Climate Data and Monitoring
WCDMP-No. 71

Proceedings of the Fifth Seminar for
Homogenization and Quality Control in
Climatological Databases

(Budapest, Hungary, 29 May — 2 June 2006)

Meteorological
Organization
Weather o Climate « Water

WMO-TD No. 1493




PROCEEDINGS OF THE FIFTH SEMINAR
FOR HOMOGENIZATION AND QUALITY

CONTROL IN CLIMATOLOGICAL DATABASES

Budapest, Hungary, 29 May — 2 June 2006

Organized by Hungarian Meteorological Service (HMS)
Supported by WMO and HMS

Edited by M. Lakatos, T. Szentimrey, Z. Bihari andS. Szalai



© World Meteorological Organization, 2008

The right of publication in print, electronic and any other form and in any language is reserved by WMO.
Short extracts from WMO publications may be reproduced without authorization provided that the complete
source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this
publication in part or in whole should be addressed to:

Chairperson, Publications Board
World Meteorological Organization (WMOQO)

7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03
P.O. Box No. 2300 Fax: +41 (0)22 730 80 40
CH-1211 Geneva 2, Switzerland E-mail: Publications@wmo.int
NOTE

The designations employed in WMO publications and the presentation of material in this publication do not
imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal
status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries.

Opinions expressed in WMO publications are those of the authors and do not necessarily reflect those of
WMO. The mention of specific companies or products does not imply that they are endorsed or
recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.

This report is not an official publication of WMO and has not been subjected to its standard editorial
procedures. The views expressed herein do not necessarily have the endorsement of the Organization.



PREFACE

The First Seminar on Homogenisation was organieadyears ago in 1996. The
basic questions were the distribution of homogeimsamethods and the overall use of
homogenous (homogenised) time series in climatengdhastudies in that time.
Homogenisation was not widely accepted, and theergdly recommended methods had
very simple and poor mathematical basis.

The general view has been changed since then. Hamsagion became a basic element of
the data quality procedure, although many of titemenendations of the First Seminar are
not fulfilled even today. The information on thepipd homogenisation method is not
always published along with the time series, howeve have many good examples
already.

At the same time, research community requires nzov@ more from the experts on
homogenisation. Nowadays, one of the largest, soll fully solved problems is the
homogenisation of daily time series. Many, very amgnt indices are calculated from the
daily data, and those indices are needed for oirmhnge detection, changes of extreme
values, etc.

A new COST Action proposal has the basic task tmpare, evaluate and develop
homogenisation methods. COST (European Cooperatiohe field of Scientific and
Technical Research) is open for the appropriatituions, but supports only the member
states. We hope, that this new Action will give aslp to the dissemination and
development of homogenisation methods not onlyuroge, but worldwide.

This seminar is supported by WMO and OMSZ, and vepehthat the series of
Homogenisation Seminars can co-operate with difteo¢her initiative for development of
data quality with special regards to homogenisation

Sandor Szalai
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AN OVERVIEW ON THE MAIN METHODOLOGICAL QUESTIONS
OF HOMOGENIZATION

Tamas Szentimrey

Hungarian Meteorological Service
szentimrey.t@met.hu

1. INTRODUCTION

Today the theme of homogenization can be dividéol two subgroups, such as monthly
and daily data series homogenization. These sgbget in strong connection of course,
for example monthly results can be used for the dgenization of daily data. However
while monthly series homogenization is relativelglmelaborated, the problem of daily
data is still in early stage. Owing to these retpece will consider first the main
methodological questions of monthly series homagsion, namely the relative and
absolute test methods. In connection with the ikedanethods, the following topics will be
detailed: mathematical methodology for comparisbrsasies, break point (changepoint)
and outlier detection, correction of series, migsdata complementing as well as the
possibilities of verification for both methods aresults. Concerning the homogenization
of daily data series we will discuss the posswilib use the detected monthly
inhomogeneities for daily data, furthermore thecggdemportance of quality control and
missing data completion. The key issue of exacheraatical methods is also emphasized,
as there is no royal road to anything.

The following methods will be referred as examplé&dNHT (Standard Normal
Homogeneity Test, Alexandersson, 1986), Caussinestid's method (Mestre, 1999,
2004) and MASH (Multiple Analysis of Series for Hogenization, Szentimrey, 1999,
2004).

2. HOMOGENIZATION OF MONTHLY DATA

2.1 Absolute and relative methods

In case of absolute methods we have only one catedgkries without any other reference
series. The additive model for the candidate mgrghties is,

X(t) = p(t) + E+ IH (t) +(t) (t=12,....n),
where u(t) is the unknown climate change signBl,is the spatial expected valukH (t)
is the inhomogeneity signal argft) is a normal white noise series. The main problém o

the application of absolute methods is that theaisgn between the climate change
signal and the inhomogeneity is essentially imgmesi

2.1.1. The additive model of relative methods

Relative methods can be applied if there are miatgoa monthly series given, which can
be compared mutually. In case of relative methdgsadditive model for more monthly
series belongs to the same month in a small clineggen is as follows,

X ()= pt)+E; +IH, () +&,1)  (j=12...N;t=12....n), 1)



where y(t) is the common and unknown climate change sigial, are the spatial
expected valuesiH ;(t) are the inhomogeneity signals aa(t) are normal white noise

series. As concerns the type pft) there is no assumption about the shape of thiskig
The type of inhomogeneityd (t) is in general a 'step-like function’ with unknovimmeak

points T and shifts IH(T)-IH(T +1)# 0, andiH(n)=0 is assumed in general. The
expected values

E(X,®)=u®+E +H,® (j=12...N;t=12....,n),

are covered with the normal white noise series,

elt)=[e (). e, O ONO.C)  (t=1...n) .

where the vector variables{t)( :L...,n) are totally independent in time, and mat@xis
the spatial covariance matrix between the statidhss station covariance matri€ may
have a key role in methodology of comparison oieser

The aim of the homogenization procedure is to detex inhomogeneities and to correct
the series. During the procedure the series camoimpared mutually and the role of series
— either the candidate or the reference ones haaging in the course of procedure. The
reference series are not assumed to be homogeiredbe correct examinations! The
significance and the power of the procedures cadefi@ed according to the probabilities
of the type of errors. Type one error means thesdliein of false or superfluous
inhomogeneity while type two error means neglectioge real inhomogeneity.

2.2 Methodology for comparison of series

The problem of comparison of series is relatech&ofollowing questions: reference series
creation, difference series constitution, multipteanparisons of series etc. This topic is
very important for detection as well as for con@tt because the efficient comparison of
series can increase both the significance and tiveep The development of efficient

comparison methods can be based on the examiradtibe spatial covariance structure of
data series.

As we emphasized earlier all the examined senegt) (j =1....N ) are taken as
candidate and reference series alike, besidesefleeence series are not assumed to be
homogeneous at the correct examinations!

The main problem arises from the fact that the sledlimate change signal is unknown.
Therefore so-called difference series are examimedder to filter out the climate change
signal u(t). The simple difference series between pairsz{t¢= X (t)- X; (t). However

the difference series constitution can be formdl@emore general way as well. Assuming
that X, (t) is the candidate series and the other ones ameférence series, the difference

series belongs to the candidate series can beitcmeﬂtas,

Z.(t)=X%,(t)-> 4% () t)=> A H, () +e, () 2)

i#] i#]
with condition of Z:)Iji = 1for the weighting factors. As a result of the lesndition, the
i#]
unknown climate change signaj(t) has been filtered out. Consequently the
inhomogeneities can be detected by the examinaiiothe difference series defined
according to formula (1). The interpolation seriEAiiXi(t) can be taken as created
i#]

reference series for candidate senegt).



In addition if we want to increase the signal téseaatio in order to increase the power of
detection then we have to minimize the varianceciée terme, (t)

The covariance matrixC uniquely determines the optimum weighting factoingit
minimize the variance, and the optimal differeneeies created in this manner can be
applied efficiently for the detection and correntjorocedures (MASH, Szentimrey, 1999).
We mention that in case of using the generalizadtiequares estimation for the unknown
climate change signap(t), also the optimal difference series is obtainethvminimal

variance. We have to examine more difference sani@der to separate the appropriate
detected inhomogeneities for the candidate seklese difference series created without
common reference series and with minimal variawesesbe defined as optimal difference
series system (MASH).

2.3 Methodology for break point (changepoint) dete@n

One of the basic tasks of the homogenization i€ianination of (more) difference series
in order to detect the break points and to sep#hnata for the candidate series.

Let Z(t) be a difference series according to the formujatft is

ZW)=H,[t)+e,(t) (t=1.n), 3)

where IHz(t) is a mixed inhomogeneity of difference serig@) with K break points
T, <T,<....<T,. In general the numbéf and the position of the multiple break points
T, <T,<...<T, are unknown, furthermore the noise variable§(t) O N(Ez,aé)

(t :l...,n) are totally independent in time. The basic typethe detection procedures are
the stepwise and the multiple break points detectiet us have the following notation of
the estimatesK; T, <T, <....<T,

2.3.1 Stepwise break points detection procedures

The algorithm of the stepwise decision procedur@etiect the break points is as follows.
Step 1: the 'most probable’ break pOTﬁ\(f).

Step 2: the 'most probable’ second break pdﬁﬁ, assuming that'l°1(1) is a real break
POINE. oo e e

Step K : the 'most probable’R™ break pointT®), assuming thatt® ... T% are real
break points.

The numberK is the estimation for the number of break pointsich is determined also
in the course of procedure.

As regards the concept of 'most probable’, it delsenn the aim, there is no absolute
objective function. In general the maximum likeliltbestimation is applied.

The method SNHT (Standard Normal Homogeneity TA#xandersson, 1986) is an
example for the application of this stepwise pheifor break points detection. However
the multiple break points detection procedures,mthe break points are estimated jointly
instead of step by step, are more exact and eldélgantthe stepwise ones in mathematical
respect.

2.3.2 Multiple break points detection procedures

For joint estimation of the break points there diféerent possibilities, principles, which
are classical ways in mathematical statistics.



2.3.2.1 Detection based on Bayesian Approach

The methods based on Bayesian model selectionharg@dnalized likelihood methods.
These methods are different in the penalty termsrderions e.g. Akaike criterion,
Schwarz criterion, Caussinus-Lyazrhi criterion.

The Caussinus-Mestre’s procedure (Mestre, 19994)2b8sed on the Caussinus-Lyazrhi
criterion is an example for the penalized likelidooethods.

2.3.2.2 Detection based on Test of Hypothesis

Another possibility is to use hypothesis test mdghfor the detection of break points. At
the MASH method (Szentimrey, 1999) a hypothesisgescedure has been developed, as
we want to avoid the type one error that is the algamof data series. The essence of this
multiple break points detection procedure basedtest of hypothesis on a given
significance level is as follows.

If the detected break points &ft) areK; T, <T, <....<T.,
then on the given significance leved (e.g.: p=0.1):
I, Z(t) is not homogeneous above the inter\(éiigl,'lckﬂ betause,

P( [(T,,.T...] abovethat: Z(t) homogeneo&x)z p

Consequently the detected break pofrgtare not superfluous.
This means there is no serious type one error.

ii, Z(t) can be accepted to be homogeneous above theailstéiy,, T, ].
This means there is no serious type two error.

Remark

Confidence intervals are also given for the breaits beside the point estimates at the
method MASH (Szentimrey, 1999).

2.3.3 Outlier detection (QC)

In case of monthly series homogenization the autlegection is the quality control (QC)
procedure for the data. Furthermore the outlieect&in can be considered as a special part
of break points detection, because an outlier igvatent with two special break points.

The pointT,, is an outlier point if and only if

|H(T0ut)—|(|)—u|t(Tout -1)=1H(T,, )-IH(T,, +1)#O0.

out

Consequentlyl, —1 and T,

out

are break points, where their shifts are the sanadsolute
value but with opposite sign.

2.4 Methodology for correction of series

Beside the detection, another basic task of thedgemzation is the correction of series.
Calculation of correction factors can be basedhenexamination of difference series for

estimation of shiftsIH (T, )- IH(f, +1) (k :L...,K) at the detected break points.

2.4.1 Correction methods

Almost all the methods use point estimation for¢beection factors at the detected break
points. For example the Caussinus and Mestre’s adefilestre, 2004) uses the standard
least squares technique to estimate the correfaatars.

4



The MASH procedure (Szentimrey, 1999) is an exoephiecause the correction factors
are estimated on the basis of confidence intervals.

2.4.2 Missing data complementing

In fact the missing data completion or filling thaps is an interpolation problem. At the
MASH method (Szentimrey, 1999) the applied spatm@krpolation formula is in
accordance with the series comparison formula.@),
X, (t) =4+ DA, X (t) 4)

i#z]

where X, (t) is the interpolated candidate series and the sexdt) (i # j) are the

reference ones, with condition on:)lji = fbr the weighting factors. The optimum
i#]

interpolation parameters that minimizZ@MSE error are uniquely determined by the

covariance matri .

2.5 The philosophy of MASH

Careful break points detection and correction itenaprocedures in order to decrease the
probability of type one error. At the same timengsioptimal series comparison for
decreasing the probability of type two error i.@rtcrease the power.

The break points detection is based on hypothestsg, point estimation and confidence
intervals.

The correction is also based on point estimati@ahcamfidence intervals.

Series comparison uses optimal difference serigsstitotion with optimal weighting
factors.

Missing values are completed by spatial interpotatvith optimal weighting factors.

In addition the software MASH is an iteration prdaee (Szentimrey, 2006)!

2.6 Possibilities of Verification

The confidence in the homogenized series may lreased by the examination of both the
methods and the results.
Possibilities for the examination of methods:
= Theoretical overview and evaluation of the homogatmon methods.
= Testing the methods on the basis of artificial,egated series.
Possibilities for the examination of homogenizatiesults:
= Comparing the detected inhomogeneities with theaNDetta.
= Mathematical verification procedures to evaluaterésults.

BASIC CONCEPTION OF VERIFICATION PROCEDURE BUILT IN MASH
(SZENTIMREY, 2004):

The quality of the homogenized series can be etedudy the joint comparative
mathematical examination of the original and thenbgenized series systems.

Also Meta Data information can be used and testenhg the procedure.

Finally, as regards testing of methods we emphdbkete

Homogenizatios Break Points Detection!!!

Homogenization is a much more complex problem:

Homogenization=Comparison+ Detection+Correction+etc.

If we want to test the methods, we must fully awaréhe complexity!



3. HOMOGENIZATION OF DAILY DATA

The main question is the relation of daily and rhignhomogenization.

The alternative possibilities are as follows:

— To use the detected monthly inhomogeneities tyréar daily data
homogenization.

— Direct methods for daily data homogenization.

The problems connected with the possibilities:

— The direct use of the detected monthly inhomoigjesas probably not
sufficient.

— Direct methods for daily data homogenizationr@bpbly not enough efficient
thinking of the larger variability (less sigrialnoise ratio).

So we have the following question:

How can we use the valuable information of deteatedthly inhomogeneities

for daily data homogenization?
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ABSTRACT

Undocumented changepoints (inhomogeneities) are ubiquitous features of climatic
time series. Leve shifts in time series caused by changepoints confound many
inference problems and are very important data features. Tests for undocumented
changepoints from models that have independent and identically distributed errors are
by now well understood. However, most climate series exhibit serial autocorrelation.
Series recorded at monthly, daily, or hourly frequencies may also have periodic
structures.  This article develops a forma datistical test for undocumented
changepoints for periodic and autocorrelated time series. Classical changepoint tests
based on sum of sqguared errors are modified to take into account series
autocorrelations and periodicities. The methods are applied in the analyses of a
monthly pressure and a monthly temperature series.

