Introduction 000	Proposed method	Post-processing	Conclusion O	References

A segmentation method for the homogenization of atmospheric GNSS time series.

O. Bock^(a,b), N. K. Nguyen^(a,b), E. Lebarbier^(c) and A. Quarello^(a,b)

(a) Université Paris Cité, Institut de physique du globe de Paris, CNRS, IGN, F-75005 Paris, France
(b) ENSG-Géomatique, IGN, F-77455 Marne-la-Vallée, France
(c) Modal'X, Université Paris Nanterre, Nanterre, France

11th Seminar for Homogenization and Quality Control in Climatological Databases and 6th Interpolation, 8–11. May, 2023

Introduction ●00	Proposed method 000000000	Post-processing	Conclusion O	References

Data

▶ Water vapor is a key component of the global hydrologic cycle and plays a major role in many atmospheric processes contributing to the weather and climate.

▶ Recent data: GNSS-derived Integrated Water Vapor daily series (GNSS IWV) (Bevis et al (1992); Bock (2014))

 \rightarrow show inhomogeneities (abrupt changes)

 \rightarrow work on the difference between GNSS and ERAI (meteorological reanalysis):

 $\Delta IWV = IWV_{GPS} - IWV_{ERAI}$

Introduction	Proposed method	Post-processing	Conclusion	References
000				

Features of the data ΔIWV

Introduction	Proposed method	Post-processing	Conclusion	References
000				

Objectives

Detection of the abrupt changes (change-points) in the series of difference Δ IWV: a new change-point detection in the mean model taking into account for these features (*Quarello* et al (2022))

 \rightarrow this talk

Validation of the detected change-points using the available metadata and study of the sensitivity of the proposed segmentation method to the data properties (*Nguyen et al (2021*))

 \rightarrow second talk of Olivier Bock

Attribution of the detected change-points to GNSS or ERAI: a new method using machine learning (paper in revision)

 \rightarrow third talk of Ninh Nguyen

Introduction 000	Proposed method ●00000000	Post-processing	Conclusion O	References

Model

We add a functional part in the model proposed by Bock et al (2020):

$$y_t$$
 ind. $\sim \mathcal{N}(\mu_k + f_t, \sigma_{\text{month}}^2)$ if $t \in r_k^{\text{mean}} \cap r_{\text{month}}^{\text{var}}$, for $k = 1, \dots, K$,

where

- * the segments of constant mean $r_k^{\text{mean}} = [t_{k-1} + 1, t_k]$ are unknown,
- * the segments of constant variance $r_{month}^{var} = \{t; date(t) \in month\}$ are known

Introduction 000	Proposed method ●00000000	Post-processing	Conclusion O	References

Model

We add a functional part in the model proposed by Bock et al (2020):

$$y_t \text{ ind. } \sim \mathcal{N}(\mu_k + f_t, \sigma_{ extsf{month}}^2) extsf{ if } t \in r_k^{ extsf{mean}} \cap r_{ extsf{month}}^{ extsf{var}}, extsf{ for } k = 1, \dots, K,$$

where

- * the segments of constant mean $r_k^{\text{mean}} = [t_{k-1} + 1, t_k]$ are unknown,
- * the segments of constant variance $r_{month}^{var} = \{t; date(t) \in month\}$ are known

Form for f_t ? f_t will be approximated using a Fourier series of order 4

$$f_t = \sum_{i=1}^{4} a_i \cos\left(2\pi i \frac{t}{L}\right) + b_i \sin\left(2\pi i \frac{t}{L}\right),$$

where L is the mean length of the year (L = 365.25 days when time t is expressed in days).

