Number of very heavyprecipitation days	Annual count of days when precipitation ≥ 20mm	etccdi	Days
28	R50mm	Number of days above 50 mm	Annual count of days when precipitation \geq 50mm	etccdi	Days
29	CDD	Consecutive dry days	Maximum number of consecutive days when precipitation <1mm	etccdi	Days
30	CDD-DJF	Consecutive dry days	Maximum number of consecutive days when precipitation <1mm, between December to February		Days
31	CDD-NDJFM	Consecutive dry days	Maximum number of consecutive days when precipitation <1mm between November to March		Days
32	CDD- NDJFMA	Consecutive dry days	Maximum number of consecutive days when precipitation <1 mm between November to April		Days
33	CWD	Consecutive wet days	Maximum number of consecutive days when precipitation ≥ 1mm	etccdi	Days
34	R95p	Very wet days	Annual total PRCP when RR>95 th percentile	ETCCDI	mm
35	R99p	Extremely wet days	Annual total PRCP when RR>99 th percentile	ETCCDI	mm
36	R95pTOT	Contribution from very wet days	100 * R95p / PRCPTOT	et-sci	%
37	R99ptot	Contribution from extremely wet days	100 * R99p / PRCPTOT	et-sci	%
38	PRCPTOT	Annual total wet-day precipitation	Annual total precipitation from days≥ 1mm	etccdi	mm

REGIONAL AVERAGED ANOMALY SERIES OF TX & TN (RELATIVE TO 1961-1990)

Eleven-year moving average

Yosef, Y., Baharad, A., Uzan, L., Furshpan, A., Levi, Y. (2020). Israel temperature projections by 2100. Research Report No. 4000-0802-2020-0000044, Israel Meteorological Service (in Hebrew).

REGIONAL AVERAGED ANOMALY SERIES OF TXX, TXN, TNN & TNX (RELATIVE TO 1961-1990)

TXx TXn 4 2 2 Anomalies [°C] Anomalies [°C] 0 0 2 2 $y_{1950-2017} = -0.29 + 0.01x$, Sig = 0.2254 $y_{1950-2017} = -0.32 + 0.01x$, Sig $\neq 0.3849$ $y_{1988-2017} = 0.04 + 0.02x$, Sig = 0.5115 $y_{1988-2017} = -0.39 + 0.02x$, Sig = 0.5674 4 4 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 1950 **Warmest Nights** TNx TNn 4 2 2 Anomalies [°C] Anomalies [°C] 0 2 2 $y_{1950-2017} = 0.28 + 0.01x$, Sig = 0.4551 *y*₁₉₅₀₋₂₀₁₇ = -0.32 + 0.03*x*, Sig = 5e-04 *******

4

 $y_{1988-2017} = 0.65 + 0x$, Sig = 0.9572

1950 1960 1970 1980 1990 2000 2010

4

 $y_{1988-2017} = 0.16 + 0.06x$, Sig = 6e-04 *******

1950 1960 1970 1980 1990 2000 2010

Blue lines represent linear trends for 1950-2017. Red lines represent linear trends for 1988-2017. Dashed black lines are based on the LOWESS smoother (Yosef et al., 2019).

The annual trends of: TX10p (cool days), TX90p (warm days), TN10p (cool nights) TN90p (warm nights). (unit: % / decade).

Upward red triangles represent increasing trends, downward blue triangles decreasing trends. Different sizes of triangles indicate different magnitudes of trends. Significant changes ($p \le .05$) are indicated by filled triangles (Yosef et al., 2019).

Anomalies of the number of days when the minimum temperature is above 20 °C (TN>20 °C, tropical nights)

<u>Percentile-based extreme indices recommended by the Expert Team on Climate Change</u> <u>Detection and Indices (ETCCDI) & Expert Team on Sector-specific Climate Indices (ET-SCI)</u>

And more...

The percentile-based thresholds of the maximum (TX) and minimum (TN) temperature, derived from two base periods, 1961-1990 (black) and 1988-2017 (red and blue). In each panel, the upper curves denote the 90th percentile and the lower curves denote the 10th percentiles (Yosef et al., 2020).

Warm Spell Duration Index (WSDI) trends over 1988-2017

WSDI: Annual count of days with at least 6 consecutive days when TX>90th percentile

Trends in the WSDI index for the period 1988-2017 when percentiles derived from different base periods (b.period 1961-1990 vs. b.period 1988-2017). Upward facing red triangles represent increasing trends and downward facing blue triangles represent decreasing trends. Different sizes of triangles indicate different magnitudes of trends. Filled triangles mark significant changes ($p \le 0.05$; units: days/decade). Circle denote no trend. (Yosef et al., 2020)

Trend magnitude of the warm indices is dramatically diminished while the trend magnitude of cold percentile-based indices is strongly amplified, when percentiles were derived from a base period that included records from the last two decades (e.g., 1981-2010, 1988-2017).

These features are even more pronounced when the study period covers only the last 30-40 years.

Regional averaged anomaly series (1950-2017) relative to 1961-1990 mean values. Solid (red) and dashed (blue) lines represent the different base periods of which the percentiles were derived, 1988-2017 (warmer) and 1961-1990 (colder) respectively. Solid blue and red lines denote the linear trends of the period 1988-2017 for both base periods (Yosef et al., 2020).

Trend in the annual total precipitation (PRCPTOT) for the period 1950–2017 and 1988–2017

Upward blue triangles represent increasing trends, downward red triangles decreasing trends. Different sized triangles indicate different magnitudes of trends. Significant changes ($p \le 0.05$) are indicated by filled triangles. (unit: mm/decade; % / decade, respectively).

Changes in the annual precipitation amount 1950-2100

Yosef, Y., Baharad, A., Uzan, L., Osetinsky-Tzidaki, I., Carmona, I., Halfon, N., Furshpan, A., Levi, Y., Stav, N. (2019). Climate change in Israel – historical trends and future predictions of temperature and precipitation. Research Report No. 4000-0804-2019-0000075, Israel Meteorological Service.

For more information:

			1				
Received: 24 January 2019 Revised: 25 April 20 DOI: 10.1002/joc.6125	Accepted: 29 April 2019						
RESEARCHARTICLE		International Journal RMets of Climatology					
Changes in extreme an innovative daily	<u>https://rm 10.1002/j</u> a						
Yizhak Yosef ^{1,2} 💿 Enric A	guilar ³ Pinhas Alpert ¹						
¹ Department of Geophysics, Tel-Aviv University, Tel-Aviv, Israel ² Climate Department, Israel Meteorological Service, Bet-Dagan, Israel	Abstract This study examines the 1950–2 which is located in the East Med	2017 temporal changes in climate extremes in Israel, literranean (EM), a region which suffers from a scar-					
Center on Climate Change (C3), Univ Rovira i Virgili, Tarragona, Spain	Received: 2 January 2020 Revised: 24 April 2020 Accepted: 6 July 2020						
Doi RE IS SC Yi	DOI: 10.1002/joc.6740 RESEARCH ARTICLE International Journal Is it possible to fit extreme climate change indices together seamlessly in the era of accelerated warming? Yizhak Yosef ^{4,2} Image: An era of accelerated warming 'Department of Geophysics, Tel-Aviv						
Uni ² Isr Isra ³ Ce Virţ Cor YizI Tel- Em	versity, Tel-Aviv, Israel ael Meteorological Service, Bet-Dagan, el nter on Climate Change (C3), Rovira i jili University, Tarragona, Spain respondence tak Yosef, Department of Geophysics, Aviv University, Tel-Aviv, Israel. ali ; yizhakyosef@mail.tau.ac.il	This study examines the problematic impact of selecting a different base period (colder 1961–1990 vs. warmer 1988–2017), on the trend magnitude of widely used percentile-based extreme temperature indices (e.g., warm/cold spells, warm/cold days and nights). The percentile-based indices are part of a core set of indices (27 in total) that have become a common standard for monitoring climate change, as recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The indices were designed to be comparable					

://rmets.onlinelibrary.wiley.com/doi/abs/ 02/joc.6125

RMetS

https://rmets.onlinelibrary.wiley.com/ doi/abs/10.1002/joc.6740?af=R

CONCLUSIONS

Homogenization

Temperature

Extreme Temperature

Precipitation

Total amount

CONCLUSIONS

The Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University

THANK YOU FOR LISTENING!

yizhakyosef@mail.tau.ac.il

yosefy@ims.gov.il

10th SEMINAR FOR HOMOGENIZATION AND QUALITY CONTROL AND 5th CONFERENCE ON SPATIAL INTERPOLATION TECHNIQUES IN CLIMATOLOGY AND METEOROLOGY 12-14 October 2020 (on-line)