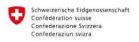


Actualization of national climate classification map of Peru

Wil Laura, Anabel Castro, Cristina Davila, Felix Cubas, Grinia Avalos, Carlos López, Marcia Valdéz, Donna Villena, Lourdes Menis, Julio Urbiola, Irene Trebejo


National Service of Meteorology and Hydrology of Peru (SENAMHI), Lima, Peru spc2@senamhi.gob.pe

A project led by:

With the financing of:

Embassy of Switzerland in Peru

Swiss Agency for Development and Cooperation SDC Implemented by:

Introduction

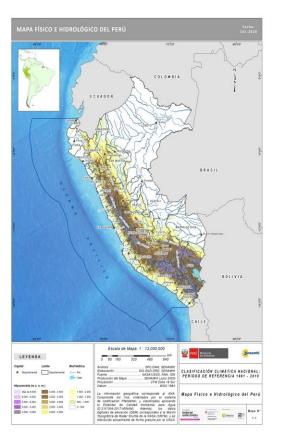
Climate Change Management Support Project – AGCC

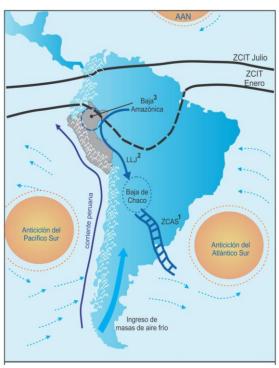
Component 2: Better climate information for decision making

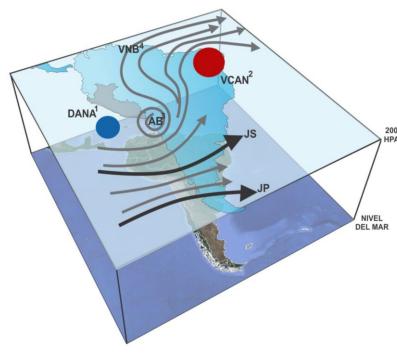
Background

The first Climate Classification Map of Peru in 1988

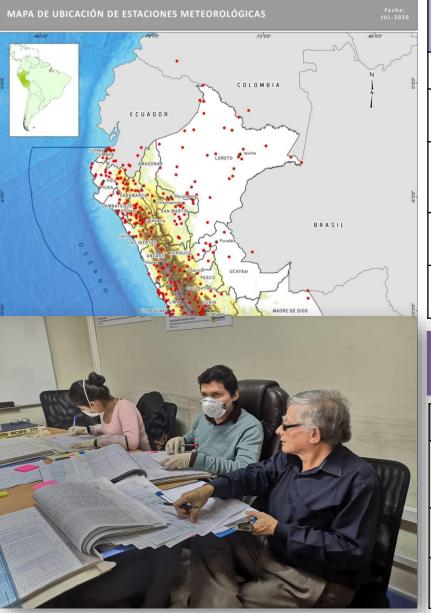
Aim


Update the map of climate classification of Peru


Utility


climate management tool

Climate Controllers of Peru


The variaty of climates in Peru is the result of a combination of meteorological, oceanic and continental controllers

Meteorological Data

COUNTRY	INTITUTION	N° WEATHER ESTATIONS
PERU	NATIONAL METEOROLOGY AND HYDROLOGY SERVICE- SENAMHI	483
ECUADOR	NATIONAL INSTITUTE OF METEOROLOGY AND HYDROLOGY OF ECUADOR- INAMHI	11
COLOMBIA	INSTITUTE OF HYDROLOGY, METEOROLOGY AND ENVIRONMENTAL STUDIES OF COLOMBIA- IDEAM	3
BRASIL	CENTER FOR WEATHER FORECASTING AND CLIMATE STUDIES- CPTEC	3
BOLIVIA	NATIONAL METEOROLOGY AND HYDROLOGY SERVICE- SENAMHI	4

Criterias to calculate monthly climatological normals

Meteorological Variable	Percentage of missing data
Precipitation	Calculation of the accumulated monthly precipitation with missing data of less than 10% (3 days).
Maximum Temperature	Monthly average with missing data less than 15% (5 days).
Minimum Temperature	Monthly average with missing data less than 15% (5 days).

Thornthwaite Climate Classification System (1931)

Effective Precipitation Index (IPE)

$$PE = \sum_{n=1}^{12} 115 * \left(\frac{P}{T-10}\right)_{n}^{10/9}$$

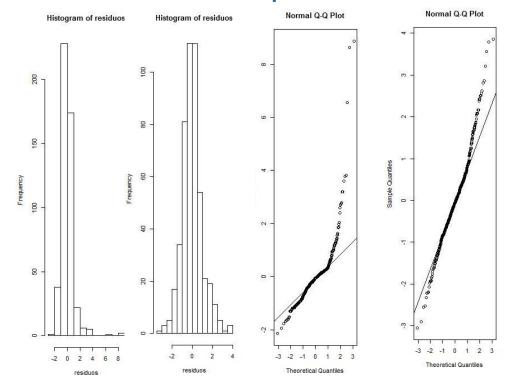
ANUAL VALUE (IPE)	CLIMATE	SYMBOL	REFERENCE ZONES
>4.86	Very rainy	Α	Jungle
4.17 a 4.85	rainy	В	Forest
3.50 a 4.16	Medium dry	С	Pastureland
2.84 a 3.49	Semiarid	D	Steppe
Under 2.84	Arid	E	Desert

Index of Seasonal Concentration of Moisture (ICEH)

SYMBOL	MEANING
r:	Abundant humidity in all seasons of the year.
i:	With dry Winter.
p:	With dry spring.
v:	With dry summer.
o:	With dry autumm.
d:	Moisture deficiency in all seasons of the year.