1. INTRODUCTION

A changepoint in atime series is a time at which the structural pattern of the series
changes. This shift is typically measured in terms of mean or average levels, but
changepoints in variability, or more generally, in the marginal distributions of the
series, could be studied. The series under study may contain measurements scaled by
areference series or the raw observations themselves. While such distinctions are not
crucia for the moment, the reader is referred to Alexandersson (1986) for a
discussion on comparisons made by forming differences and ratios of target and
reference series.
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Instrumentation/observer changes, station location changes, and changes in
observation practices are frequent non-climatic (artificial) culprits behind
changepoints. In many cases, the changepoint time and cause are documented and it
is reasonably straightforward to statistically adjust (homogenize) the series for the
effects of the changepoint. Unfortunately, many changepoints are undocumented.

While undocumented changepoints are sometimes evident in a plot of the series,
debatable cases also abound. Visual detection of a changepoint in a series with a
prominent seasonal mean can be difficult (Section 5b gives an example). Moreover,
the statistical methods used to identify undocumented changepoints are known to be
very important (see Lund and Reeves 2002, Reeves et a.~2006, and Wang 2006).
Undocumented changepoint detection methods can greatly reduce the workload of
metadata investigation by identifying times around which the investigation should
focus. Hence, the development of statistically sound tests for undocumented
changepoints is desirable. Undocumented changepoint detection in climate settings
has been previously explored by Potter (1981), Thompson (1984), Alexandersson
(1986), Solow (1987), Karl and Williams (1987), Gullet et a.~(1991), Rhoades and
Salinger (1993), Easterling and Peterson (1995), Alexandersson and Moberg (1997),
Vincent (1998), Lund and Reeves2002), Ducre-Robitaille et al.~(2003), Wang
(2003), Wang and Feng (2004), Hanesiak and Wang (2005), and Wang (2006). The
statistical side of the subject is also vast, with Page (1955), Kander and Zacks (1966),
Hinkley (1969 and 1971), Brown et al. (1975), Hawkins (1977), Chen and Gupta
(2000), and Caussinus and Mestre (2004) being a prominent sample. Neither of these
lists is complete. Reeves et al.~(2006) review undocumented changepoint detection
methods in climate settings for models with independent and identically distributed
(I1D) Gaussian errors.

In this paper, we develop a method for undocumented changepoint detection for
series with autocorrelated and periodic features. The periodic and autocorrelation
aspects are modeled in tandem rather than separately. The results enable one to test
for undocumented changepoints in a variety of realistic climate settings. The
methods work with or without a reference series and are specificaly designed to
handle correlated series. They greatly alleviate the heavy dependence of most existing
methods (which assume 11D Gaussian errors) on the availability and use of good
homogeneous reference series to diminish the effects of periodicities and
autocorrelations (and trends for models without a trend term, e.g., Alexandersson
1986). This paper is perhaps the first detailed investigation of changepoint detection
in climate settings involving autocorrelation; periodicities and changepoint detection
were previously considered in Gullett et al. (1991).

The rest of this paper proceeds as follows. Section 2 introduces a time series
regression model with autocorrelated and periodic features. A test statistic weighing
a null hypothesis of overall series homogeneity against the aternative of an
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undocumented changepoint is developed in Section 3. Section 4 shows why
autocorrelation and periodicities are important in changepoint detection problems.
Applications of the methods to monthly pressures and monthly temperatures are
given in Section 5.

2. THE MODEL

In the time homogeneous (non-periodic) setting, a ssmple but useful model allowing
for one changepoint in time series X; isthe following regression:
Xi =m+Dbt+Dly.q +e, LELEN, Q)

where c is the unknown time of change (the exposition focuses on detection of one
changepoint but others could exist in practice), the magnitude of the changepoint
effect (step-size) is D, and e; is a zero mean random variable that may be
autocorrelated (atime series). Thefactor b allows for asimple linear trend in series
values. Following Wang (2003), the trend (slope) b is constrained as equa before
and after the changepoint at time c. The simple linear structure in (1) may require
modification in some settings, for example, Lund and Reeves (2002) analyze a

carbon dioxide series where a quadratic trend is apparent, while the existence of a
good reference series may render the inclusion of atrend component unnecessary.

Equation (1) is a simple linear regression model with two phases; such models and
their variants have been studied in Hinkley (1969), Solow (1987), Easterling and
Peterson (1995), Vincent (1998), Lund and Reeves (2002), and Wang (2003). A
periodic variant of (1) merely allows the location parameter n to depend on time and
vary periodically with period T, i.e.,
Xirey =M, +b(NT +V) + Dt iysg) €074y, LENTHVEN. (2)

In(2), X, 74y refersto the series during thev season (or month or day...) of cyclen.
The seasonal index v satisfies 1EvET and the period T is assumed known. Our
bookkeeping assumes d complete cycles of data and labels these cyclesasO, ..., d-1,
respectively; this makes X, the observation for season 1 of cycle 0. The total
number of observationsis N =dT . Equation (2) assumes a time homogeneous (non-
periodic) linear trend and time homogeneous mean-shift; this is emphasized
notationally by the fact that b and D do not carry subscripts of v. Changepoints

inducing different effects on different seasons could be modeled by allowing D to
depend on v, but we will not pursue such generality here.

The mean seriesresponse at time (nT +v) in(2) is
E(XnT+v) =m + b(nT +v) + I:II-[nT+v>c];
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hence, seasonality in the first moment is described by. In addition to seasonality in
mean, many climatic series also display seasonality in variance and autocorrelations.
For examples, non-tropical temperature series show larger variabilities (lag zero
autocovariances) during winter seasons and many Western United States precipitation
series have minima variability during late summer and early fall seasons.
Changepoint times are dlightly more difficult to detect at times of peak series
variability (see Section 4). To alow for autocorrelation and periodicities, the
regression errors e, are modeled as a periodically stationary time series (periodic
series). A genera overview of periodic series and their applications in climate
modeling is presented in Lund et al. (1995).

For simplicity of computation, presentation, and flexibility, we will work with
perhaps the simplest periodic time series model fore,: a first order periodic

autoregression, PAR(1). Such an e, isgoverned by the periodic difference equation:
CnT+y = f venT+v-1 7+ ZnT+v (3)

where Z, =Z,r,, is mean zero periodic white noise; that is, Z, and Zg are

uncorrelated when t* s, Z, has zero mean for every t, and the variance of Z; is

periodic in that Var(Z,;14+,) =S 3 The model in (3) has 2T parameters --- this total

may be large if the series is observed frequently. For example, a daily PAR(1)
(T =365) has 365 autoregressive parameters and $365$ white noise variance
parameters. Parsimony issues for periodic series are discussed in Lund et al. (2006).

3. THE TEST STATISTIC

An undocumented changepoint test dstatistic weighs the null hypothesis that
D = 0(termed anull or H, model) against the alternative that D* 0 (termed afull or
H , model). The changepoint time c is an unknown parameter of the full model.

The general form of the test statistic coincides with that in Lund and Reeves (2002)
and Wang (2003):

I:max = MaXjgc<N Fc (4)
where F. defined by
_ SSE; - SSE,(C)
¢ = )
SSEA(C)/(N - p)
is aregression F-type statistic measuring closeness of the null model and a full model
with a single changepoint at time c. In (5), SSE; and SSE4(c) are null model sum

of squared errors and full model sum of squared errors when a changepoint exists at
time c, respectively. Note that SSE, does not depend on the value of ¢ but that
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SSE\(c) does. Here, p is the number of free parameters involved in the full model
with achangepoint at timec; later, we present applicationswhere p=8.

In classical regression settings with 11D Gaussian e;, F, has an F distribution
(exactly) with 1 numerator degree of freedom and (N - p) denominator degrees of
freedom. The larger F. is, the more evidence there is that an undocumented
changepoint exists at time

c. Intuitively, the F,, statistic selects the time of largest discrepancy in the two
phases of the model, as measured by regression F. statistics, as the estimator of c.
The null hypothesis H, is accepted when F,,, is small enough to be explained by
chance variation and rejected when F,, is excessively large. The null hypothesis
percentiles of the F,,, distribution, assuming I1D Gaussian errors (specifically time-

homogeneity and independence) and the regression form in (1) are tabulated in Wang
(2003). The reader is cautioned about historical mistakes in quantifying this
distribution (see Lund and Reeves 2002 for discussion); the percentiles in Wang
(2003) and Lund and Reeves (2002) are accurate.

For IID e, Alexandersson (1986) and Lund and Reeves (2002) connect the F,
statistic to Gaussian likelihood ratios and maxima of correlated t and F random
variates. Since the F.'s are correlated in ¢, F,, does not behave stetistically as the

maximum of independent F-statistics, with each F-statistic having 1 numerator and
(N - p) denominator degrees of freedom.

The key methodological innovation put forth here involves modifying sums of
squares in autocorrelated (and periodic) settings. Here, we use weighted squared
prediction errors:

DT (Xoray - Xira)?
SSEO =3 a( nT+v > nT+v ’ (6)
n=0v=1 Sy
and
DT [ Xy - XA (0]
ﬁA(C) = A a[ nT+v nT+v( )] : (7)

2
n=0v=1 Sy

moreover, the form of the predictions X%, and X/, (c) now become best one-
step-ahead linear predictions:

Xrev = PolXqray | Xgieoo Xpiray-1 A0 Xy = PalXpray | Xge Xpirane 1,41, (8)
where P[X |Y,]] denotes the best (minimum mean square error) linear prediction of
X from linear combinations of Y and a constant. The subscript under P (or the
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superscript on )Zt indicates the model (null or full) under which the linear prediction

is to be computed. Brockwell and Davis (1991, Chapter 8) provide the theory for
sum of sguared errors in time series settings. We comment that the PAR(1) structure

gives Var[X 4y - Xyray] =8 \?

The computation of F,, requires SSE; and SSE,(c) for each c. We first tackle
SSE, . For the null model, the PAR(1) structure gives
Xgrey =M, +D(0T +V) 4 [ Xyroy g -M,g - b(NT +v- 1] 9

for 2£nT +VE N, where the startup convention X =m +b is made. As the
parametersb , m, and f, (1£ v £ T ) are unknown, we estimate them by numerically
minimizing the sum of squares over al feasible values. Since it is statistically
wasteful to expend T parameters each in modeling m, and f,,, we impose the first-
order Fourier parsimony constraints

m = Ao+ Ao Py, =B+ B P )

upon model parameters during minimization. In these formulations, A, and B, are

the mean periodic value of the parameter being modeled, with A and B

representing the maximum amplitude above or below the mean which could be
achieved. Thet and
h are the times (phases) in the cycle at which the parameter being modeled achieves

its maximum. These phase parameters are unique only modulo T, but it is
conventional to utilize values in the range [0, T]. Higher order Fourier series and/or
wavelet based expansions could be considered if needed. Lund et al. (2006) discuss
periodic parsimonious time series modeling in general. Notice that the null model

expends six free parameters in modeling m, and f,,. Adding the trend parameter b

brings the free parameter count in the expression for X r?TH, to seven.

The parameters 53 are viewed here as nuisance parameters. These parameters are

least squares weights and become increasingly important to know accurately when
the variance of the time series has a large seasonal cycle. In practice, one needs only
a rough idea of their values --- and this is easily accomplished by several methods,
one of which is presented in the applicationsin the next section.

To compute SSE 4 (c) for afixed c, we proceed as with the null model except that (9)
ismodified to account for the changepoint at timec:
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Xr?T+v =m, + b (nT +V) + D:I-[nT+v>c]
+fv[an+v-l -M.q- b(nT tv- 1) - D:I-[nT+v-1>c]]
for 2£nT +v£ N, where the startup convention X{*=m +b is made. The full

(11)

model involves eight free parameters (add one for D) in describing )ZnATJ,V for each
fixed ¢, one more than the null model'stotal.

The F Statistic in (4) along with SSE; and SSE 4 (c) defined in (6) and (7) has,
approximately, the percentiles reported in Wang (2003) with (N - p) denominator
degrees of freedom. These percentiles are not exact as some of the parametersin the
fitted time series model must be estimated; however, as the sample size N increases,
the percentiles become increasingly accurate. Overall, perturbations in Wang's
(2003) percentiles induced by parameter estimation are relatively minor when

compared to those reported in the next section when autocorrelation features of the
series areignored.

4. THE IMPORTANCE OF AUTOCORRELATION AND PERIODICITIES

This section shows how autocorrelations and periodicities influence changepoint
detection procedures. We will study how the 95th percentile of the F,,,, distribution
in (4) changes under correlation and periodic time series features. Our intent here is

to mimic what happens when one ignores the autocorrelations and/or periodicities in
the series.

We first investigate the effects of autocorrelation. Table 1 displays the sample 95th
percentile of the F,, distribution under various levels of serial autocorrelation as
governed by a first-order autoregression, AR(1). To isolate the effects of
autocorrelation only, we examine the time-homogeneous mode! in (1) with AR(1) e,
satisfying
e, =fe., +7;, (12)

where {Z;} is1ID Gaussian noise with variance s 2. Equation (12) is merely atime
homogeneous version of (3). We consider series of length N = 100. As the
autoregressive coefficient f increases, the degree of serial autocorrelation in the

model increases. The white noise variance s ? is selected to make the variance of the
error series e; unity in all cases; this allows for meaningful comparisons across table

entries. The estimated 95th percentiles were aggregated from one hundred thousand
independent simul ations each; hence, they are reasonably accurate.
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Table 1. The 95th percentiles of the Fp,, statistic under autocorrelation f .
f -0.95 | -0.75 | -050 | -025 | 000 | 015 | 025 | 050 | 0.75 0.95

Frax 0905 | 4531 | 4211 | 5323 | 7.460 | 11.054 | 14.350 | 17.250 | 29.547 | 64.185 | 176.753

The results show that the 95th F,,,,, percentile generally increases with increasing f ,
dramatically so for valuesof f dlightly lessthan unity. This agrees with the findings
of Percival and Rothrock (2005) and is not surprising: as f >0 becomes larger, the

series makes longer sojourns above and below its mean response values, which
effectively imitates the effects of a mean-shift due to a changepoint. Hence, one
should be cautious when declaring changepoints in positively correlated series.
When f <0 (which is not usualy realistic in climate modeling), consecutive

observations tend to split the mean response level (one above and one below) and
make changepoints easier to detect. The case where f =0 corresponds to the case of

independent errors and is considered in detail by Wang (2003).

Next, we consider how periodicities in the white noise variances influence
changepoint detection. Here, our mode! is (2) and { e;} is periodic Gaussian white

noise. To isolate on the effects of variance-periodicities only, we take m, ° 0,
f,°0,and b =0. The white noise variance parameters were assumed sinusoidal :

M) _ (13)

Table 2 reports estimates of the 95th F,,, percentile for the regression model in
Wang (2003), again computed for one hundred thousand simulations for each entry,
for various values of C, and C; (and x =0). If C; =0, the error variances are
nonseasona and the setting reduces to that studied in Wang (2003). In fact, when
C, =0, the F, percentiles do not depend on the value of Cy. The larger C; is

relative to C, the more seasonality there is in white noise variances (as measured

s 2 =Cy+Cycog(

across varying seasons v). Of course, we take C; <C, or sf could be negative.

This table employs N = 120 (d = 10, T = 12), which corresponds to a decade of
monthly data.

The Table 2 results show that the null hypothesis F,,, percentiles increase slightly
with increasing seasonal variability. This is as expected: when 33 varies greatly
with the season v, there is alarger chance for an outlying e, to pull the least squares
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regression fit away from its true zero mean baseline, hence mimicking a changepoint
mean-shift. Note, however, that the effects of variance-seasonality are nowhere near
as drastic as those of autocorrelation. Observe that the percentiles for the first three
entries are approximately those for the second three entries. Those for the case

C; =0 indeed coincide with those reported in Wang (2003) (up to simulation error).

Table2. The 95th percentilesof the 5, statistic under variance-seasonality.

Co C, Fimax,0.95
1.00 0.00 11.107
1.00 0.50 11.926
1.00 0.95 13.253
10.0 0.00 11.093
10.0 5.00 11.926
10.0 9.50 13.254

Finally, to obtain some feel for practical cases involving both periodic and
autocorrelated features, we have simulated a case where the { e;} follow (3) and

where the f, and sZ parameters are set to the values that are fitted in the

temperatures series analyzed in Section 5b below. Here, the series length is N = 600.
A simulation of one hundred thousand runs gives an estimated 95th percentile of
about 16.16, about 40% larger than that for 11D errors (which is 11.55, as tabulated in
Wang 2003). Hence, even in practical cases, there is plenty of room to commit
mistakes by ignoring autocorrelation and periodicities.

5 EXAMPLES
a. A monthly mean atmospheric pressure series

The above methods were applied to a series of monthly mean atmospheric pressures
recorded at Stephenville Airport (Newfoundland, Canada) for the period 1953-2002
(50 years;, N = 600), shown in Figure 1. The mean pressure is lower in winter
(December-March) and peaks in summer; winter pressure variabilities are also higher
than those in summer, a property also shared by temperatures.

To estimate s 3 anull model and full models for each admissible changepoint time ¢
were fitted to the data by numerically minimizing the sum of squared errorsin (6) and
(7), without the weights sf in the denominator of these equations. The numerical
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minimization was a fairly stable endeavor and was accomplished with a gradient step
and search algorithm. The fits suggest that ¢ = 286 is the most likely time of a

changepoint. The parameters s 3 are now simply estimated as the sample variance of

the season v residuals (X 14y - )A<nAT+V) computed from afull model fit with ¢ = 286:

d-1
c2 1% SA 2
Sy =75 a (an+v - an+v :
d n=0
Figure 2 plots these estimates and confirms that winter months are the most variable.
We may now compute F, and F,,,, accounting for the effects of autocorrelations

and variance-periodicities.

1025

1020
e IR TR | g

1010

1005

Pressure (hPa)

| ! wnu){' P

1000

995

1953 1958 1963 1968 1973 1978 1983 1988 1993 1998

Time of Observation (ticks at January of each year)

Figure 1. Monthly mean atmospheric pressuresrecorded at Stephenville Airport
(Newfoundland, Canada). Thered curveisthefitted regression response,
the blueline, thetrend.

Figure 3 plotsvaluesof F, against a 95% confidence threshold constructed assuming
a null hypothesis of no changepoint. The largest F. is F, =71.075, which

occurred at ¢ = 286 (October 1976) and greatly exceeds the 95% threshold. Hence,
evidence suggests an extremely significant changepoint around October of 1976. The

mean-shift at the changepoint is estimated as D = - 4.4 hPa by the full model and the
trend estimate is b = 0.00324. The other parameters in the full model fit for ¢ = 286
are A, =1011968, A =1404, t =8005, B,=00637, B,=00422, and
h =8.926.
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Figure 2: Stephenville Sample Prediction Variances

24

Sample Variance

1 2 3 4 5 6 7 8 9 10 11 12
Menth of Year

Figure 2. Sample prediction variances of the Stephenville pressure series.
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Figure3. The F. statisticsof the Stephenville pressure series.

Apparently, the changepoint was caused by neglecting the 25.6 m station elevation in
the calculation of station pressures from barometer readings prior to 1977 (i.e, an
elevation of 0 m was used instead of 25.6 m). According to a physically based
estimate using a hydrostatic model and hourly pressure and temperature data (see
Wan et al. 2006), neglecting such an elevation causes a bias of 3.2 hPa on pressure
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values. The estimated changepoint time is very close to its true value. Additional
changes that happened between December 1976 and January 1977, such as the use of
computer-produced pressure reduction tables and the addition of a plateau correction,
may have also contributed to the magnitude of the mean-shift. Thisis likely why the

magnitude of D exceeds 3.2 hPa.

This was not a hard changepoint to identify. In fact, the two-phase regression
approach of Wang (2003) for time-homogeneous data also identifies a drop of 4.2
hPa between September and October 1976 when it is applied to this series after it is
standardized using the sample monthly means and variances for each of the 12
calendar months. Although Wang's (2003) method is not expected to perform well
for al series with autocorrelated features, it worked well here anyway. This is
attributed to an extremely significant mean-shift and minimal series autocorrelations.

Figure 4a: Stephenville Lecation Parameter Estimates

Location Estimate (hPa)

1008 1009 1010 1011 1012 1013 1014 1015
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Month of Year

Figure 4b: Stephenville Autoregressive Parameter Estimates
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Figure4. Estimates of the (a) location and (b) autocor relation parametersfor
for the Stephenville pressure series. Thedashed curvein (a) shows
the sample aver ages of pressuresin each month after adjusting for
trend and the mean-shift.

To further illustrate the seasonality and autocorrelations in this series, Figure 4 plots
estimatesof m, and f,, against the month v. In the plot of m, in Figure 4a, sample

averages of the month v pressures after adjusting for the trend and the changepoint
mean-shift are also displayed (dashed curve). These values agree, to a rough order,
with the three parameter cosine wave fitted in (10). One could explore adding a
second order harmonic in this fit, but we will not do so here. The mean response of
the fitted model is plotted against the datain Figure 1 and seems very reasonable. In
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Figure 4b, it should be noted that the monthly autocorrelations range from 0.021 to
0.106, with the minimum occurring during March and the maximum in September.
This amount of autocorrelation is not very heavy.

The methods have performed well for the Stephenville series, but, as mentioned, the

changepoint was extremely obvious. We now move to a more difficult case, and one
that will illustrate the full power of the methods.

b. A monthly temperature series

30
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-5

1949 1954 1959 1964 1969 1974 1979 1984 1989 1994

Time of Observation (ticks at January of each year)

Figure5. Thesameasin Figure 1 but for monthly averages of daily maximum
temperaturesrecorded at Collegeville (Nova Scotia, Canada).

Figure 5 displays the series of monthly averages of daily maximum temperatures
recorded at Collegeville (Nova Scotia, Canada) from 1949-1998 (50 years; N = 600).
The seasonal cycle in the data is clear, with winter temperatures being colder and
more variable than summer temperatures. With the seasonal structure of the time
series viscerally dominating, it is hard to “eyeball' any changepoint here. However, as
we show below, there is indeed some evidence for a changepoint. Versions of (6)

and (7) were fitted to the series first without the scaling sf factors in the
denominator. The F-statistics for this procedure peak at ¢ = 62. This value of ¢ was

used to develop estimates of s 3 which are plotted in Figure 6.
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Figure 6: Collegeville Sample Prediction Variances
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Figure 6. Sample prediction variances of the Collegeville temper ature series.
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Figure7. The F, statisticsof the Collegeville temperature series.
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Figure 7 plots the F. -statistics for this data weighting for the estimated values of s 3
Thelargest F, statistic is F,5 =18.988 and again occurs at ¢ = 62 (February 1954)

and exceeds the 95 percent confidence threshold. Hence, there is statistical evidence
for a changepoint between February and March 1954. According to Vincent (1998),
there was “a change in observer at the beginning of the 1950's along with a site
relocation of about 10 km north of the previous site” and “the inspector subsequently
reported that the new data had little in common with data from the former sites.”
However, the exact date of the 1950's relocation and observer change is not
documented.

The other parameters of the full model fit with ¢ = 62 are D=-1.16°C,
b =0.000281°C/month, A, =11.722, A =12960, t =7.398, B, =0.136,

B, =0.128, and K =0.539. The mean function of this model is plotted in bold
against the data in Figure 5 and fits the series very well. Applying the multiple
regression method to the same temperature series for 1916-95 with a reference series,
Vincent (1998) aso identified a changepoint between 1951 and 1952 (and another
between 1935 and 1936), and hence added -1.6°C to the annual means for 1936-51
(i.e., a decreasing step of 1.6°C between 1951 and 1952) to homogenize the series.
However, Vincent's estimates of step-size are based on the annual series (i.e., one
datum per year) of length N = 60 and hence are more prone to sampling variability
(note that N = 600 in our analysis). In addition, the model used to obtain the
estimates does not include a linear trend component; ignoring a positive linear trend
would lead to overestimation of the step-size. This is probably why Vincent's (1998)

D exceeds ours in absol ute terms; in addition, the different periods of data used could
have alsocontributed to the difference in the step-size estimate, and so couldthe
existence of the documented changepointsin the early decades:

According to the station inspection reports, this station was relocated four times (in
December 1926, August 1932, March 1936, and October 1948). Inclusion of these
documented changepoints would complicate the analysis; this is why the period from
1949-1998 was selected for our analysis here. The two-phase regression approach of
Wang (2003) was also applied to the same time series but standardized using the
sample monthly means andvariances. This procedure identifies a changepoint
between January and February 1963 to be of about 5% significance (F,, =11.688);

it did not find the changepoint in the beginning of 1950's.
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Figure Ba: Collegeville Location Parameter Estimates
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Figure 8b: Collegeville Autoregressive Parameter Estimates
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Figure8. Thesameasin Figure 4 but for the Collegeville temperature series.

Figure 8 plots the model's estimated m, and f,, for each month v. Notice how well

the fitted sinusoid agrees with the empirically averaged estimated location
parameters. One also sees substantially higher correlation levels in this series than

for the Stephenville pressure series, with some of the f,, exceeding 0.20, further
underscoring the danger in using methods which assume 1D error structure.
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1. INTRODUCTION

Homogenization has become one of the basic elenwntdimatological studies (e.g.
Szalai, 200D An investigation of climatic change must be lthem a homogeneous
climatological time series (e.§tepanek et al., 20R0A series is said to be homogeneous
"if its variations are caused only by variationsweather and climate" (e.§.onrad and
Pollak, 1962.

Inhomogeneities in climate time series arise fran-alimatic factors like changes
in station location, changes in methods to caleulateans, changes in observation
practices, changes in instruments and in statimir@mment. Each of these changes may
require a separate homogenization strategy. Thegesamay cause stepwise and/or
gradual biases in the climatological time serieakimg these series unrepresentative of the
climate of the concerning area (eByandsma, 2000

Beside the well-known use in the climate changeliessyj more and more users
request long-term time series in homogenized fdrhe overall trend shows a decrease of
human observations, and a growing rate of automi#tiz. In consequence, we often do
not measure the same meteorological parametegrisreonly something similar to that,
certainly new methods of observation are used, whigoly rather different data quality
problems, etc. The merging of satellite and radé&srmation into the classical database
could effect large breaks as well (eSgalai, 200D

The identification of local, regional and globaintdte change has become an
important issue in climatology. Data homogeneitgti®ngly related to the climate change
problem, which is at the centre of scientific amdigy debates. It has been recognized and
widely accepted that long and reliable observatieries are required to address climate
change issues and impact studies. Unfortunategsethigh quality meteorological data
series seldom exist, therefore it is imperative Hmamogenized data be used for theoretical
and applied research (eMdersich, 1999 As often clearly stated by the Intergovernmental
Panel on Climate Change (IPCC), there is an urgedtcontinuing requirement for high
qguality and consistently collected observation aethted homogeneous data sets to
understand climate change, verify assessments adelshuse to generate future climate
scenarios (e.gscholefield, 1999

It was already mentioned that the long-term clifcgical time series are often
plagued with discontinuities caused by stationaalion, installation of new instruments,
etc. Several types of disturbances can distoriven éide the climatic signal. Therefore, it
Is quite natural that the data are tested in amlévcate possible discontinuities. However,
usually the detection of the homogeneity breaksisenough. The breaks appear to be so
common that rejection of inhomogeneous series gi@alve too few and too short series
for further analysis. The widely adopted practisetdé make adjustments in the non-
homogeneous climatological time series (&gpmenvirta, 1999
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There are several direct and indirect methodolotpeshomogeneity testing. The
direct methodologies include, for example, use etadata, side by side comparisons of
instruments, and statistical studies of instrumemnges. The indirect methodologies
consider use of single station data, developmentfgrence time series, subjective and
objective methods. The available objective methimdtude: Potter's method; Standard
normal homogeneity test; two-phase regression; @dkr change point test; Craddock
test; Caussinus-Mestre technique; multiple analgdiseries for homogenization (e.g.
Alexandersson and Moberg, 1997; Peterson et a@819zentimrey, 1999

Since 1994, Météo-France has put significant effort search, data rescue and
homogenization of long series of weather measureri@ese efforts allowed to built-up a
base of homogenized data (eMpisselin and Mestre, 2002In Meteo-France, Toulouse,
November, 2002 the homogenization method develdpe€aussinus and Mestre (e.qg.
Caussinus and Mestre, 1997; Mestre, 2000; Moissahid Mestre, 2002was applied on
climate long-term series from Bulgaria includingtalaf average air temperature and
precipitation Alexandrov et al., 2004

One of the major goals of the second study hell@éteo-France, Toulouse, from
17 November to 19 December, 2003 was to apply teadh homogenization method on
long-term series of sunshine duration from BulgaBpecific objectives were: to control
monthly data of sunshine duration from selectedchatological stations in Bulgaria; to
detect breaks and outliers within the collected eadtrolled time series; to correct the
currently used climate long-term series accordimghie defined breaks and outliers in
order to obtain homogenized climate series; tadeddl the respective breaks.

2. LOCATION, EXPERIMENTAL MATERIAL AND METHODS

2.1 Location

Bulgaria Fig.1) is located on the Balkan Peninsula in Southeadterrope. The country
includes 31% lowlands (0—200 m), 41% hills (200—6®0 25% highlands (600-1600 m),
and 3% mountains (> 1600 m). The Balkan Mountapi$ the country into Northern and
Southern Bulgaria, and have a strong effect ontémeperature regime. The country
belongs to the temperate climate zone with a typmation of four seasons and variable
weather throughout the whole year. Climate is cmmtial to the north and close to
Mediterranean to the south. The annual mean aip¢estures in Bulgaria vary from —-3.0
to 14.0C, depending on the location and elevation. Airgerature normally reaches a
minimum in January, and a maximum in July. The rhigniean temperature varies from
—0.9 to 3.2C in January and from 5.0 to 25®@in July. Total precipitation depends on the
circulation patterns, site elevation, and the djgtyi of local orographic features. Annual
mean total precipitation is approximately 500-650,mvith an annual variation ranging
from 440 to 1020 mm. The annual values of sunstiuration in the country are between
1800 and 2300 hours.
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" Obr.Chiflk

Paulyem

Fig.1. Climatological stations in Bulgaria with lorg-term records of sunshine
duration, used in the study

2.2 Experimental material

Monthly data of sunshine duration from 22 Bulgar@dimatological stations with long-

term series were collected for the stuBlig(1, Table 1. All sunshine duration data applied
in this study were provided by the Meteorologicalt&base of the National Institute of
Meteorology and Hydrology in Sofia, Bulgaria.

2.3 Methods
2.3.1. Data homogenization

The Caussinus-Mestre method, applied within thisl\st simultaneously accounts for the
detection of unknown number of multiple breaks gederating reference series. It is
based on the premise that between two breaks, e garies is homogeneous and these
homogeneous sections can be used as reference &aah single series is compared with
others with the same climatic area by making sefadifferences (e.g. for minimum and
maximum air temperature) or ratios (e.g. for sumstduration). These differences or ratios
series are tested for discontinuities. When a tleddareak remains constant throughout the
set of comparisons of a candidate station witméighbours, the break is attributed to the
candidate station time series (e@aussinus and Mestre, 1997; Mestre, 1999, 2000;
Peterson et al., 1998

Table 1. Climatological stations and series lengtbf sunshine duration

Beginning

Stations Beginning yearStations year
(2001 — end) (2001 — end)

Chirpan 1929 Varna 1961
Elhovo 1954 Kaliakra 1954
Karnobat 1931 Rila 1926
Kazanlak 1903 Cherni vrah 1936
Kjustendil 1968 Djebel 1937
Kneja 1942 Iskretz 1938
Kurdjali 1930 Ivajlo 1961
Lom 1954 Murgash 1954
Obrazcov chiflik 1903 Petrohan 1954
Pavlikeni 1933 Rezovo 1958
Sandanski 1951 Sofia 1954
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2.3.1.1. Detection of breaks and outliers

For detection purposes, the formulation describgdChussinus and Lyazrhil997) is
used. It allows the determination in a normal Imeadel of an unknown number of
breaks and outliers. They formulated it is a problef testing multiple hypotheses. Let us
give now the formulation of this procedure in tlase of a normal sample (eMoisselin
and Mestre, 2002 We considen normal random variableg (i=1,...,n) and letY denote
the column vector of th&i's. We assume that the probability distribution Yofis n-
dimensional normal, with covariance mattix(identity matrix of ordem X n) up to the
unknown variance”.

Let k be the number of breaks ahd the number of outliers. Let,7,,...,r, be the

positions of thek breaks, and letd,,J,,....0, be the positions of thé outliers. Let
K=(r,,7,,..1.}{3,.9,,...5]}) be the set of breaks and outliers. To simplify ibéation,
we will set =0 and &n«1=n. Finally, let A={51,52,...,5|} and
n=r -7, -Cardl{r ,+17,+2,...7}n 4], i.e.nis equal to the length of the period |

r,, +1,7 ] minus the number of outliers within this period.
We denote:
_ 1 _ 1 &
Y=Y, Yi==— DY, J71,..k+1;i04 (1)
Niz1 Nji=r +
Let:
Co(Y)=0
ok, 2]
> (v -¥) ofk+1)
- =1
Cy (Y)=In|1-1= i In(n) )
VaRvA
> (% -v)
i=1

The penalized log-likelihood procedure proposedhyssinus and Lyazrhi (1997) is:

select K+ such that K*=Argmir(Ck(Y)) ) (3

The variancer is estimated by

s, 2wk
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where the number and positions of outliers ardks are those given by (3).

The procedure (3) has been proved to be asymgtgtBayes invariant optimal under a
set of assumptions, which turn out to be reali@igMestre, 200Din the problem we are
dealing with. For the particular problem of breaks Gaussian sample, the chosen penalty
term gives much better results than Akaike’'s orv@te's criteria (e.gMoisselin and
Mestre, 2002

The natural way to compute the procedure is toutatie Cx(Y) for every possible
hypothesisHk (complete procedure). Nevertheless, this apprsadgfers from a major
drawback: the number of hypotheses to examine visgsfast withn (length of the series)
and k+l the number of accidents to be detected. When timters only performed for
breaks, a dynamic programming algorithm (é4gwkins, 2001; Lavielle, 199&an be
used. The computation time then becomes only lime&y and quadratic im. To enable
the detection of outliers at a reasonable computiost, a slightly different algorithm
(Mestre, 200Dis used.

At each step, one or two more breaks are addduktprevious selected hypothesis.
Analytical studies (e.gMestre, 1999 show that this double step procedure gives better
detection results than the single step procedureufmand-down breaks (and without
significant improvement for staircase configurajiodrurthermore, a triple step procedure,
much more greedy in terms of computation time, de&m small improvements (e.qg.
Mestre, 1999, 2000 The Causinus-Mestre method, with a double stepgulure, is now
the standard detection part of the homogenizati@hod used in Météo-France (e.g.
Moisselin and Mestre, 2002; Moisselin et al., 2002

2.3.1.2. Correction of breaks and outliers

The knowledge of break positions can be a veryreésteng aspect for some users. For
many applications (such as climate change studies)he first half-part of the problem.
The other one, described below, is the break ctorec

A two factors linear model is proposed for correatpurposes (e.ddestre, 2000
The series within the same climatic area are censdlto be affected by the same climatic
signal factor at each time, while the station facemains constant between two breaks.
The model is applied after break detection. It ptes the correction coefficient of a set of
inhomogeneous series, through weighted least-sgjiemtimation of the parameters. The
weighted least squares allow correction of serigls missing data. It also allows the data
weighting, according to their supposed quality, skhtan be estimated, for example, with
the correlation between the stations.

The above formulation is equivalent to an exact efloy of the relative
homogeneity principle. Given a set of inhomogenemsrumental series, it allows
unbiased estimations of the breaks affecting ttsesees. This method does not require
computation of regional reference series, andrigeatly the standard correction part of the
homogenization method used at Météo-France kogsselin and Mestre, 2002; Moisselin
et al., 2002.

3. RESULTS AND DISCUSSION

3.1 Data homogenization — control, break detectioand correction

The homogenization process was performed on sets3aferies of sunshine duration
respectively, merged with geographical criteriae Tiist step was the performance of a
quality control of the long-term series of the weait elements used in the study. The
control procedure was executed several timesgpk@priate data sets were obtained. The
anomalies of monthly sunshine duration for eachr ywal station were compared and
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analyzed in order to locate and remove possibla dators Fig.2). The obvious crude

errors as well as some suspicious values of suashimation were reported to the Division
of Climatology and Weather Network as well as te tMeteorological Database
Management Division. The updated data were agasckgd out by the controlling

software. The remained errors and suspicious valhiestime were replaced by the
respective value for missing data (i.e. —=999.9).

The second step in the homogenization proceduretaveesplace missing monthly
values assuming that these values are very fewhadreplacement would not have any
impact to the data series. The two factors linead@hby means of the computed weighted
least squares allows correction of series with imgsslata. For this purpose, the linear
model was run with the option for correction of anng) data.

SD Valeurs dnnuullu

400

200

hours
=)

-200

hours
=]

1950 97 2 2010

Fig. 2. Anomalies of annual sunshine duration sumfr all climatological stations,
used in the study

The next step was to calculate the respectives@iosunshine duration. These ratios were
then tested to put into evidence breaks or outlieng typical homogenization techniques
are based on the assumption that climatic variatadfect in the same way a homogeneous
regional reference series, whose reliability carm®t{proved. The different methods (e.g.
Alexandersson, 198&grland and Hanssen-Bauer, 19%eterson and Easterling, 1994
for creating such series do not guarantee thefegehomogeneity.

There is an easy way to get round the referencesset is based on the simple
statement that between two breaks a series idkel{y definition), so these sections can
be used as reference series (&lgstre, 200D Each single series is compared to others
within the same climatic area by making a seriesatbs. These series are then tested for
discontinuities.

At this stage, it is not known which individual & is the cause of a shift detected on a
ratio or series. However, it was already mentiothed according to the Caussinus-Mestre
method, if a detected break remains constant timmuigthe set of comparisons of a
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candidate station in respect to its neighboursait be attributed to this candidate station.
The detection of the outliers follows the same q@ple.
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Fig. 3. Homogenization of sunshine duration data in 4 aatological stations:
Y — break; A — outlier; dash line — validated break and then coected

Ratio series were computed and constituted betaktetimatological stations, used in the
study, and their respective neighbour climatologstations. The breaks and outliers were
then put into evidence by the double-step procedppdied within the Caussinus-Mestre
method. For example, some detected breaks an@isutl sunshine duration are shown in
Fig.3. The black triangles indicate the position of tietected breaks in the ratio series of
the presented climatological station versus therothmatological stations, whil& points
out the outliers. The climatological stations ardeped from the top to the bottom with
respect to increasing values of the estimated atdndeviation STD. Hence, in practice,
the reliability of the comparisons slightly decres$rom the bottom to the top.

Several breaks during the@entury can be detected easilyFiig.3, considering
the relatively good alignment of breaks in sunshideration. For example, in
climatological stations Karnobat, Kazanlak and kguaslil the breaks of sunshine duration
data in 1970, 1985 (Karnobat), 1989 (Kazanlak) a@dl (Kiustendil) respectively, are
obvious.

The knowledge of break positions for many applarai including climate
variability and change studies is the first impotthaalf of the final goal. The second part
of the homogenization goal is the break correctibhe two factors linear model was
applied after break detection and validation. Is\@asumed that the series within the same
climatic area are considered to be affected bys#ime climatic signal factor at each time,
while the station factor remains constant betweemn lbreaks. The model computed the
correction coefficients of a set of non-homogenesarees, through weighted least squares
estimation of the parameters.
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It was impossible to locate straightaway all pdssiiveaks: the pronounced breaks
hided smaller one's. Thus, the procedure of dete@nd correction of breaks and outliers
was not automatic. It was iterative and the exp@dwledge and strategy was very
essential. Every time the expert team validatedbtkaks keeping in mind some statistical
and climatological issues. The whole procedurereék detection and correction took time
— it was near 15 times in order to locate, validatd correct all the breaks and outliers in
the series of sunshine duration. The whole itematidd homogenization of sunshine
duration ended when all or most break risk was dbrge3).

4. LIMITATION

The major limitation was the lack of metadata a time the study was implemented.
Although the Meteorological Database Managemenisitin at the National Institute of
Meteorology and Hydrology in Sofia, Bulgaria hastiated a work on this problem
digitized metadata are not fully available yet.

It is clear that the Bulgarian weather data aréu@rfced by a wide variety of
parameters like the environment, the instrumematserving practices, data processing
and others. This means that for each single datashweld know where and how the
measurement was made. For a historical long-termaté time series this knowledge
would lead to a complete station history. Unforteha our knowledge of station history
most likely will not be 100% complete, neverthelgssatest efforts should be undertaken
to study metadata. Metadata should be treated tiwélrsame care as the data themselves
(e.g.Auer, 2003.

For all synoptic, climatological and precipitatistations, from the National
hydrometeorological network on the territory of theuntry, there are paper records
including description of the station and its enmireent as well as detailed information
about station activities, since the beginning & thspective measurements till now. It
turned out that there were some omissions in tdesaments. For this reason we work in
two directions: (a) digitization of the availabl&atson documents in the Meteorological
Database Management Divisiofid.4); (b) station documents update in the Regional
Centres of the National Institute of Meteorologyl atydrolojy in Pleven, Varna, Plovdiv
and Kjustendil.

00; 08,003 11,00; 14,004 17,00; 20,004 23,00~

Fig. 4. The title page of a file from synoptic stabn Sandanski
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5. CONCLUDING REMARKS

The need for reliable data becomes more and magparapt, both in space and time,
because too much is at stake to rely on inacculate The very existence of our society is
threatened. Therefore, it is important for all WM@embers (including Bulgaria) to
produce and make available homogeneous seriegafdd corresponding metadata.

The results of this study show that homogenizat®ommportant for building of
reliable meteorological database in Bulgaria. tibsious that homogeneous weather series
of data are essential for research. For produdigly tuuality time series efficient measures
for testing the homogeneity should be applied. Fnench homogenization procedure,
which is applied in Météo-France, was proved inghely as an essential tool. By directly
comparison of each climate long-term series tméighbours, it was shown that problem
with construction of homogeneous reference seriss dho longer exist. The applied
methodology of homogenization is valuable for prattuse such as on climate data in
Bulgaria, even with missing metadata, and alloves dbtection of multiple breaks. Most
homeogenization methods in Europe have been deaetlfy the analysis of temperature
and precipitation only. However, the Caussinus-kesmethod for the relative
homogeneity testing of climatological series angl mfodel performing correction of non-
homogeneous climate series were also successésilgd on long-term series of sunshine
duration. In fact, the executed homogenization waay useful for better understanding of
sunshine duration series in Bulgaria.

One of the most important problems in the clima&search is the quality of data.
Long series of reliable climatological data areuisgd in climatological studies on the
natural climate variability and the effect of ampogenic influences on recent climate.
However, high quality climatological data seldomseé)decause in reality many types of
disturbances can affect the respective climateseMany efforts were put in this study
for quality control on the Bulgarian series of dung duration. It should be stressed that
the respective series were affected by differemiesy of errors. Therefore, it is
recommended that before any homogeneity testiidutgfarian weather data to be applied,
an extensive routine quality control has to beqrened.

Historical time series carry the information of urval and artificial variability.
However, before climate variability can be studididartificial biases have to be removed.
This is a hard job but unavoidable. Although thisljpem could be treated by using one or
several homogenization techniques, metadata wolNige a better insight and explain the
reasons of breaks and support the statisticaréssits. It is always advisable to compare
what station history says and what data analysentifies (e.g.Auer, 2003. The
importance of metadata was assumed by the WMO Cessioni for Climatology and the
working group on Climate Change Detection (éNgedzwiedz and Ustrnul, 20D0A
proposal was given for Global Climate Observingt&ys Surface Network Sites (e.g.
WMO, 1999. Also WMO has stressed its strong interest inagh@ta recording for current
measurements, but also in metadata recovery fdorlual time series. This interest is
underlined by the establishment of a WMO Expertiiean Metadata for Climate
Applications within the Commission for Climatologiyhe expert team members have been
preparing guidelines on metadata and homogeniz&ianAuer, 2003. These guidelines
would be of help when respective metadata are gadhe Bulgaria.
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ABSTRACT

"Climatol" is a set of routines for climatologicapplications than run under the multi-
platform statistical package "R", freely available'http://cran.r-project.org/". It is mainly
devoted to the homogenization of monthly seriesugin may be applied to daily data as
well. The homogenization method is based on comgagach test series with a reference
series constructed for the same station througérpotation of ratios, differences or
standardized values of the surrounding stationss fitethod avoids the use of regression
techniques, with the advantage of been more rodudtsimple, and, most importantly,
enabling the use of data from nearby stations wthame is no common period of
observation. The comparison of the problem sem#s their estimated references allows
the detection of point errors, shifts and trendsugh standard statistical tests, optionally
showing graphical representations of the result® domputed reference values may be
readily used to fill the missing data of the seri@he application of these methods to a
dense thermo-pluviometric monthly database in thle&ic Islands showed a wide variety
of situations, indicating the convenience of usawmgiterative strategy, thereby detecting
and correcting only the coarser errors in the ptate, and leaving the less prominent ones
to the following iterations.

1. INTRODUCTION

The problem of coping with inhomogeneities of tlienatological series is as old as the
series themselves, and has been addressed byitudeudif investigators that have applied
a variety of methods to detect point errors, suddeanges in the averages and anomalous
trends (see Peterson et al.,, 1998, for a review}. N6 definite methodology has been
already established, because some may be morepaigpecthan others depending on the
climatological variable studied, the climatic regirand physiographic complexity of the
area, the density of the observing networks, armah ¢lve final purpose of the data set.

The detection of inhomogeneities relies on the amspn of the problem series
with a reference one that should be homogeneousvahdorrelated with the former. The
reference series may be that of the best (long lmmdogeneous) station of the same
climatic area, but as it is quite difficult to findng series that have not suffered changes of
location, instrumentation or local conditions, & generally preferable to build the
reference as a combination of series from sevéatibas (Peterson and Easterling, 1994),
using as weighting factor some function of theiretion, distance, or both.

Once the reference series has been obtained, ibeamsed to determine which
variations in the problem series are due to theatk variability and which are real
inhomogeneities that should be corrected. Therlattey be supported by the history of the
station, through registered dates of any changentiight have affected the observations
(metadata), but these are often incomplete, aneésores totally absent.
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This work presents an implementation of a simplethod for the detection of

inhomogeneities in a climatological database, aisdudes the first conclusions of their
application to the homogenization of thermo-pluvatnt monthly data from the Balearic
Islands (Western Mediterranean).

2. METHODOLOGY

Climatic data bases are usually formed by a fewgland complete series mixed with
many short records with random beginning and erntédsgaand often with interspersed
missing data spells. Regression techniques arensxédy used for estimating these
missing data from well correlated stations, bus threvents the use of nearby stations
when there is not a common period of observatiang © too short to derive reliable
regression equations. This is a frequent situatibean an observatory changes its location
(e.g., from near an airport terminal to a runwagd)e old and new stations are the best
reference for each other, but no regression caestablished. (Even when a common
observing period of a couple of years is maintaitieat supposes only two common terms
in each monthly series). On the other hand, toimae the existence of common
observational periods between stations, many honegestudies select only the longer
series of a data base, thereby disregarding af [pbtntially valuable information from
many shorter records.

Here the priority has been focused on taking adgmtof all the available climatic
information. To achieve this goal regression teghes have been substituted by the
simpler method of Paulhus and Kohler (1952) thaliap a spatial interpolation of rates to
the normals to fill daily precipitation data. Thisethod was compared by Young (1992)
with those of optimum interpolation (Gandin, 19@8)d multiple discriminant analysis,
and was the only that produced unbiased estimatidnie suffering the lowest reduction
of variance. Their RMS errors were slightly highigan those of the multiple discriminant
analysis, but lower than the optimum interpolatmes. This are convenient properties,
since unbiased estimations will produce the bestiabvalues (e.g., for climatic maps),
while the reduction of variance minimization is @cassity in studies of variability and
extreme value probabilities.

Proportions to the normals seem appropriate focipitation or wind speed for instance,
but for temperatures (among other variables) ateb& use standardized values. This
implies to know the averages and standard devsinbrall series for a common and long
period of observation, an incompatible constraiithwur fragmented data set. Therefore,
averages (and standard deviations if needed) anputed firstly with the available data,
and missing data are filled with the unstandardiefdrence series computed for each
station. This allows recalculating the means b&aties for the complete period of study.
As the new averages will differ from the previoube reference series must be
recomputed, and this process is repeated untihdsemum difference of averages is lower
than a prescribed threshold.

As previously stated, a reference series is condpfateeach station. Paulhus and Kohler's
original method used only the three nearest stati@md other authors also limit the
number or reference stations or impose a maximwstamte (e.g. Romero et al., 1998).
Here all available data are used to compute edeheree series, weighting them by a
function of distance. This way, the method is itx enough to adapt to the varied
distributions of neighbouring stations than maygepin a database in different periods.
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The chosen weighting function was a/(a+d”2) oridiing by 'a": 1/(1+d”~2/a), where 'a’ is a
shape parameter controlling the relative weightedrby stations with respect to the more
distant ones (Fig. 1).
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Fig. 1: Weighting factor (inverse to the square disnce between stations) modulated
by the shape parameter 'a'.

When the iterative process of computing the refegeseries for each station is completed,
the following step is to compare, for each statibie, observed and computed series. This
is done with the ratios to normals or full standzed series (differences from normals is
another option offered to the investigator), andesv series is calculated subtracting the
reference from the observed standardized serigter®ices (used e.g. by Aguilar et al.,
1999) are preferred over quotients (as used byaléarsson, 1986) because they can be
applied to other variables than precipitation, &mdainfall in arid places, where monthly
means near to zero cause problems in the compgatioratios (Almarza et al., 1994).

Where both series are homogeneous, the seriedfefedices should behave as a random
variable (white noise). In practice, three mainetyf inhomogeneities may be present: 1)
Point errors (coming from observation to transneissand mechanization processes); 2)
Shifts in the mean (changes of location, instruram, observing practices or land use of
the surroundings); and 3) Trends (sensor decalioratirban growth). And all of them
may be present in real records (Fig. 2).
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Types of inhomogeneity
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Fig. 2. Common inhomogeneities in the difference ses: 1) Control, homogeneous
(random noise). 2) Two point errors of +/- 3 s.d.standard deviations); the first, at

term 22, unnoticeable. 3) Two shifts in the mean of2 and -3 s.d. 4) Trend of -1.5 to
+1.5 s.d. 5) All previous inhomogeneities together.

Graphic representation of this series allows faual inspection, and p-values of possible
shifts and trends are computed from running t-tesisl0 and 20 terms moving windows)
and regression with time.

This methodology has been implemented as a cotedipackage to the statistical system
"R", which is free, multi-platform (there are veass for different computer architectures),
and runs under different operating systems, thlmvadg its use in a wide variety of
working environments. Moreover, since beeing opaitwaire, investigators may modify
its routines to adapt them to their particular rse@ald contribute to their improvement.

3. APPLICATION TO A DENSE THERMO-PLUVIOMETRIC DATAB ASE

The Balearic islands lie in the Western Meditereaneat 100 km of mainland Spain. Their
5000 knf are distributed in four major islands and manylEnasles. They have a varied

orography, with mountain ranges with summits ugl4ad0 m (in Majorca), plains, and

undulated terrains. The climate is typically Meda@ean, with a dry summer and a
temperate winter. The maximum monthly average pr&tion occurs in October, with

15% of annual precipitation, and the minimum cquoesls to July, with means normally
under 10 mm and medians of around 2 mm.
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As most of the precipitations are due to convecpuacesses, they have a rather spotty
distribution. To catch this spatial variability etipluviometric network was increased in the
sixties to around 170 rain gauges, based maingnoateur cooperators (figures 3 and 4).
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Fig. 4. Observing network in the Balearic IslandsBlack crosses measure only daily
precipitation; the rest measure at least daily prepitation and temperature extremes.
(Majorca, the major island, is about 100 km wide).

For the application of the "climatol" methodologythe monthly series of this network, a
selection was made of all series that had a mininpenod of observation in the years
1961-2005. This minimum was fixed to only 10 yesrsghe case of precipitation and 5
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years for maximum and minimum temperatures, in rotde&keep most of the information
of the data base. In this way, 265 pluviometratishs and 72 thermometric stations were
selected.

The first exploratory analysis showed many potémtlaomogeneities in the three
climatic variables studied, from point errors (f, shifts in the means (fig. 6) and trends,
often in the same series. Many of these apparéoniogeneities may be caused by errors
in the neighbouring stations, and therefore theemmnvenient strategy is to proceed
iteratively, detecting and correcting only the s®arerrors in the first place, and leaving
the less prominent ones to the subsequent analysis.

For the first process, a big weighting parametesHauld be chosen (we may even
set a=0 to give equal weight to all stations),\oid an excessive influence of the nearest
neighbouring station's errors on the referenceeseand look for prominent point errors
and shifts in the averages. Point observationargmay be easier to detect in daily data (a
10°C error in a daily lecture will only yield a 0@ error in the monthly average), but for
the other kind of inhomogeneities it is better wwid the higher variability of daily data
and work with monthly, seasonal or even annuakseri
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Fig. 5. Potential point errors (and a possibl °
shift) at one station in the July precipitation
series
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monthly maximum temperatures at one
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Careful attention must be paid to the peculiaritéghe studied climatic variable when
analysing daily data. Precipitations of convectigggin will produce high spatial
variability, and therefore greater differences rnhayacceptable between the observed and
the reference series. On the other hand, maximunpdeatures are easier to treat than
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minimums, since nocturnal inversions may produgh hariability as well. In this case it

is advisable to avoid overweighting near statioms #@ enhance the vertical coordinate in
the computation of distances between stations. Rihis of considerations may be also of
application when studying monthly values, as carsd®n in fig. 7, where the scarcity of
July precipitations appears as the cause of thg/ patential point errors shown in fig. 5.
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Fig. 7. Observed and reference series of July prgxiation. (Same station as in Fig. 5)

Once the bigger errors have been corrected in e lose, the following analysis will
allow us to better detect further point errors. aiflall confirmed errors are corrected or
deleted, the analysis may focus on shifts of thamagthat may also require repeated
processes. If a shift is confirmed by the histofyhe station, sometimes these metadata
provides us also with clues to choose which pedbthe series is the correct one. In this
case, the other period(s) can be adjusted to rethevehift. In the contrary, it is a common
practice to adjust the series to the more recemnbghebut unless we are quite sure of the
current quality of the observations, it would bdtéreto split the series in homogeneous
intervals, and consider them as different samplofghe same location. (Spatial analysis

will determine afterwards which one is more repnéstve and which may be faulty or
affected by local scale factors).

Trend analysis should be the last type of inhomeigrio be treated, since shifts in the
mean often produce positive trend tests. Afterwaadnal process may be needed if we
want a data set where gaps of missing data asglfilh this last run of the program, a
small value may be assigned to the weighting patem® enhance the information from
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the nearer stations. This must be given carefukidenation depending on the spatial
variability of the studied climatic variable, butwill have great importance when the data
set is to be used for time variability studies,omer to avoid a high decreasing of the
variance giving much weight to many neighborindistes.

All these processes are still been carried outferBalearic data set, since they involve a
lot of work to investigate in the data archives &tirpossible inhomogeneities pointed by
the program. When the climatologist do not haveessdo the original data or have no
time to accomplish these tasks, corrections cay lm&imade on probability bases.

CONCLUSIONS

The method presented maximizes the use of thenraon of a climatological data set,
building reference series from neighbouring statiewen if they do not have any common
period of observation. But as homogeneity tesesaich series may be affected by errors in
other nearby stations, an iterative approach oédliein-correction must be undertaken,
beginning by the most prominent errors.

In every of this stages, statistical tests can ideva collection of possible
inhomogeneities, but they must be complemented whth visual inspection of the
graphical representations of the series of anomalieThe final decision on which
inhomogeneities to correct must rely on expert @gmdgnts based on knowledge of the
spatial variability of the involved climatic varigband, whenever possible, on records of
the history of the observatories.
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ABSTRACT

We present a homogenization method for the availdbhg-term monthly series of
Spanish minimum and maximum temperatures from ke 19" century on, in order to
obtain a high-quality data set.

The first step is the organization of the dataesefdl series) into climatically
homogeneous regional groups, following a prelimmstudy and empirical knowledge.
Then the whole set of temperature difference sésiesmputed in each regional group, in
order to perform multiple comparisons of theseeddhces, to explore their stationarity
characteristics and to detect discontinuous braakisother inhomogeneous features. The
method is based on relative homogeneity and trabsolute homogeneity only as a
secondary concept, because it is generally notaahle. No reference series is used, since
no reliable reference is readily available.

In the statistical analysis, the difference serae scanned with moving t,
Alexandersson, and Mann-Kendall tests, under censitbn of the sensitivity of these
tests to the autocorrelations and in carefully ehotest intervals. An inhomogeneity is
detected when several (at least three) differereméess confirm a highly significant
inhomogeneity. The detected inhomogeneities areste] by weighted averages of the
regional series; these weighting factors dependthen cross-correlations and on the
common data coverage.

The homogenization method is iterative and advanoesteps of detection,
adjustment and actualisation. Individual inhomogersedata are discarded and gaps are
filled by similar weighted means.

For posterior analysis of the temperature evolutiothe Iberian Peninsula, each region is
finally represented by one local series and thered average.

Rigorous homogeneity can generally not be achiebetause the initial data
quality is deficient in many cases and metadata sparse. Nevertheless, the data
homogeneity has been considerably enhanced: thkeuwatertainty margin in the series is
of the order of 0.3°C, under consideration of astroase error accumulation. On the other
hand, many inhomogeneities are detected and themnage amplitude is of the order of
1°C: this number reflects the much larger error gimarin the raw data. This new
homogenized dataset prepares an important basthdasubsequent detection of thermal
changes in Spain in the last 130 years, on a gleagher confidence level than before.

1. INTRODUCTION

Unfortunately, a vast majority of all climate redsris adversely affected by non-climatic
changes in the data, due to observatory or insintmelocations, variations in the
environment or in reading procedures, human ernrordata processing, among others.
Hence, in many cases, a series may fail to reprabenreal climatic evolution and a
reliable detection of climate change is hard orosgible. For example, Wijngaaed al.

(2003) analysed the daily temperature and pretipitadata of the European Climate
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Assessment (ECA), and found that a vast majoritthefseries suffer severe homogeneity
problems.

There is a well-known variety of standard literat@n homogenization and on the
tests and methods (Goossens and Berger, 1985, mdlessson, 1986, Karl and Williams,
1987, Young, 1993, Rhoades and Salinger, 1993rdeetand Easterling, 1994, Easterling
and Peterson, 1995, Vincent, 1998, Vincent andeBull999 and Mestre, 1999, among
others). The softwares AnClim (Stepanek, 2003) B#SH (Szentimrey, 2000) were
developed for the homogenization of climate dath several recent studies like Slonosky
et al (1999) and Gonzéalez-Rou&b al (2001) made attempts to homogenize European
data.

Nevertheless, there is still a lack of systematimbgenization treatment of long-
term monthly Spanish temperature data. The prestnly prepares these data series,
improves the data quality and tries to set a sodide for subsequent analysis of thermal
changes on a regional scale since the Iafecg@tury.

2. DATA

The monthly Spanish temperature records by theoNaliMeteorology Institute (INM)
provide data from 41 observatories with a minimwwaezrage of 30 years, as illustrated in
Figure 1 (about half of them include™@entury data, beginning between 1869 and 1880).
The data quality is problematic or sometimes ewvaor,pbecause of frequent site changes
and data gaps, and metadata are scarce. Figu@ns she geographic distribution of the
observatories.

Definition of the regional groups of data series

The Spanish monthly temperature series contaimgla degree of common variability: the
cross-correlation coefficients between the anormsalisually exceed 0.5. Nonetheless, in
spite of this dominant common variability pattetime(“peninsular mode”), the temperature
anomalies show certain regional distinctions.

Based on a previous regional analysis, we organibheddata series into the
following climatically different groups: the centralains (14 series), the Mediterranean (6
s.) and the Cantabrian (5 s.) coastal areas, @dbcs., the northwest), western Andalusia
(4 s., basically the Guadalquivir valley), Extremeal (2 s.) and the Ebro valley (4 s.). The
aim was to preserve possible regional distinctibnsugh a regional homogenization.

In each of these climatic regions, all the serieseshomogenized, then the regional mean
series (simple mean of the anomalies) were compad@akteriori, to represent the region,
together with one chosen individual series.
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Fig. 1. The spatial coverage of the Spanish maximurand minimum temperature

series, between 1860 and 1980 (about half of theiss include 19" century data). The
series are: 1. La Corufa, 2. Santiago, 3. PontayedrOrense, 5. Vigo, 6. Finisterre, 7. San S&as8.
Bilbao, 9. Santander, 10. Vitoria, 11. Pamplona, @fiedo, 13. Zaragoza, 14. Huesca, 15. Logrofio, 16
Teruel, 17. Lérida, 18. Gerona, 19. Barcelona, @éstellon, 21. Valencia, 22. Alicante, 23. Murca4,
Almeria, 25. Burgos, 26. Valladolid, 27. Salamar, Soria, 29. Leo6n, 30. Palencia, 31. ZamoraA3fta,

33. Segovia, 34. Madrid, 35. Guadalajara, 36. Tmle®. Cuenca, 38. Albacete, 39. Ciudad Real, 40.
Cérdoba, 41. Seville, 42. Huelva, 43. Jerez, 44ialyi 45. Granada, 46. Jaén, 47. Badajoz, 48. €acEhe
regional groups are: A Galicia, B Cantabria, C Ebatley, D Mediterranean, E central plains, F weste
Andalusia and G Extremadura.

3. OUTLINE OF THE HOMOGENIZATION METHOD

A. Some statistical properties of monthly temperatte data

The statistical distribution of temperature datmesmal as a good approximation and we
can apply parametric statistics designed for Gansgdistributed variables, as the t-test or
the SNHT. The autocorrelations in these seriegatheer slight (coefficients between 0.1

and 0.3), but several statistical tests requireections (the reduced sample size for the t-
test and prewhitening of the series for the Mannd&dl test), in order to achieve realistic

confidence levels.

B. The homogenization concept

If a series is homogeneous in an absolute waye tiseno variability, except for the real
climatic evolution. However, this condition is alstonever fulfilled (Easterling et al.,
1996, pointed out that . the real homogeneity of climatic data is irreaély lost) and
we generally cannot decide, through an analysigigif one series, at a good confidence
level, whether or not a certain change is inhomegas.

Therefore, we did not follow an absolute homogsgneaitethod, but a relative
homogeneity concept, based on difference seriesatiomalies of highly correlated time
series are essentially synchronous and its difte®should be approximately random. A
local inhomogeneity can be detected in these diffegs, but a real extreme anomaly tends
to vanish. This detection method fails if sevemies suffer a simultaneous data problem
(e.g. a common sudden jump). Comparing as mangrdifite series as possible minimizes
this risk.
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Our homogenization method is based on multiple Gepns between the series
within each predefined region. We do not work welgional reference series, because the
rather low number of series with frequent inhomaagiees does not permit the creation of
a reliablea priori reference. The whole set of difference seriedgdihces of anomalies)
is statistically tested for significant changesc®identified, an inhomogeneity is adjusted
by a weighted mean of the highest-correlated sefies weighting factors depend on the
synchronicity (cross-correlation) and the numbecafimon data.

We have not avoided to reject and to delete cledlieos (see C.3), intervals
(shorter than a decade, with more than one thirdnafsing data and disconnected
intervals, without any appropriate information noect them to the rest of the series) or
even whole series (with more than five clear inhgereities), when the homogeneity
problems were too strong for an adjustment at apable confidence level.

C. The homogenization scheme

1. We converted the raw-data series into anomalidatire to a recent reference
interval) and computed the whole set of anomalyetdhce series within each
region.

2. We marked the suspicious inhomogeneities (abruph@bs or breaks, outliers),
with particular attention to the metadata.

3. We discarded the largest and most obvious outtleat exceeded a certain level,
based on the difference series (four standard tienga of a running 30 year-
interval). The severe criterion of this preliminatgp removed only the very large
inhomogeneous outliers.

4. After recalculating of the set of difference seriage searched for abrupt
inhomogeneities (breaks) and then defined indiidygropriate “base intervals”
for their statistical detection. Where it was pbkesithe length of a base interval
was chosen as 20-30 years, around the possiblé& paEat. We had to avoid
strictly a temporal overlapping between inhomogeeeiand their intervals, but
tried to achieve a reasonable sample size (atdédise order of 100).

5. The moving t and SNHT (Alexandersson) téstere applied to the whole set of
difference series in the base intervals of pointsdanning the intervals, to
determine the probability of a break point, as rcfion of its time. We examined
first the intervals around the incidents reportedretadata. An inhomogeneous
break was detected when the significance leveledead 99% in the t-test and was
at least 50% above the 95%-level in the SNHT, meturin three difference serfes
We checked the local anomalies and, in doubtfubsasan also the sequential
Mann-Kendall-test (with “prewhitened” series).

! We considered the so-called “station drift” sinhe tifferences between correlated temperaturessshiew frequent
trends of changing signs (even in absence of inlyemeities, see Rhoades and Neill, 1995). Therefioeestronger this
drift is, the shorter the base intervals of thedidate series must be, , because earlier or |ater are less valid for the
adjustment at a certain time.

We corrected the significance levels of the t-festutocorrelations by the” reduced sample size”.

3 The t-test generally confirmed the results of thiHS; the latter has sharper peaks, due to its @@dalgorithm, see
Figure 2.
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A. Segovia-Madrid, maximum temperatures B. T-test and SNHT of the series in A.
3 8 50

difer. of temp. anomalies {°C)
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Fig. 2. A: a difference series of maximum temperaturesB: the coefficients of the -
test with a 20yr running window (discontinuous line) and in the whole 4(-year
interval (both left axis) and of the SNHT in the 4-year interval (thick line, right
axis).

6. After the detection, we adjusted an inhomogeneoreakb with the highe-
correlated simultaneous regional data (up to fiesies, see Figure 3). Tl
candidate seriesafter-before difference (offset) was replaced by a weigl
averag@ of the synchronous differences of the correcgenes. The weightin
factors were given by the squared c-correlations and the common data fraci
of each series, relative to the candidate. In fastigular and highly significar
cases, we deteatecontinuous inhomogeneities and adjusted them Binalar
way’. We always adjusted the data before a br

To assure the nomterference between the adjustments, we perforthedsteps -6
iteratively: after adjusting all the disjointed orhogeneitis, we recalculated (updated)
series and went on with the next iteration. In maages, slighter inhomogeneities cc
be detected only after adjusting a large inhomogen&he iteration stopped when |
more significant inhomogeneities were detel

temp. anomalies (°C)

Fig. 3. An illustration of the adjustment method. The thck line represents the
anomalies of the candidate series with a detecteddak between the two markec
adjustment intervals.

4 In some cases, when there is a sufficiently lorgrlapping interval between two candidate subseniesyerified theil
synchronicity and absence of inhomogenities andsaelfl by the mean differen
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7. We searched for individual inhomogeneous data,digaling extreme values of the
difference series and verified these data in eacél Iseries (in analogy to point 5,
we considered an outlier as inhomogeneous wheamifditude exceeded the 99.5%
confidence level in at least three difference semelative to a symmetrical running
30-year-interval). The detected inhomogeneous\data removed.

8. The missing data (or gaps due to removed inhomagendata) were filled by
weighted means of the best-correlated synchronais, dhased on standardized
anomalies in adjacent years, assuming synchronbmtyeen these series. The
filling algorithm used up to five regional seriesdaweighted the contribution of
each time series, as in point 5, with the squaredsecorrelations and a common
data factot. When the information of the surrounding serieseniasufficient, the
gaps were filled by an ARIMA- interpolation (onintrinsic information of the
candidate series).

9. Finally, the dataset was prepared with two timeesefor each climatic region,
expressed as anomalies, relative to the referemeedo1961-1990: one local series
and the regional average series (all the locakseare also available, for further
purposes).

Seasonally or monthly varying adjustments?

The adjustments were based on the monthly datagéuerally did not vary with the
month or the season (only a few seasonally distaagistments were applied, when the
seasonal discrepancies were particularly large)itémature, we find different types of
adjustments (see, for example, Peterson and V@88).1liInhomogeneities in climate data
often depend on the month or season, because detsonally diverging impacts of
instrumental or environmental changes and underviewpoint, a monthly or seasonally
varying adjustment is theoretically better. Howevér modifies the variability, the
autocorrelation structure, and the annual cycleghef data, whereas the adjustments
applied here consist of a simple additive termti@rmore, a monthly varying adjustment
must work with 12 times fewer data (for a givenemtl length) and the confidence
margins are substantially wider. Hence such ansaajent becomes more attractive when
the number of series is larger and when the inikzah quality is higher than in the present
study.

4. RESULTS

A. The homogenized dataset, adjustments and rejectelata

Among the 43 monthly maximum and minimum temperageries, we found widespread
homogeneity problems: adjustments were necessaminiost all series, although the
criteria for the detection of inhomogeneities weather severe (high significance and
redundancy levels). In some cases, long intervalghole series were rejected, because of
a lack of homogeneity. We adjusted a total numbe5® (85) inhomogeneities in
maximum (minimum) temperatures (see Table 1), vatimean amplitude of 1.00°C
(1.05°C), besides the rejected intervals and idda data. As an average, we applied one
adjustment every 44.5 years (66 years).

5 The amplitude of the correction is reduced (filedue closer to the mean of the chosen intervdigmthe information
of the nearby series drops below a certain threshol
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B. The error margins of raw and homogenized data

The instrumental error in temperature measurenseott the order of 0.1°C (Linacre, 1992)
and increased to around 0.2°C in differences betw®e series. A series of roughly one
century required an average of two adjustments [feegd A); therefore the mean margin
of the total error (instrumental plus homogenizatiounder a worst-case error
accumulation) increased to about 0.4°C.

On the other hand, the mean amplitude of the adgrsts (around 1°C) defined the
uncertainty in the raw-data series (mean error tuthe inhomogeneities), besides the
instrumental error. A long series had between ankfize inhomogeneous breaks, with an
average of around two. Depending on the degreamdatlation of these errors, the total
uncertainty in the raw series frequently exceeds, Ehd sometimes it could even be
higher than 2°C.

C. A comparison of some results, based on raw anaimogenized data

We compared the temperature changes with raw ambgenized data, by applying a t-
test to the means of different intervals and regidn some cases, an inconsistent result
has been found between the raw local and mearsq@n¢y one of both series showed a
highly significant change). After homogenizatiohistinconsistency between the highly
correlated regional representative series disapdeaindicating a higher degree of
redundancy between the series and therefore a blatgequality.

Table 1. Total data and number of adjustments andejected data (individual data or
intervals, y = years) in the Spanish maximum and mimum temperature series.

Series No. data | No. adj. |rej. data | No. data | No. adj. | rej. data
Maximum temperatures Minimum temperatures
La Corufa 1460 1 1460 1
Santiago 1066 1 4 1081 1 1
Pontevedra 1064 1 15 866 2 236
Orense 951 2 76 452 1 88
Vigo 1002 2 72 876 2 146
Finisterre 924 1 1 510 1 5
San Sebastian | 1485 1 1485 2
Bilbao 768 2 82 963 1 1
Santander 1076 2 1075 1
Vitoria 979 1 1 980 3 2
Pamplona 1370 2 29 1126 1 =34y
Zaragoza 1592 2 1592 3 4
Huesca 1542 2 1525 2 4
Logrofio 958 2 969 3
Lérida 607 2 160 699 2 50
Valencia 1592 3 1592 3 =25y
Gerona 1072 2 1066 5 6
Barcelona 1496 2 1 1095 3 =206y
Castellon 1049 1 1038 2 16
Alicante - - 1157 2 =31y
Murcia 1592 2 1 1430 4 77
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Madrid 1592 3 2 1592 2 5
Avila 929 2 1006 1 20
Burgos 1556 2 3 1558 2 5
Ledn 432 =21y 923 2

Palencia 873 1 877 1
Salamanca 1558 1 1459 6 8
Segovia 1401 1 1399 4 3
Soria 1536 |2 1365 3 =6y
Zamora 790 1038 1 3
Guadalaj. 893 2 1 313 =48y
Toledo 1101 1 1085 1 17
Albacete 1366 1 1418 4 8
Ciud. Real 1092 2 - - -
Cuenca 1074 1 692 174
Seville 1220 3 2 1220 4 2
Cérdoba 1048 2 1050 2 3
Huelva 1046 2 2 1005 2 171
Jerez 754 1 =24y 919 1 7
Mélaga 1114 2 1302 2

Badajoz 1112 2 1 1112 3

Caceres 1122 7 1000 2

5. CONCLUSIONS AND DISCUSSION

Thermal changes are expected to be generally obrtier of 1°C or smaller; hence, the
large error margin of the raw Spanish long-termadegquently does not allow a reliable
detection of changes of this order. This situatien largely improved by the
homogenization method: it applies severe conditimnsnhomogeneity and may fail to
detect small inhomogeneities, but the average @tal of the series drops below half a
centigrade and clearly enhances the data qualitgudbsequent analysis (and allows to a
certain degree an analysis of the regional diffeeen besides the first-order trends in
Spain). Furthermore, we confirmed an improvementcohsistency between highly
correlated series, due to homogenization.

This homogenization method was developed for aeratmall number of series of
limited quality, where the level of data redundarecgometimes low and the intervals free
of inhomogeneities are frequently short (shortent20 years and often shorter than 10
years). Under these circumstances, we applied pleiliomparisons, instead of a method
with reference series, and generally we did nofoper monthly or seasonally varying
adjustments. We consider this method a kind ostfarder homogenization” (or a method
for low data coverage): its results are signifibabetter than those of the “zeroth order”
(the raw data), but the method may be refined, whendata coverage and/or the initial
data quality is substantially higher.
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ABSTRACT

We developed quality control (anomalous data detecind homogeneity analysis) and
reconstruction process of all monthly precipitatatata for eastern Mediterranean area of
Spain, stored at Nacional Meteorological Agencystftnto Nacional de Meteorologia).
The original amount of observatories is 3891 andentican 18 monthly data represent the
total precipitation dataset. Due to difficultiesdreating suitable reference series, the ones
covering less than 10 years were discarded. Dapéicdtions in different series of the
same location has been also checked and removednbequence of these two previous
steps, 5.5% of original data was deleted and alege2669 series were analyzed
(containing 964.173 monthly data). AnClim and Pro@B Software were used in the
analysis.

For each monthly series (2669*12), we calculatedndependent reference series
using all close-by neighbours (less than 50 kmtapath a minimum overlap period of 10
years; positively correlated and with a mean magnttrrelation > 0.5. With these
restrictions, reference series were calculated bighted mean (1/distanéeifter mean
standardization.

Suspicious data were detected by comparing the saties (candidate / reference,
and viceversa, because of minimum precipitatiouevas set to 0). This procedure was
combined with inter quartile ranges. To avoid ieflige of suspicious data, we followed an
iterative process (10 steps). Then, after remowmgyfirst set of suspicious data, a new
reference series were calculated and all data wleeeked again. At the end, altogether
7182 data (0.75 % of total data) has been removédter that, we checked for
homogeneity in all series by applying SNHT. To tém influence of anomalous data in
homogenization process, we run SNHT test both usinginal data-set and data-set
obtained after anomalous data elimination. Thugriginal database a total of 1966 non
homogeneous series (75%) (containing 2984 inhoneges) were detected. However
after applying SNHT on depurated data base, onlg514eries were detected as non
homogeneous (43%), including 1795 inhomogeneities.

The results indicate that detection and correctibsuspicious data in huge databases
appears to be necessary in order to avoid staistbomogeneities. In conclusion we
present some initial results consisting of montpigcipitation trends during the winter
months.

1. INTRODUCTION
In the last report of the IPCC, sub-regional analyd the global change, precipitation

analysis and need of articulating global, regiomald local scale of climate were
considered as reliable objectives (Houghton etalD1; Parry, 2001). These tasks suppose
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that results of General Circulation Models (GCMsJl @mpirical data are linked. (Allen
and Ingram, 2002), and, usually present two diffies. First, the precision and reliability
of GCMs decrease with the change of scales (Mawgagy et al., 1999; Mcnamara,
1999). By using 3° x 3° longitude/latitude resalnti validations are well accepted in
extensive and homogenous areas. Neverthelesshomtjl GCMs are not able to catch the
spatial shades of regional and local scales (Zosatal Gonzalez Rouco, 1999;
Prudhoumme et al., 2002). The phenomenon is maindgrved in precipitation analyses
(Allen and Ingram, 2002), especially in areas whheepluvial regime is characterized by
shortage, seasonality and variability, as in adadediterranean climate (Groisman and
Legates, 1994; Balairon, 2000; Wilby and WigleyQ@) In this context, predictions of
GCMs represent a simplified vision of the realitgt rwell fitted to the space details
(Palutikof et al., 1996; Sulzman et al., 1995), ahdncreasing uncertainty in temporary
scales (Mearns et al, 1995; Barrow et al., 1996)clwneeds to be confirmed by means of
study of historical data.

On the other hand, comparison of weather statidat with GCM results requires
the availability of detailed spatial and temponaformation. The situation particularly
affects precipitation, being one of the most vdaatlimate elements. In addition, this
information is fundamental not only in evaluatin€Kas, but also in comparing observed
climate change to natural variability (Hulme et &B95; New et al., 2002).

Concerning the first aspect, and to facilitatedbmparisons, it has been suggested that the
data analysis must be made on a minimum (aboutea@sylong) period of observations,
which corresponds tothe normal periods of the Whtédeorological Organization (Hulme

et al., 1995; Moron et al., 1995). Although, otperiods has been suggested as well, like
1951-1980, which allows the analysis of the NAOexdHurrel, 1995; Rodrigo et al.,
2000). The second guestion concerns the precimitathanges, which can only be detected
when a dense network of observatories is used ¢@@m and Legates, 1994; Hulme,
1995; Vinnikov et al., 1990; Cosgrove and Garstadi@s).

The previous comment implies two conclusions: (& Wust be extremely careful
in areas of climatic transition when analysis amelte change is required on sub-regional
scales. (ii) In this case, we must avoid spatia samporal generalizations, and for these
reasons, the study of the observatories data bexegsential.

The availability of dense and prolonged databasesty diverse, depending on the
areas. In Europe the University of East Anglia m#de biggest effort (among other
institutions) (Hulme et al., 1995; Tank et al., 20vhile at sub-regional scale, disparity is
great. In fact, in the lberian Peninsula and Spaéveral studies have used database
gathered by observatories of greater quality andtoiun, and provided general view on the
evolution of precipitation (Esteban-Parra et aP98; Rodriguez-Puebla et al., 1998;
Gonzélez-Rouco et al., 2001, among others), orelation to tele-connection patterns
(Martin Vide, 2001). At the same time they were mbte to detect sub-regional scale
characteristics, as suggested by the IPCC, bedaesspatial density of observations is
very low (around 1 observatory in 5000 ¥mTherefore, general models calibrated on
these databases can also offer interesting reslikgugh their resolutions are not good
enough to investigate the effects of climate change
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Consequently, database construction and analydisstafrical data appear to be a
very promising way to make possible global chartgdiss at different scales. In addition,
it seems to be particularly adaptable in areas evitématic transition takes place, and
probably, effects of the climate change will be lvparceived. The Mediterranean climate
areas belong to this universe, and the IberiannBald is a good example.

% 5

100 0 100 Kilometers
e S—

Fig. 1. Spatial distribution pattern of Spanish prncipal mountain chains

The Iberian Peninsula cover a total area of ab60080 km2 and it is located in the
western part of the European continent, within ldt@udinal strip of 36°-44° north. Its
location is peculiar mainly due to its relief. letlberian Peninsula the main mountains are
distributed in parallel strips W-E from north touslo (Cantabrian, Pyrenees, Central
System, Andalusian mountainous areas), which arekbtl to east by the Iberian System
in direction of NW-SE-S-SW (Figure 1). Thereforafitudinal gradation of N-S takes
place in the pluvial values, overlapping with amstgradation of W-E. The Mediterranean
areas, approximately 1/3 of the total area of Spaie safe from the influence of the
Atlantic, and has their own personality in whichniest places are detected (Mountain
range of Grazalema, province of Cadiz), as welaamique European desert (Cabo de
Gata, province of Almeria).

In this paper, we present the development of metlogital approach proposed in the
previous seminar celebrated in Budapest (Gonzaidalgb et al., 2004), on techniques
and control quality of climatic data. The studydeay the analysis of dense data base
offered by the National Institute of Meteorologyi) of Spain. Our purpose is to test
different methods of analyses, and here we presemie provisional results for
precipitations trends.
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2. DATA BASE

The database have been collected from the totatdscstored at the National Institute of
Meteorology of Spain, and present all the availgivéxipitation data recorded in the study
area (3891 observatories including more thah m@nthly data). The series are highly
variable in characteristics (gaps, length, etc) sexkeral different series exist at the same
location (from different observatories), or at silecated close to each other (< 5 km).
Furthermore, spatial density of observatories ghhexcept for altitudes higher than 2000
m 0.S.l.

This data base have been analyzed partially atagletale using the highest quality
observations (Gonzalez Rouco et al., 2001), owuhbtregional scale (e.j. Sumner et al.,
1993; Pérez-Cueva, 1994; Lana et al.,, 2004). Caomsely, global study gives an
opportunity to obtain hundreds of series, at |é@sh the second half of the 20th century.
We are consistent in pointing out the absence ldrastudies leading with quality control
at the same scale as raised in this work.

3. METHODS

The quality control applied consists of four stagentification of repeated data within the
same series, identification of repeated seriegctien of anomalous data and control of
homogeneity.

3.1. Identification of repeated data within the sara series

Different situations were detected in analyzed diataing from the same series.
Consecutive repetition of identical monthly dagpetition of monthly data in consecutive
years, and chains of zeros in four successive y&atde 1 shows some selected examples
of the above situations. These data have beennglied.

Table 1. Selected examples of repeated data withine same series (in dec. mm)
CodeYr J F M A M JN JdL A S O N D

022019¢8 1 0 O O O O O O O O o0 O
022019¢9 0 O O O O O O O O O 0 O
0220190 0 O O O O O O O O O o0 O
02201971 0 0O O O O O O O O O 0O

0347c198210961631 930 452 490 468 7202015 371 7531353 8
0347c1983 0 374 100 452 495 468 7202015 371 7531353 8
0347E198210961631 930 452 495 468 7202015 371 7531353 8
0347E1983 0 374 100 452 495 468 7202015 371 7531353 8
81631962 230 32601510151015101510151015101510869331
8200b1975 0 230 571020 280340 530 400 280 700 O O
820001974 0 230 570250 210340 530 400 280 700 0 O

3.2. Identification of repeated series.

For each series, a set of neighbours have beetifidérby distance calculations. Then,
each one has been compared to the nearest to Nerifyn identity and to avoid duplicity.
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The procedure involved detection of numerous sidnatin which, up to four series
apparently independent, data are fully or partiadlgeated. In these cases, we preserved
the longest series with the most recent data, Aedmtissings of selected series were
completed by calculating average of the neighbadaits.

Finally, all series of less than 10 years have hjeared to their neighbours, by
using the procedure described before. Table 2 slaomexample of repeated series among
8 years.

Table 2. Selected examples of repeated series (cdmm)

Code J F M A MY JIJN JLA S O N D
0003 1951 810 78 1077 1138 1038 432 6109 2405 2623 500295
0003 1952 255120 559 630 960 503 5085 430 586 70197
0003 1953 0 01069 208 364 1272 240 0 580 1612 2341076
0003 1954 130650 965 311 796 740 25083 329 52 260 750
0003 19551383617 157 0 180 1593 22490 874 1069 205867
0003 1956 740222 1890 463 1264 495 1385 1060 425 605 50
0003 1957 16 50 O 71022811696 @31 260 1821 363695
0003 1958 665 O 313 250 O 110 @20

Code J F M A MYJINJLA S O N D
00021 1951 810 78 1077 1138 1038 396 6109 2355 2621 500295
000211952 255120 559 630 960 503 5085 430 586 70197
00021 1953 1063 208 364 1270 240 580 1612 2341736
000211954 130650 965 311 798 740 25083 329 52 260 750
00021 1955 1383617 157 180 1593 22473 891 1002 272868
000211956 740222 1875 468 1264 495 1385 1060 425 605 50
00021 1957 16 50 710 24711796 131 260 1825 363695
00021 1958 765 313 250 110 120

By applying such procedures of quality control ada&se have been reduced to 2669 series
and 964.173 monthly data, and metadata file haes loeeated with repeated series and
eventually possible combination of series. Depuratata represent 5% of the originally
existed data base.

In the following steps, detection of anomalous dattd control of homogeneity were made
by means of reference series calculation and itergirocedure. This process is really
relevant and it is appropriate to make a detailealysis of how the reference series were
obtained.

3.3. Reference series calculations

Reference series is a combination of the neighbloeitter correlated with the series which
has to be analyzed. Therefore, it becomes a satoplghich our candidate may be
compared. The selection of the neighbouring obsernes is based on two criteria: the
distance and the correlation coefficient.

The neighborhood seems to be suitable criteriavailyp for the unavailability of
studies which specify maximum or minimum distanaesthe selection. The selected
distance may depend on the topography and clirbatiavior of the regions. On the other
hand, absence of topographic barriers or eleméatsweaken the pluvial rates between
the neighbouring observatories and the candidatedasmmended (Vincent and Gullet,
1999).
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To avoid slants of national character (type of rinsient or own technique of
meteorological services), it has been suggestedinttude always some foreign
observatories (Peterson and Easterling, 1994).

Regarding correlation coefficient, positive threglsanterval fromr=0.7 tor = 0.8
have been recommended (e.j. Vincent and Gullet9198evertheless, in areas with
Mediterranean climate, where the precipitationxdseamely variable throughout years and
is concentrated only on a few days, even adjacesergatories do not show highly
correlated values (Rodriguez et al., 1999). In,fagesults from the local character of the
phenomenon, induced by the high frequency of caiweeprocesses. On the other hand,
due to the dichotomizing character of precipitafint rains or not), and to the absence of
negative values, it has been proposed to seleptlabons by using the difference series
(Peterson et al., 1990a), or transformed logari{i®hoades and Salinger, 1993). This
process, in addition, would avoid the outliers efifeas indicated by Lanzante (1996) and
Gonzélez-Rouco et al. (2001). Consequently, contibimadf both criteria could be much
more effective in this kind of study.

The second question needs to be determined foulaitns of reference series is
the number of selected neighbours. By PetersorEasterling (1994) it was suggested to
be around five but never lower than two. Howeveheo studies indicated that even a
single observatory might be suitable as referemee whenever its quality is well verified
(Keiser and Griffiths, 1997).

Finally, procedures for the calculation of any refece series were object of great attention
in many researches (Jones and Conway, 1997; Jodeblidme, 1996). In all cases, the
weighed values of neighbouring data are often clemed.

According to the above considerations, referendes#ere made after the process
of neighbours’ selection within the range of 50 kmith a minimum overlapping of 10
years, and with all positive monthly correlationghwan average monthly correlations
higher than 0.5.

As different neighbouring series could show différeverlap periods with the
candidate one, in the presence of missing dataddfetent averages of the neighbours,
some standardization process is needed in ordavdm introducing uncontrolled slants
during the creation of reference series. Thus,aichecase, average standardizations has
been applied to all neighbour series by using comanerlap period with the candidate
one.

Thereafter, the calculation of each reference sesias carried out by means of
weighed average of (1fd)where d is distance in km. The selection of tistadce as
weighted factor is required in case of precipitatiowing to the spatial character of this
element. The distance of chosen selection (50 lemyall adapted to our purposes, as
different tests, performed on neighbours withirkiand 75 km, have proved.

3.4. DETECTION OF ANOMALOUS DATA

Once reference series have been calculated, tketiet of suspicious data was made by
means of an iterative process of detection-elimomatvhere, the reference series was
calculated again in each step. At the detectiosuspicious data we considered that the
precipitation appears as a series of data limitedsbbase (minimum value equal to zero).

Thus, to avoid this effect, we analyzed seriesi@ct ratios (C/R) and inverse ones (R/C).

In the first case, series of ratios was used totiffepossible anomalous data by excess in
the candidate series front of its reference whileéhie second one, we detected possible
anomalous data by default.
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The detection of suspicious data, in each casewealke by combining two criteria,
in which thresholds of both ratios and the inteaitjle distances have been combined, by
using the expression of Q75 + (Q75 - Q25) * 3, wh@ris the corresponding quartile and
3 is a coefficient.

To avoid dificulties of ratio calculations for zevalues, all data base and reference
series were increased by 1. Furthermore, in ordeavbid the slant that lowest values
could induce in the smaller ones (e.g. ratio ofL16/10, ratio of 1000/100 = 10), all data
were also increased by a constant of 29 mm. We tisedinal threshold value (29+1),
since months with 30 mm of monthly precipitatiom de considered as dry month in the
climatic tradition (see Koppen classification). &g, the threshold values of ratios and
inter-quartile distances were applied strictly @se of zero values (Table 3).

Table 3. Threshold value for ratio and inter-quartile distance.

Normal data Cero data
Threshold Threshold
Ratio Quatrtile Ratio Quatrtile
>4.5 All >4.0 All
>4.0 >2.5 >3.5 >25
>3.5 >5.0 > 3.0 >5.0
> 3.0 >75 >2.5 >7.5
>25 >10.0 >2.0 >10.0

The procedure was repeated successively, remoniggch iteration the suspicious data
from the original database and proceeding againatoulate new reference series. The
final step consisted of removing all suspiciousadabm the initial data base, hence
calculating the most depurated reference series.

These last reference series, obtained after 1&tibes, were finally contrasted with
the original series in order to perform the finatettion of all the doubtful data. Thus,
finally a total of 7182 monthly data were elimingtavhich is less than 1% of the original
data base. In Table 4 and 5 we show some casestefted and eliminated data that
appeared to be suspicious. In Table 4, exampleseaseen of data of candidate series
with values superior to those of reference one3aible 5 inversely. The Candidate series
C has been compared to the Reference one R, ifirshease, by means of a direct ratio
C/R (Table 4), adding to each value the constan8@ff. In table 5, we present the
contrasted values of series of ratio R/C. IDQ meéesinter-quartile distance value for
both ratios series, respectively.

Table 4. Selected anomalous data for C > R

C R
(1/20 mm)(1/20 mm)

Code YearN° neighb. Month C+300 R+300Ratio 1QD

0313 1918 5-9 st. 12 2605 19 2905 319 9.1 318
6119E 1988 48-66 st. 12 2808 30 3108 330 9.4 473
7247 1938 1-10 st. 8 2650 50 2950 350 84 7338
8274U 1974  45-51 st. 12 3730 0 4030 300 13.4 143.7
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Table 5. Selected anomalous data for C > R

C R
(1/20 mm)(1/10 mm)

Code YearN° neighb. Month C+300 R+300 Ratio 1QD

0358 1930 15-19 st. 1 98 3092 398 3392 8.5 20.
6049 1984 23-26 st. 11 0 367¢ 300 3978 13.3 40.%
8501 1969 27-30 st. 10 0 330¢ 300 3609 12.0 77.1
9195U 1986  34-38 st. 1 80 816¢ 380 8464 223 44
9815E 1979 74-81 st. 1 0 353( 300 3830 128 5.

3.5. Homogeneity control procedure.

In order to detect inhomogeneities in the seriemyrstatistical tests have been developed,
reviewed in Szalai et al., (1999), Peterson e{(H298) and Lanzante (1996). We can point
out some of them such as Rhoades and Salinger ,(1&&3CUSUM), Rodriguez et al.,
(1999, test of von Neuman), Tayang et al.., (19688 of Kruskal-Wallis), Easterling and
Peterson (1995, likelihood ratio), Gan (1995, telsKendall), Lanzante (1996, test of
Wilkoxon-Mann-Withney), Tarhule and Woo (1998, test Pettit, Man Withney and Man
Kendall), and of course SNHT test of AlexandersAieXanderson, 1986; an excellent
overview of SNHT can be found in Keiser and GrsfiL997).

On the other hand, many meteorological servicegldped their own methods (see
specific cases, Vincent and Gullet, 1999; TuoméayR001; Peterson et al., 1998), whose
software is often not available to the public. Hoem the slant of using suitable test
depends on the software availability as well ashencontacts with the developers.

In our case, the control of homogeneity in the daefad data base has been developed by
SNHT (Alexanderson, 1986), both for monthly andsseally scale. The softwares used in
this analysis are AnClim and ProClimDB (Stepanél)sz, 2005b).

In order to select the statistical inhomogeneitied had to be corrected, we used
temporary windows, supported by metadata obtaingthg the detection process of the
series with repeated data. In any case, when ingeneties have been detected, those
were corrected in complete years. We didn’'t acagpdmogeneities neither in the initial
nor in the final part of the series (10 years).0Alge only accept and correct detected
inhomogeneities affecting at least at 3 independeoiths in the same period (using a
window of 5 years). After carrying out the correc, we proceeded to calculate new
reference series and applied again the SNHT testal Of considered inhomogeneous
series was of 202 in both applied runs.

Finally, to verify the effect of depuration processthe homogeneity tests, we also
applied SNHT test on the original data and the fieserence series (obtained before the
first step of anomalous data detection).

3.6. The reconstruction processes.

The final step consisted of making reconstructibalbdepurated and homogenous series
by means of new reference series.

For each observatory, two reference series wereuled¢d by using the same
procedure described before, in this case, with mar distances of 10km and 25km
(Reference series N° 12 and 13) between neighbodthie. series were previously
manipulated in order to make it possible to joim wlosed series with successive period of
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time. Otherwise, we were not able to obtain protmhgeries by combining series of
successive period of time. This fact affected patéirly all denominated secular or
historical series begins before 1900.

The final filling up of gaps was directly made witlata of the reference series
obtained at 10 km and 25 km.