▶ Change-points? we note $T = (t_1, t_2, ..., t_{K-1})$ the K - 1 change-points

Introduction	Proposed method	Post-processing	Conclusion	References
	00000000			

Maximum likelihood segmentation in *K* segments

▶ log-likelihood

$$\log p(y; K, T, f, \mu, \sigma^2) = -\frac{n}{2} \log (2\pi) - \sum_{\text{month}} \frac{n_{\text{month}}}{2} \log (\sigma^2_{\text{month}})$$
$$-\frac{1}{2} \sum_{k=1}^{K} \sum_{\text{month} \ t \in r_k^{\text{mean}} \cap r_k^{\text{var}}} \sum_{\substack{\text{month} \ \sigma^2_{\text{month}}}} \frac{(y_t - \mu_k - f_t)^2}{\sigma^2_{\text{month}}}$$

▶ Main challenge: computational issue for the change-points?

 $\rightarrow \sigma^2_{month}$ and f are global parameters (shared by the mean segments)

 \rightarrow the classical efficient algorithm (the Dynamic Programming or DP) can not applied

Introduction	Proposed method	Post-processing	Conclusion	References
	0000000			

$Proposed \ strategy \ \rightarrow \ to \ allow \ the \ use \ of \ DP$

▶ Step 1: estimation of the variance σ^2_{month} using a robust approach (robust to the change-points) $\rightarrow \hat{\sigma}^2_{\text{month}}$ (Bock et al (2020); Rousseeuw and Croux (1993))

▶ Step 2: an iterative procedure: at iteration [*h* + 1]:

(1) Estimation of f on $\{y_t - \mu_k^{[h]}\}_t$ using a weigthed least-square regression with weights $1/\hat{\sigma}^2_{month}$,

$$f^{[h+1]} = \underset{f}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{\text{month}} \sum_{\substack{t \in r_k^{\text{mean}} \cap r_k^{\text{var}} \\ \text{month}}} \frac{(y_t - f_t - \mu_k^{[h]})^2}{\widehat{\sigma}_{month}^2},$$

(2) Estimation of T and μ_k on $\{y_t - f_t^{[h+1]}\}_t$:

$$(T,\mu)^{[h+1]} = \underset{T \in \mathcal{M}_{n}^{K}, \mu}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{month} \sum_{t \in r_{k}^{mean} \cap r_{month}^{var}} \frac{(y_{t} - f_{t}^{[h+1]} - \mu_{k})^{2}}{\widehat{\sigma}_{month}^{2}} \to \mathsf{DP} \text{ applies}$$

Introduction 000	Proposed method 000●00000	Post-processing	Conclusion O	References

Choice of K?

▶ K is chosen as follows

Many criteria have been proposed

Criterion	pen(K)	β
AIC	K	1
BIC	K	$\log(n)/2$
Birge/Massart (BM) (Birgé and Massart (2001))	$c_2 K + c_1 \log(C_n^K)$	adaptative
Lavielle (Lav) (<i>Lavielle (2005)</i>)	ĸ	adaptative
mBIC (Zhang and Siegmund (2007))	$f(K, \sum_k \log n_k)$	$\log(n)/2$

 \rightarrow The classical penalties (AIC, BIC) are not theoretically adapted in the segmentation context

 \rightarrow Heuristics for the constant penalty calibration: ML, BM1 and BM2

Introduction	Proposed method	Post-processing	Conclusion	References
	00000000			

Simulation study

▶ Simulation design.

 \star n = 400 = 4 years of 100 each and 2 months per year

 $\star \sigma_1 = 0.5$

- $\star \sigma_2$ from 0.1 to 1.5 (by step 0.2)
- $\star f_t = 0.7 cos(2\pi t/100)$
- \star T = [55, 77, 177, 222, 300, 366] (K = 7)

 $\star \; \mu = [0, 1, 0, 1, 0, 1, 0]$

Introduction	Proposed method	Post-processing	Conclusion	References
	000000000			

Accuracy of the variance estimates

* The variance estimator works well despite the presence of the periodic bias

 \star The dispersion increases when $\sigma^{\ast}_{\mathbf{2}}$ increases

Introduction	Proposed method	Post-processing	Conclusion	References
	000000000			

Accuracy of the segmentation estimates

* When the detection is easy (small σ_2^*), all the criteria retrieve the true K and the change-points are well positioned (d_1 small)

- * When the detection is difficult (large σ_2^*):
 - Lav tends to give the true K in median, but with large dispersion ,
 - BM1, BM2 and mBIC underestimate K
- \rightarrow but this under-estimation leads to a better precision of the change-point locations (smaller d_1)

Introduction	Proposed method	Post-processing	Conclusion	References
000	000000000	00000		

Accounting for the periodic signal?