Thermal Efficiency Index (IET)

$$IET = \sum_{n=1}^{12} \left(\frac{T - 32}{4} \right)_n$$


ANUAL VALUE (IET)	CLIMATE CHARACTER	SYMBOL	REFERENCE ZONES
>127	Warm	A'	Tropical
64 a 127	Tempered	B'	Mesothermal
32 a 63	Cold	C'	Microthermal
16 a 31	Semifrigid	D'	Taiga
1 a 15	Frigid	E'	Tundra
0	glacier	F'	Perennial ice

Validation of the Statistical Interpolation Model

Multiple linear regression equations

$$Log(IPE + 1) = \theta_0 + \theta_1(Altitude) + \theta_2(Latitude) + \theta_3(Longitude) + \theta_4(Nat.Region)$$

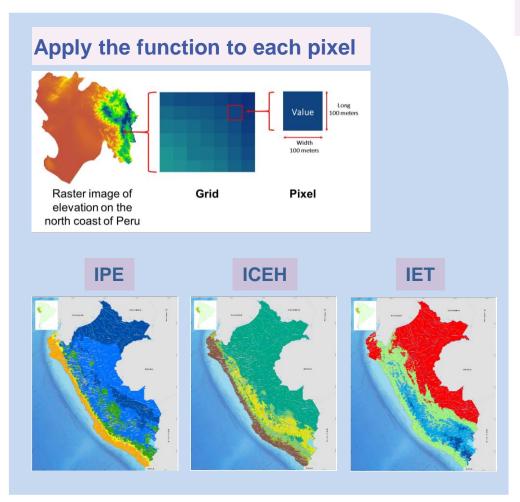
$$IET = \theta_0 + \theta_1(Altitude) + \theta_2(Latitude) + \theta_3(Longitude)$$

Transformation of the dependent variable

The following assumptions must be met

Assumption 1: Normality of errors Assumption 2: Homoscedasticity

Assumption 3: Independence


Assumption 4: No Multicollinearity

Assumption 5: Linearity

Cross Validation of the Statistical Interpolation Model

MONTH	RMSE	R ²	MAE
JANUARY	0.47	0.79	0.34
FEBRUARY	0.49	0.76	0.37
MARCH	0.48	0.77	0.37
APRIL	0.45	0.77	0.35
MAY	0.4	0.8	0.31
JUNE	0.37	0.79	0.27
JULY	0.38	0.75	0.28
AUGUST	0.37	0.74	0.28
SEPTEMBER	0.44	0.72	0.34
OCTOBER	0.51	0.73	0.41
NOVEMBER	0.5	0.75	0.38
DECEMBER	0.48	0.79	0.35

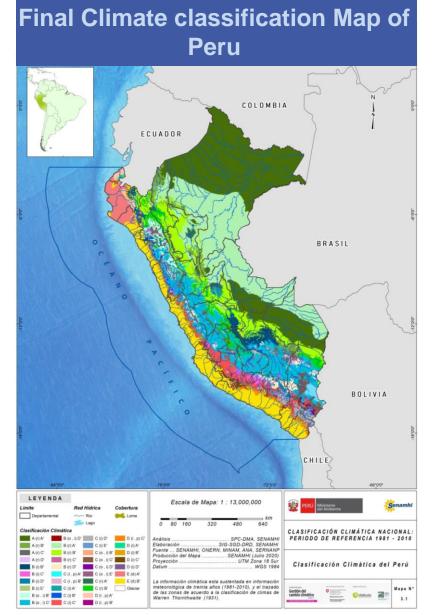
Thornthwaite Index Map Algebra

Preliminary Climate Classification Map

Validation of the Climate Classification Map

Workshops

Presential



Conclusion

SÍNTESIS METODOLÓGICA DEL MAPA DE CLASIFICACIÓN CLIMÁTICA DEL PERÚ

Peru presents a range of 38 climates spread over the vast national territory, with extreme climates such as very humid and warm all year round; the hot desert; and the glacial.

The variety of climates are made up of four very rainy, eleven rainy, thirteen semidry, seven semi-arid, two arid and one glacier.

Thanks!

Proyecto de apoyo

proyectoapoyocambioclimatico.pe

A project led by:

With the financing of:

Embassy of Switzerland in Peru

Swiss Agency for Development and Cooperation SDC Implemented by:

