11th Seminar for Homogenization and Quality Control in Climatological Databases and 6th Interpolation Conference jointly organized with the 14th EUMETNET Data Management Workshop

Sensitivity of Change-Point Detection and Trend Estimates to GNSS IWV Time Series Properties

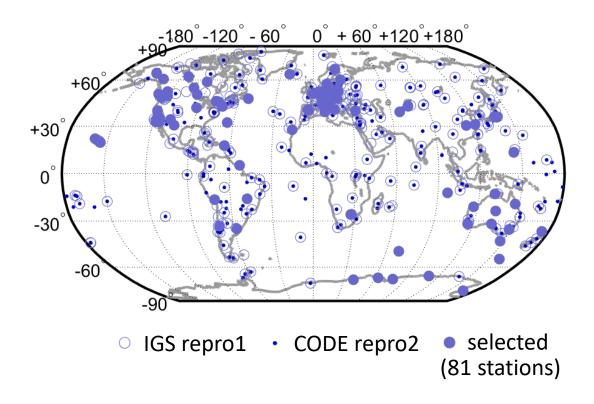
PhD candidate Ninh Nguyen (Univ. Paris Cité, IPGP, IGN) Dr. Olivier Bock (IPGP, IGN) Pr. Emilie Lebarbier (Univ. Paris Nanterre) Dr. Annarosa Quarello (Capgemini Engineering)

9 May 2023

Context and objectives

- Study global and regional water cycle in the changing climate
 - Use observations, atmospheric/ocean reanalyses and GCMs
- Ground-based GNSS IWV observations are very accurate with low bias
 - However, even small changes in bias (inhomogeneities) are detrimental to trend and decadal variability analysis
- Inhomogeneities in GNSS data are mainly due to:
 - Equipement changes, changes in the data processing, changes in the environment.
- Reanalyses may also have inhomogeneities, mainly due to:
 - Changes in the global observing system (e.g. start/end of satellite mission)
- Segmentation/homogenization methods help to:
 - Detect and correct inhomogeneities

Context and objectives


• This talk discusses the sensitivity of segmentation results to:

- 1. Change in GNSS data set version (repro1 vs. repro2)
- 2. Length of time series: 16 years (repro1) vs. 25 years (repro2)
- 3. Reference data set used in the target reference series for the segmentation (reanalyses: ERA-Interim vs. ERA5)
- 4. Auxiliary data set used for the conversion of GNSS ZTD data to IWV
- In addition we study the impact of the different segmentation results and data sets on the long-term linear trend estimates

GNSS data sets (daily IWV times series)

- IGS repro1
 - Software: GIPSY OASIS II
 - Released in 2010/2011
 - Covers period 1995-2010
- CODE (REPRO2015) repro2
 - Software: Bernese
 - Released in 2015/2019
 - Covers period 1994-2018

(*) repro2 used more recent satellite products and models => this data set should be more accurate

Analysis procedure

(1) GNSS data is ZTD (propag. delay)

Conversion to IWV needs aux. data

 $IWV = k(T_m) \times \{ZTD - ZHD(P_s)\}$

• We use a reanalysis for T_m and P_s

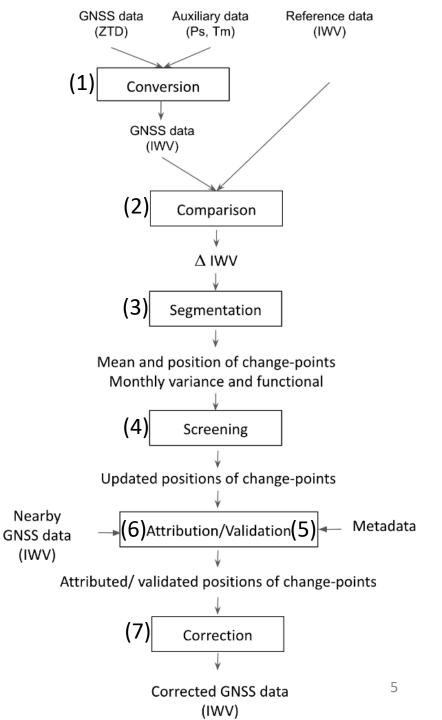
(2) Relative homogenization method works on differenced data: target – reference

• We use a reanalysis as reference

(3) Segmentation method is GNSSseg

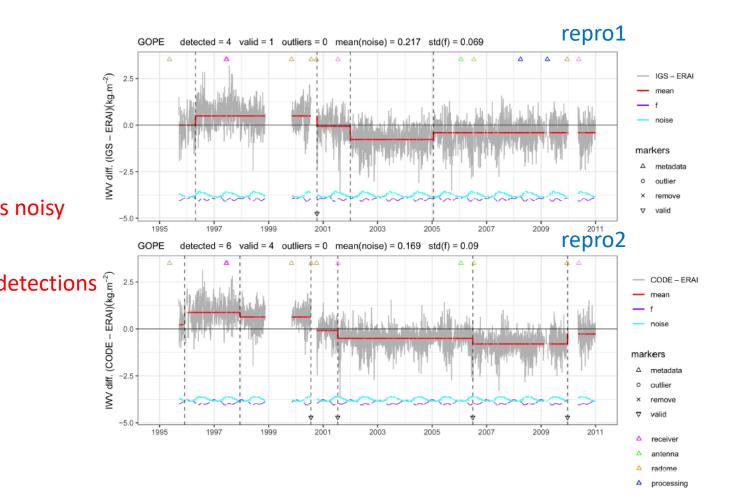
• Here we use only the BM1 results

(4) Outlier screening

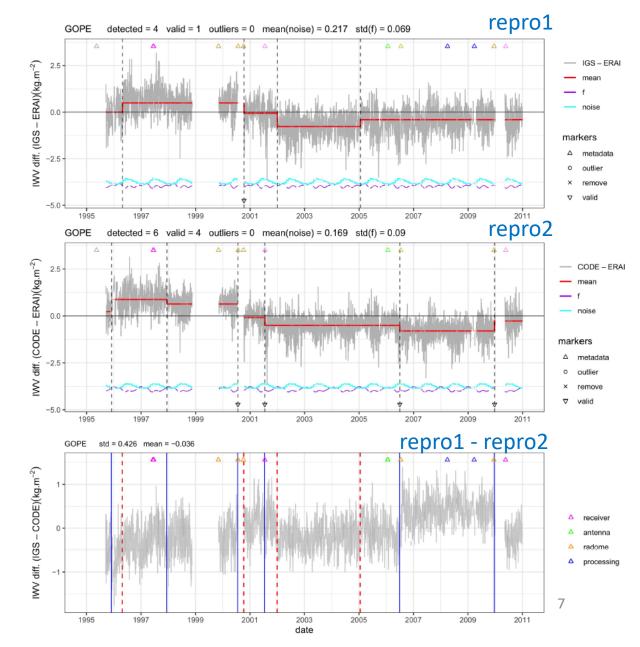

- As described in previous talk (E. Lebarbier)
- (5) Validation is done wrt GNSS metadata
 - Eq changes are well documented, no relocation issue.

(6) Attribution is not applied here.

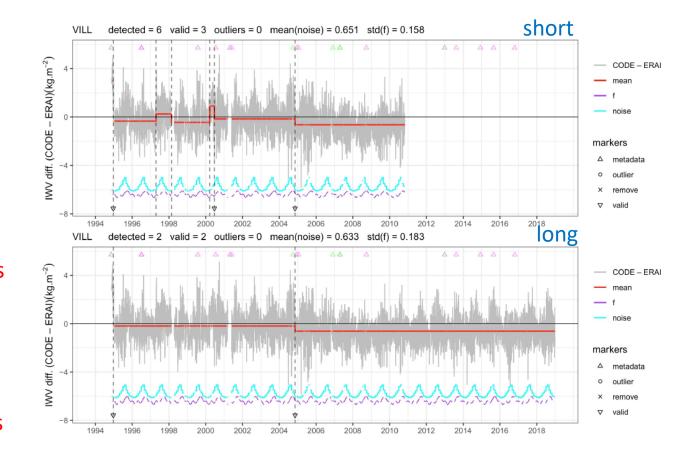
(7) Correction : piece-wise bias correction, with the most recent segment taken as reference, and using:


i) only change-points validated by GNSS metadata,

ii) all detected change-points (assumed due to GNSS).


repro1 repro2

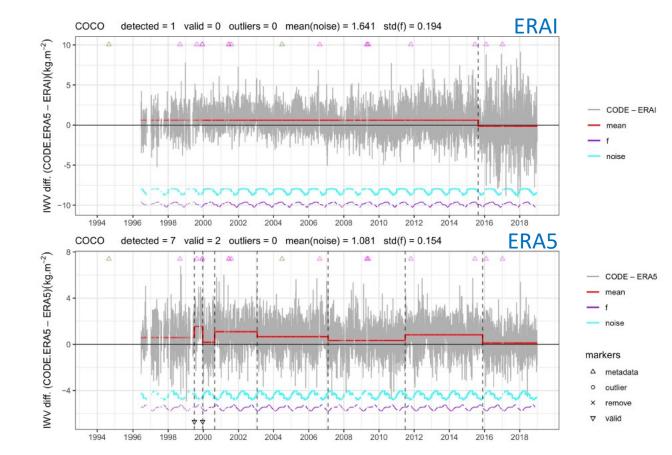
	(1) Impact				
Data Set			ODE—El ime-Matc		
Time span	1995–2010		1 995– 2 010		
Mean of the monthly variances (kg m ⁻²)	0.68	>	0.62	less	
Standard deviation of the functional (kg m ⁻²)	0.26	>	0.24		
No. detections	231	<	257	more d	
No. outliers	36	*	38		
No. detections after screening	211	<	235		
Validations after screening	63	<	68		
Validations after screening (%)	29.9	~	28.9		
Similar detections	$103{\sim}48.8\%$				


repro2 less noisy => higher detection power

repro2 repro1 (1) Impact of Processing IGS-ERAI CODE-ERAI Data Set Time-Matched Time-Matched Time span 1995-2010 1995-2010 Mean of the monthly variances 0.68 0.62 > $(kg m^{-2})$ Standard deviation 0.24 0.26 of the functional > $(kg m^{-2})$ 231 257 No. detections < No. outliers 36 38 \approx No. detections after 211 235 < screening Validations after 63 < 68 screening Validations after 29.9 28.9 ≈ screening (%) Similar detections $103 \sim 48.8\%$

bias between GNSS data sets due to different ant.+rad. models

short long (2) Impact of Time Length CODE CODE-ERAI Data Set Time-Limited -ERAI 1994-2018 Time span 1994-2010 < (a) Mean of the monthly variances 0.62 0.63 \approx $(kg m^{-2})$ Standard deviation 0.23 of the functional 0.24 \approx $(kg m^{-2})$ 249 fewer detections No. detections 296 > No. outliers 73 40 > No. detections after 252 227 > screening Validations after 77 78 \approx screening Validations after 34.4 more validations 30.6 < screening (%) Similar detections 185~81.5%

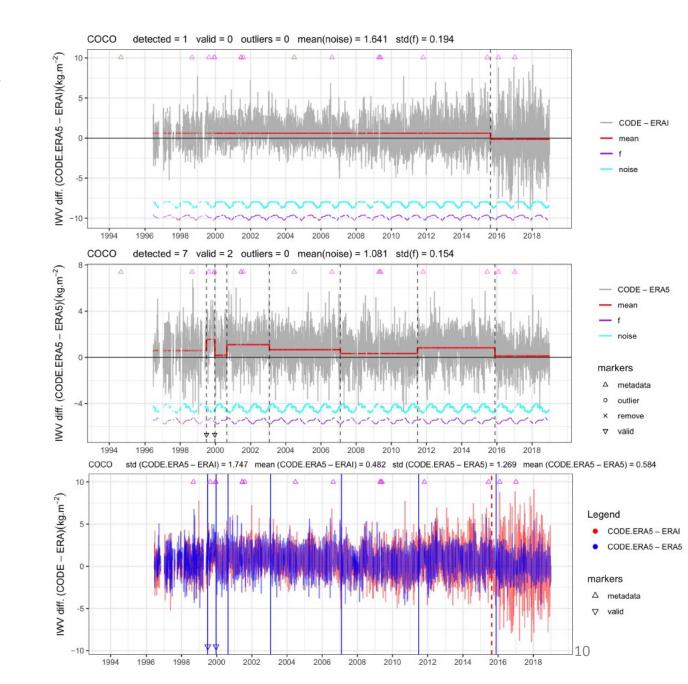

fewer detections on longer period : segmentation is conservative

 Reference: ERAI
 ERA5

 (3) Impact of Reference

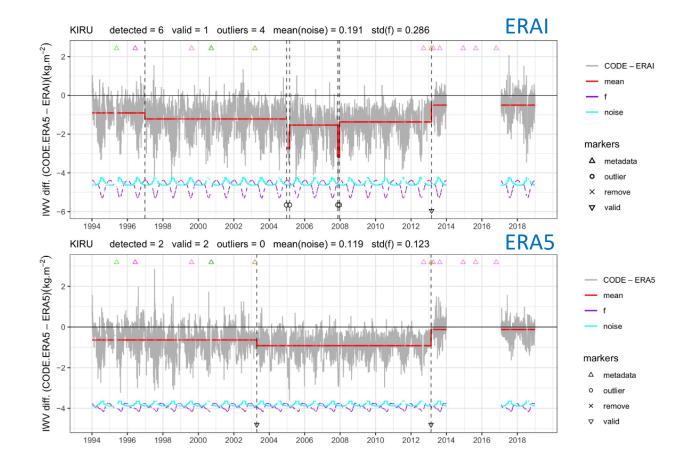
 CODE (b)
 CODE (b)

Data Set	-ERAI		-ERA5	_
Time span	1994–2018		1994–2018	
Mean of the monthly variances (kg m ⁻²)	0.61	>	0.46	- less noisy
Standard deviation of the functional (kg m ⁻²)	0.23	>	0.17	
No. detections	364	<	398	more detections
No. outliers	60	<	71	
No. detections after screening	333	<	359	
Validations after screening	114	<	131	
Validations after screening (%)	34.2	*	36.5	_
Similar detections	151	~ 4	5.3%	-



ERAI more noisy in recent years

ERA5 less noisy => higher detection power


Referen		ERA5		
	ct of	Reference		
Data Set	ta Set CODE (b) —ERAI			
Time span	1994–2018	1994–2018		
Mean of the monthly variances (kg m ⁻²)	0.61	>	0.46	
Standard deviation of the functional (kg m ⁻²)	0.23	>	0.17	
No. detections	364	<	398	
No. outliers	60	<	71	
No. detections after screening	333	<	359	
Validations after screening	114	<	131	
Validations after screening (%)	34.2	*	36.5	
Similar detections	151	l ~45	5.3%	

ERA5 less noisy => higher detection power

Auxiliary: ERA5 ERAI

	(4) Impac	7			
Data Set	CODE aux. ERA5		CODE aux. ERAI		
Time span	1994–2018		1994–2018		
Mean of the monthly variances (kg m ⁻²)	0.46	=	0.46		
Standard deviation of the functional (kg m ⁻²)	0.17	=	0.17		
No. detections	398	*	392		
No. outliers	71	<	87	mo	re outliers
No. detections after screening	359	>	343		
Validations after screening	131	>	125		
Validations after screening (%)	36.5	*	36.4		
Similar detections	243 ~70.9%				

ERAI has larger periodic bias (representativeness error)

Trend estimation procedure

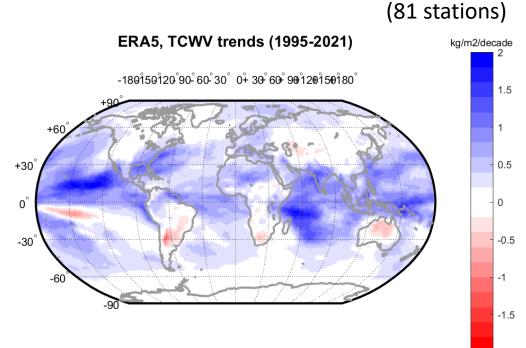
- Linear Regression Model: $y_t = \mu + \omega x_t + s_t + \varepsilon_t$
 - y_t IWV time series
 - x_t linear trend function
 - μ mean IWV
 - ω trend slope
 - s_t seasonal function : 4th order Fourier Series
 - ε_t noise term : AR(1) $\varepsilon_t = \phi \varepsilon_{t-1} + w_t$

eta coefficients of deterministic model ϕ, σ_w^2 coefficients of stochastic model


Estimation method: Feasible-Generalized Least Squares (FGLS)

 $y = X\beta + \varepsilon$ $\varepsilon \sim N(0, \Sigma_0) \qquad \hat{\beta}_{FGLS} = (X'\hat{\Sigma}_n^{-1}X)^{-1}X'\hat{\Sigma}_n^{-1}y$ $Var[\hat{\beta}_{FGLS}] = (X'\hat{\Sigma}_n^{-1}X)^{-1}$

the coefficients of deterministic and stochastic models are estimated iteratively


 $\Rightarrow \hat{\omega}, \hat{\sigma}_{\omega}$ trend slope and standard error estimates

Trend results: reanalyses

Increasing length

- std. error decreases
- mean trend (positive) increased in recent years (linked to surface temperature increase ≈ 7% / 1K)
- std. trend (spatial variability) decreases
- more significant trends

Trend results: raw GNSS vs. reanalyses

Tim	e Span	1995–2010		1994–2010	1994–2018	
	l error ⁻² year ⁻¹)	0.035		0.033	0.018	
	RAI ⁻² year ⁻¹)	0.018 ± 0.055 (9)				0.027 ± 0.034 (37)
	RA5 ⁻² year ⁻¹)	0.011 ± 0.052 (8)		0. 008 <u>-</u> 0.0 47 (8)	0.027±0.031 (35)	
(GPS	IGS time-matched	CODE time-matched	CODE time-limited	CODE (c)	
Raw data	IWV trend (kg m ⁻² year ⁻¹)	0.024 ± 0.059 (20)	0.018 ± 0.060 (18)	0. 016 <u>-</u> 0.0 60 (23)	0.030±0.031 (41)	
Tutt dutu	RMSE wrt ERA5 (kg m ⁻² year ⁻¹)	0.044	0.046	0.046	0.033	

IGS vs. CODE

• Stronger trends (positive) in IGS repro1

GNSS vs. ERA5

- mean : GNSS larger than reanalyses
- std (spatial variability): GNSS larger than reanalyses
- more significant trends
- RMSE (GNSS ERA5): quite large

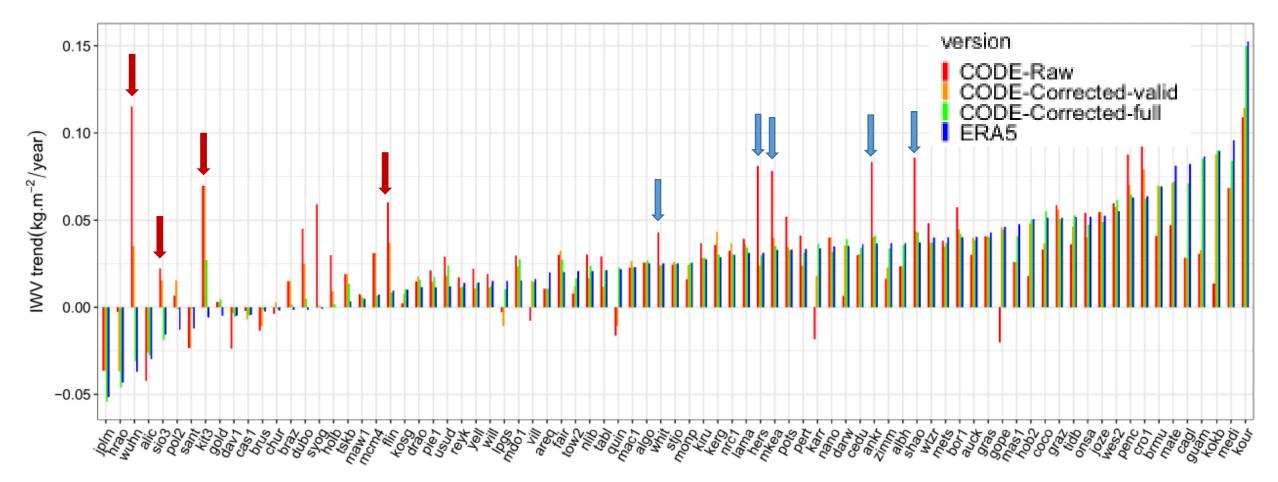
Differences decrease with time

Trend results: GNSS homogenized (validated)

Time	e Span	1995–2010		1994–2010	1994-2018
	error ² year ⁻¹)	0.035		0.033	0.018
	ERAI (kg m ⁻² year ⁻¹)		0.018 ± 0.055 (9)		0.027 ± 0.034 (37)
	$\begin{array}{c} \text{ERA5} & 0.011 \pm 0.052 \\ \text{(kg m}^{-2} \text{ year}^{-1}) & (8) \end{array}$				0.027±0.031 (35)
G	SPS	IGS time-matched	CODE time-matched	CODE time-limited	CODE (c)
Raw data	IWV trend (kg m ⁻² year ⁻¹)	0.024 ± 0.059 (20)	0.018 ± 0.060 (18)	$\begin{array}{r} 0.016 \pm 0.060 \\ (23) \end{array}$	0.030 ± 0.031 (41)
nutri uuu	RMSE wrt ERA5 (kg m ⁻² year ⁻¹)	0.044	0.046	0.046	0.033
corrected IWV	IWV trend (kg m ⁻² year ⁻¹)	0.015 ± 0.052 (12)	0.014 ± 0.052 (11)	0 .011 L 0.0 52 (15)	0.027 ± 0.026 (34)
by validations	RMSE wrt ERA5 (kg m ⁻² year ⁻¹)	0.038	0.039	0.040	0.019

GNSS raw vs. homogenized

- mean decreases
- Std (spatial variability) decreases
- Nb significant trends decreases
- RMSE (GNSS ERA5): decreass


Homogenized GNSS trends are more similar to reanalyses

Trend results: GNSS homogenized (all)

Time	Span	1995–2010		1994–2010	1994–2018
	error year ⁻¹)	0.035		0.033	0.018
	ERAI (kg m ⁻² year ⁻¹)		± 0.055 9)	0.013 ± 0.049 (10)	0.027 ± 0.034 (37)
ER (kg m ⁻²	A5 year ⁻¹)	$\begin{array}{c} 0.011 \pm 0.052 \\ (8) \\ \end{array} \qquad \begin{array}{c} 0.008 \pm 0.047 \\ (8) \\ \end{array}$		0.027±0.031 (35)	
G	PS	IGS time-matched	CODE time-matched	CODE time-limited	CODE (c)
Raw data	IWV trend (kg m ⁻² year ⁻¹)	0.024 ± 0.059 (20)	0.018 ± 0.060 (18)	0.016 ± 0.060 (23)	0.030±0.031 (41)
Turr dutu	$\begin{array}{c} \text{RMSE wrt ERA5} \\ \text{(kg m}^{-2} \text{ year}^{-1} \text{)} \end{array}$	0.044	0.046	0.046	0.033
corrected IWV	IWV trend (kg m ⁻² year ⁻¹)	0.015 ± 0.052 (12)	0.014 ± 0.052 (11)	0.011 ± 0.052 (15)	0.027 ± 0.026 (34)
by validations	$\begin{array}{c} \text{RMSE wrt ERA5} \\ \text{(kg m}^{-2} \text{ year}^{-1} \text{)} \end{array}$	0.038	0.039	0.040	0.019
corrected IWV by	IWV trend (kg m ⁻² year ⁻¹)	0.017 ± 0.053 (9)	0.016 ± 0.054 (9)	0.012 ± 0.048 (13)	0.027 ± 0.030 (34)
all breakpoints	$\begin{array}{c} \text{RMSE wrt ERA5} \\ \text{(kg m}^{-2} \text{ year}^{-1} \text{)} \end{array}$	0.021	0.022	0.022	0.006

GNSS homogenized with all change-points gets very close to ERA5 (this is expected)

Trend results: at 81 stations

- In many cases both corrected trends agree with each other and are more consistent with reanalysis
- In some cases the corrected GNSS trends are different and the valided trends don't agree with reanalysis

Conclusions

• More recent GNSS data set and reanalysis are less noisy

- segmentation has more detection power
 - helps detect biases in GNSS antenna+radome models => next check GNSS repro3
- only small impact on trend estimates
- Segmentation is more conservative on longer period
 - fewer detections (only the most signigicant offsets are dectected)
- Trend estimates are more precise on longer period
 - more trends are significant and spatial variability decreases
 - trends increased in recent years (atmosphere gets warmer and moister)
- Trends from homogenized and validated GNSS data
 - more similar to ERA5 on average
 - evidence that some changepoints are undocumented or due to reanalysis
 - need a more effective change-point validation strategy => attribution method

Reference

 Nguyen, K.N.; Quarello, A.; Bock, O., Lebarbier, E. (2021) Sensitivity of Change-Point Detection and Trend Estimates to GNSS IWV Time Series Properties. Atmosphere, 12, 1102. https://doi.org/10.3390/atmos12091102