- * The series shows a strong periodic variation:
 - without accounting for the periodic signal (segonly), this effect is captured by the segmentation
 - this effect is well fitted with our method (segfunc)

Introduction	Proposed method	Post-processing	Conclusion	References
	00000000			

Accounting for the heterogenous variance?

* With a homogenous variance (seghomofunc), we detect 4 change-points corresponding to two spikes

 \rightarrow they are detected since in this period the real variance is high and here the estimated homogeneous variance is lower

 \rightarrow they are not validated (using the metadata)

- * With a heterogenous variance (segfunc),
 - \rightarrow these two spikes are not detected
 - \rightarrow two other change-points are detected (located in a small variance period) and are validated

Introduction 000	Proposed method	Post-processing ●0000	Conclusion O	References

Post-processing

- ▶ The segmentation method can detect a couple or more change-points located close together.
- ▶ They are usually due to spikes in the noise and are unwanted.

Introduction	Proposed method	Post-processing	Conclusion	References
		0000		

Screening: proposed procedure

* finding clusters of outliers: sets of 'too close' change-points, i.e. in a windows of 80 days (the windows' size has been determinated using a clustering of the length of the segments)

 \star testing the variations in mean of the segment before and after (using a weighted test of mean comparison)

- if the difference is unsignificant, all the change-points are removed (class 1)
- if the difference is significant, the cluster is replace by one change-point (in the middle) (class 2)

Note that in both cases, the data points in between the two breakpoints are flagged as 'outliers' and are not used in the correction step of the homogenization procedure.

Introduction	Proposed method	Post-processing	Conclusion	References
		00000		

Come back to the real example

* 12 change-points are detected

 \star three clusters: in October 1997 (2 changes), in May 2004 (2 changes) and in May–August 2005 (4 changes)

 \star for all these clusters, the test is significant: one change-point is kept per cluster reducing the set of change-points from 12 to 7

Introduction	Proposed method	Post-processing	Conclusion	References
		00000		

Model selection criteria on a real dataset and automatic validation

- ▶ Dataset: daily IWV differences for 120 global GNSS stations, for the period from 1 January 1995 to 31 December 2010
- ▶ Automatic validation of the change-points: a window of 62 days before or after a documented change (as proposed by *Van Malderen et al (2020)*)

Model selection criteria on a real dataset and automatic validation

▶ Dataset: daily IWV differences for 120 global GNSS stations, for the period from 1 January 1995 to 31 December 2010

► Automatic validation of the change-points: a window of 62 days before or after a documented change (as proposed by *Van Malderen et al (2020)*)

	Before screening			After se	creening
	Detections	Outliers	Validations	Detections	Validations
mBIC	3251	2714	415 13%	1270	263 21%
Lav	474	194	108 23%	341	102 30%
BM1	335	70	93 28%	292	93 <mark>32%</mark>
BM2	435	113	107 25%	370	105 28%

Model selection criteria on a real dataset and automatic validation

	Before screening			After so	creening
	Detections	Outliers	Validations	Detections	Validations
mBIC	3251	2714	415 13%	1270	263 21%
Lav	474	194	108 23%	341	102 30%
BM1	335	70	93 28%	292	93 <mark>32%</mark>
BM2	435	113	107 25%	370	105 28%

Model selection criteria:

* mBIC detects too many change-points and outliers compared to the others

 \star BM1 has the smallest number of detections and outliers, and the largest percentage of validations (both before and after screening)

► Screening effect:

- * as expected, the number of detections is reduced by the screening (strongly for mBIC)
- \star the number of validations remains the same after the screening for BM1, BM2 and Lav
- \rightarrow BM1 is the preferred criterion according to this results but BM2 and Lav show close results

Introduction	Proposed method	Post-processing	Conclusion	References
		00000		

A semi-automatic validation method

- ▶ The change-points are first checked manually and then validated using the available information
- Results:

	Before	After	Accepted	Validated	Validated
			(Manual decision)	(Metadata)	(+TEQC)
BM1	335	292	168 (57%)	99 (58.9%)	105 (62.5%)
BM2	435	370	166 (45%)	99 (59.6%)	105 (63.3%)
Lav	474	194	175 (51%)	103 (58.9%)	109 (62.3%)
Total			187	110 (58.8%)	116(62.0%)

• With BM1, among the 168 accepted change-points, 99 are validated by the metadata:

- * the metadata are not complete (the changes in environment are not included as example),
- \star some change-points can be du to ERAI \rightarrow need for the attribution step,
- * the segmentation method detects too many change-points.
- Which strategy?
 - ★ One specific criterion: BM1 shows the best percentage of accepted change-points (57%) but with the smallest number of change-points (292)
 - $\star~$ The special case where all three criteria are consistent and accepted amounts to 58% \rightarrow not a sufficient condition
 - A combining strategy: the accepted change-points from the results of the three criteria: 187 accepted change-points and 116 validated (62%)

Introduction	Proposed method	Post-processing	Conclusion	References
			•	

Conclusion and improvements

R packages

 \rightarrow GNSSseg available on the CRAN

 \rightarrow a faster version GNSSfast available on

https://github.com/arq16/GNSSfast.githttps://github.com/arq16/GNSSfast.git

▶ Some improvements of the segmentation method:

- the estimation of the functional part: a non-parametric approach, as a dictionary approach proposed by *Bertin et al (2016)* for example,
- * Integrate the presence of the 'outliers' or 'spikes' in the segmentation by using a specific contrast in the segmentation method as the Huber contrast,
- * Take into account a time-dependence that exists in time series: use for example the same approach as proposed by Chakar et al (2017).

- Bertin K, Collilieux X, Lebarbier E, Meza C (2016) Semi-parametric segmentation of multiple series using a dp-lasso strategy. Journal of Statistical Computation and Simulation (arXiv:14066627)
- Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) Gps meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres 97(D14):15,787–15,801
- Birgé L, Massart P (2001) Gaussian model selection. J Eur Math Soc 3:203-268
- Bock O (2014) Les systèmes de positionnement et de navigation par satellite: Application à la météorologie et à la climatologie. Météorologie (86):38–48
- Bock O, Collilieux X, Guillamon F, Lebarbier E, Pascal C (2020) A breakpoint detection in the mean model with heterogeneous variance on fixed time intervals. Statistics and Computing 30:195–207
- Chakar S, Lebarbier E, Lévy-Leduc C, Robin S (2017) A robust approach for estimating change-points in the mean of an ar1 process. Bernoulli 23(2):1408–1447
- Lavielle M (2005) Using penalized contrasts for the change-point problem. Signal Processing 85(8):1501–1510
- Nguyen KN, Quarello A, Bock O, Lebarbier E (2021) Sensitivity of change-point detection and trend estimates to gnss iwv time series properties. Atmosphere 12(9):1102
- Quarello A, Bock O, Lebarbier E (2022) Gassseg, a statistical method for the segmentation of daily gass inv time series. Remote Sensing 14(14):3379
- Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. Journal of the American Statistical Association 88(424):1273–1283
- Van Malderen R, Pottiaux E, Klos A, Domonkos P, Elias M, Ning T, Bock O, Guijarro J, Alshawaf F, Hoseini M, et al (2020) Homogenizing gps integrated water vapor time series: Benchmarking break detection methods on synthetic data sets. Earth and Space Science 7(5):e2020EA001,121
- Zhang NR, Siegmund DO (2007) A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63(1):22–32