4. RESULTS
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Fig. 2. Monthly distribution of anomalous data. (Ccandidate, R Reference)

The total number of considered anomalous datalyinidcarded was 7182 (approximately
0.75 %), whose monthly distribution is shown indfg 2. The data are classified as
positive anomaly (i.e. C>R), negative (C<R) andozenomalous. Zeros don’t show
monthly pattern, while high and low suspicious dateures mainly in winter (Figure 2).

These data are temporally accumulated in two psriatbund 1925 and 1960. The
smallest amount of data can be found around thiegerf civil war and the final decade
(Figure 3). However, as the number of operativeenlaories and those of registered data
are very variable in time, these values must bghted.

In Figure 4, we show the evolution of the numbeawdémalous data in proportion
to data registered in each year. We clearly apatethat the density of anomalous data is
located in the first half of the J0century and decreased considerably from 1950, even
though it is the period of greater number of opegabbservatories and registered data.
The data correspond only to the period of 1901-2@6@0it was not possible to contrast

with reference series of time period previous t0Q, %although the total contrasted data
with its respective reference ascend to 99 %.
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In the original series, without depurating proce2334 statistical inhomogeneities were
detected, and they affected 1966 series of pretiqit, which suppose to be 75% of the

——C<R —6—C>R A Cero‘
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Anomalous
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o

25

Fig. 3. Annual evolution of anomalous data. (C candate, R Reference)

total series. Nevertheless, in the depurated dath, 1125 inhomogenous series were
detected (43%), including 1795 statistical inhommagies. The results of this analysis are
shown in Figure 5, where it is compared with theletton of the total observatories
operating in each year. In the first graph (uppevg show the total number of
inhomogeneities, with and without depuration, detgédn each year. In the second one
(low), we show the annual index of inhomogeneityatmid the effect of the number of
observatories. By analyzing both graphs, we cantlsaeno depurated series presents
greater number of inhomogeneities over time, amy thecrease from the second half of
the 20" century. Finally the total of considered inhomomgenseries was of 202.
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Fig. 4. Annual index of anomalous data. (C candidat R Reference)
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Fig. 5. The effect of anomalous data detection onhomogeneity analysis.

The obtained data base, regarding its special tyemhsigins practically in 1915 and
the number of observatories increases until theniSpaCivil War period (1936-1939).
During that time, a drop shows up, but since tlikre,number of observatories increases
again until the 70’s, when it reaches its maximwmber. Then, it descends until now in
many places, may be in consequence of the rurausx@-igure 6).

This data base is considered as a result of thenséiction of the total analyzed
and homogenized series (2669), therefore, we nausaiteful when trying to use it. In fact,
combining criteria of minimum length of original tdafew numbers of gaps, etc, for the
second half of the ZDcentury, we considered about 1113 observatoridshwulfill all
the previous criteria. Thus, they can be used &byaa the evolution of precipitation in the
Eastern part of the Iberian Peninsula. In Figur&v& ,show the spatial distribution of the
data base, although there are areas with low gensit
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Problem of areas over 1500 m o.s.l. persists, abigh the information is still lacking.

100 Kilometers

Fig. 7. Spatial distribution of data base.

5. SOME INITIAL RESULTS.

The descriptive analysis of precipitation trendidgrwinter months (December-March)
from 1951-2000 is shown in a collection of mapgdfes 8-9-10-11). All of them show
significant (positive (+) blue, negative (-) redidanot significant trends (n.s. dot).

Trends were calculated at p 0.1 level, after lovespélter (9 laps) by using
Spearman rank order correlation. The results showerg clear spatial pattern from
coastland-inland and North-South along winter men#nd are very promising for future
analysis.
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CONCLUSIONS

Our analysis shows that detection and correctiorsuspicious data in a precipitation
database seems to be preliminary and necessary ttaskvoid many statistical
inhomogeneities.
Following this procedure we have built up a denata dase which covers more

than 1/3 of the Iberian Peninsula with spatial égrerca (?) 1 observatory / 150 Km
The high density of our data base enables us tm dibe future spatial analysis of sub-
regional models and their empirical validation withsitu measurements. The provisional
result of monthly trends shows a very coherentigppattern and involves that not great
mistake or bias calculations have been produced.

There is a lack of data in areas >1500 m o.saolild be interesting to seek for suitable
methodologies, with the aim of making it possilefitl data up spatially, in order to be
able to use them for regional climate models.
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HOMOGENIZATION AND VALIDITY CONTROLS FOR
TEMPERATURE TREND ESTIMATES OVER ITALY

Andrea Toreti and Franco Desiato
APAT, Via Vitaliano Brancati 48, 00144 Rome — Italy
tel. +390650072567, fax +390650072657
andrea.toreti@apat.it, franco.desiato@apat.it

INTRODUCTION

In order to give an answer to the needs of harmatinis and standardisation of climate
indicators calculation, and of a fast and relialppelate and access to the data, a system
denominated SCIA (Sistema nazionale per la raccel&borazione e diffusione di dati
climatologici di interesse ambientale) was realibgdhe Italian environmental protection
agency (APAT), in collaboration with the main natb and regional meteorological
institutions. In this framework, the processing méteorological data coming from the
synoptic network of the Italian Air Force weathenace is included. Data recorded from
49 synoptic stations, characterized by completenesstinuity and good geographical
distribution (fig.1), were selected for time serié®mogenization and testing of
homogenization procedures. We started up thisiaicty considering the mean monthly
temperature time series, derived from daily meamptrature, calculated as the arithmetic
average of maximum and minimum daily temperatupemed in SYREP messages.

Our aim is to obtain a reliable estimation of tamperature behaviour over Italy in
the last decades, filtering the non-climatic fastitke relocation and instrument changes.

Fig. 1 Geographical distribution of the 49 stations
METHODOLOGY

Input data can be affected by errors for severdferdnt reasons. In order to filter
evidently wrong data at the origin, we firstly apjl so-called weak climatological control
to maximum and minimum daily temperatures include®YREP message: their values
must fall within a range of physically admitted wa$. This control allows to identify (and
reject) gross mistakes, such as typing errors. a datidated through this first quality
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control, contribute to the calculation of monthlyam values. A second quality control is
performed to identify outliers of monthly means.lléwing the idea of Eisched et al.
(1995), the data are clustered as a function dda@eaand the latitude and altitude of the
station, hence outliers dropping outside a rangevatfies which is a function of the
interquartile range of each cluster, are found f@at al. 2005). Outliers are then checked
through the analysis of input data in terms of ticoatinuity and space correlation with
data of nearby stations. If it is confirmed thatada is wrong and cannot be corrected, it is
rejected. If the number of missing or non-validadat a month exceeds a threshold of
25%, the monthly value is eliminated from the serk&nally we have a validated monthly
series to test and eventually homogenize.

After an analysis of the available statistical gahares for homogenization (Aguilar
et al., 2003; Peterson et al., 1998), we choseranpric one, i.e. the Standard Normal
Homogeneity Test - SNHT developed by Alexandersgdtexandersson, 1986;
Alexandersson and Moberg, 1997). It is importanhantion some choices we made in the
test application. First of all we decided to use $ingle shift version of the test; then we
have calculated correlation coefficients (betwdes $o0-called candidate station and the
others) using the transformed first difference eserias highlighted by Peterson and
Easterling (1994). The best correlation criteriovith some geographical limitations,
indicates that five stations (the recommendatiaat igast three) applicable for the creation
of the reference series; we want to emphasize rttpoitance of this step, because the
reference series should reveal the climatic belmaaod strongly influences the following
results.

The practical application of SNHT involves a fitsst of the entire series; if a shift is
detected the series is divided into two periods déna tested separately; if one more shift is
detected, this procedure is repeated, until a hemamgs or a too short period is found. The
correction of inhomogeneous time series has beere dollowing the philosophy of
‘reproducing current measure conditions’; therefibve oldest periods have been ‘adapted’
to the most recent. In the case there is moredharshift. We corrected the series from the
most recent shift forward (until 2004), reapplibe test to the entire series and corrected
the oldest shift.

RESULTS

In this section we show the results of the test-bgemization session. Two practical
examples are used to better understand the prirfeigtures of the statistical tool and the
differences between annual mean temperature arnesmaber Italy calculated before and
after homogenization.

Among the 49 selected monthly time series, we foiftbmogeneous series, 43
series with at least one inhomogeneity and 28 sevith more than two inhomogeneities.
The initial year of the final series (homogenized aomogeneous) is determined by two
factors: the first year of station recording aneé tvailability of three stations for the
reference series (fig.2). 1951 and 1961 are thesye#h the largest number of time series
starts.
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Fig. 2. Number of stations in function of the staring year.

There are many stations with more than one inhomgigge and the most common number
is three (Fig.3).
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Fig. 3. Number of stations in function of the numbeof shifts.

The analysis of the number of shifts as functiothef year of occurrence shows that there
is not a change that involves the entire network gpecific year (fig.4).

There are only four years with no supposed chaft@s2, 1980, 1996, 1997), since the
last and the first year cannot be considered.

77



10

£ 8-

N

[%)]

5 61

F

3 4

£

>

c 27
0,
A M UOMNOODAMNMUONOODAMULNOOOAMWOLNOODAMWULNOO M
DWW OO OO ONNINMNMNMNNODOOWOMWOMOWMOO O O O O OO
OO OO OO OO O) O O
T A A A A A A A A A A A A A A A A A A A A A A 1NN

year

Fig. 4. Number of shifts in function of the year.

Finally, the shifts are not concentrated in speafionths, having all months at least five
shifts, with the largest occurrence in March angt&maber (Fig.5).
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Fig. 5. Number of shifts in function of month

The first practical example, that we want to shmathe homogenization test of the Rome
Ciampino station (WMO code: 16239). The referererges has been constructed with five
stations (16234, 16244, 16224, 16243, and 1624&) tlave a correlation coefficient
greater than 0.985; we have found three shifteenfollowing month/year: February/1964;
March/1973; August/1977. The corrections were apolpéind the original and homogenized
monthly series are presented in fig.6. The diffeesnbetween the two monthly series are
hidden by the seasonal cycle, while they are eviohetine annual series (Fig.7).
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Fig. 7. Annual series of Rome/Ciampino, homogenizgtlue) and original (red).

Another station (16206), besides the five chosantlie reference series, has a high
correlation coefficient, but presents some problémserms of homogeneity. Then, we
tested the sensitivity of the homogenization procedvith respect to the composition of
the group of stations used to calculate the retereseries. Four tests were carried out: two
with five stations and two with three stations;hbath cases the station 16206 is firstly
included and then excluded from the group. Avadabietadata document indicates a
relocation of the Rome Ciampino station in 1977wsodecided to begin the analysis after
the shift of 1964 and to test the ability of theFBNto detect the shift occurred in 1977.

The t statistic of the ‘five stations test’ givesogl results both with and without station
16206 (fig.8), i.e. the 1977 shift is well idengif; the ‘three stations test’ shows a different
behaviour of t in the two cases (fig.9). When tlB206 station is excluded the statistic is
still able to detect the 1977 shift, and the erbedaviour of the function is similar to that
of the ‘five stations test’; the introduction of 26, which is inhomogeneous itself,
compromises the t series.
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This test makes it appearthat the number of statamd a careful selection of the stations
to be used for the calculation of the referencéesemay be very important, and that a
wrong choice may lead to unrealistic results.

The second example involves the station Foggia/Atoken(WMO code 16261), with the
reference series obtained using five stations (2636232, 16320, 16332, 16360). This
series has only one shift in April 1965, so therection procedure is fast and easy; fig.10
compares the annual homogenized series to thenaligine, while fig.11 shows the
statistic before and after the homogenization.
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Fig. 11. T statistic of 16261, original (red) and dimogenized (blue).

Finally, the comparison of the annual mean tempezaanomaly over Italy from 1961
until 2004 (obtained by averaging the anomaly v&loger all 49 stations), calculated
before and after homogenization, is presented.1Zighows the values of differences,
ranging form —0.06 to 0.07 °C. This relatively shedfect of homogenization on the mean
anomaly series may be due to several reasonsiftagzdt number, sign, amount and year
of occurrence of the inhomogeneities; the fact tinat network has to respect WMO
technical specifications, that limit the possiblages of stations characteristics; the fact
that these stations are mainly located in airpogas, where altering factors such as
growing heat island or large relocations are redwramprobable.
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Fig. 12. Difference series between the homogenizexhnual mean temperature
anomaly and the original series.

CONCLUSIONS

In the context of SCIA project 49 monthly time ssricoming from the network of the
Italian Air Force Weather Service have been teatetlhomogenized, in order to obtain a
reliable estimation of annual mean temperature ahpwver Italy. Six series came out to
be homogeneous, while twenty-eight have more thhanimhomogeneities. The shifts do
not occur in a specific month/year or period, alst éhe sign and the amount of the shifts
are very different among the series. Two examplé®mogenization test were presented.
The first gave us the possibility to show the singr of SNHT with respect to the
number and the choice of the stations used to leddcthe reference series. The results
indicate that the use of five series is advisabiaally, the differences between annual
mean temperature anomaly coming from the homogédrse¢ and the original one have
been shown.
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DETECTION OF INHOMOGENEITIES IN WIND DIRECTION AND
SPEED DATA

Predrag Petrovi¢
Republic Hydrometeorological Institute of Serbiadg¢a ViSeslava 66, Belgrade, Serbia &
Montenegro, tel. +381/11/3537-804
p.petrovic@hidmet.sr.gov.yu

1. PROBLEMS OF PROCESSING WIND (DIRECTION) DATA

Unlike other weather elements, which might be gdahds scalars (and thus as a single
value), wind data are generally coupled into a pmdirvalues, independent one from
another. Therefore, dealing with wind direction apged data homogeneity is a bit more
complicated. In addition, wind direction is usualiiwen as azimouth, an element with
limited range of values that reset to minimum afe@rees when maximum of 360 degrees
is reached (and reversly). Such element disablesmmn mathematical tools for wind
direction data processing (Fig. 1).

360 T 116
315 + M M 14
270 + t12
225 + +1.0

180 M | 0. —_azimouth

—mtensny
135 | L 0.6
90 - 0.4
45 i - 0.2
0 r ‘ ; ‘ ‘ 0.0

Fig. 1. Annual mean moving values of wind vector anouth and intensity, Novi Sad -
Rimski Sancevi, 1967-1984

Another way to have wind data as scalar value isotovert them into two components.
Still, a pair of series with questionable correlatand great fluctuations is not convenient
for applying any homogeneity test. Besides, vaeiin series are of magnitudes that
overwhelm possible inhomogeneities (i.e. climatgnais, changes in observations /
instruments). Thus, splitting of wind vector ontrthern and eastern component does not
appear to be a good solution of this problem (£)g.
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Fig. 2. Annual mean moving values of wind vector mth and east component, Novi
Sad - Rimski Sarkevi, 1967-1984

However, wind direction data in climatology are whoas "wind roses", dealing with
distribution of frequences of every distinguishemhdvdirection. Also, some wind speed
data processing might include distribution of freqces of wind speed intervals. Since
both direction and speed data might deal with ithstion of their values, the
ReDistribution Method (Petro& 2003) might be successfully used for detection of
inhomogeneities in these data series.

2. DESCRIPTION OF THE REDISTRIBUTION METHOD

The ReDistribution Method is based on variations consecutive distributions of
frequencies of defined data value classes. In chgend direction, data value classes are
represented by distinguishable wind directionsl@,32 or 36 directions plus calms). The
wind speed classes might be wind speed intervads lefaist 1 m/s up to Beaufort scale.
Since the processed data window subsets are recodecheto be climatologically
representative, the length of window subsets tldio such samples should cover the
whole member of years (at least one) and to feahoth daytime and nighttime
observations (at least two observations per daygeneral, using smaller data window
subsets might lead to less reliable results thataibe easily accepted.
The main value is the number of redistributed fesguies between two compared
consecutive distributions

n

2.[d]

N — =1

2
whered; is the difference value between two compared eaqies of the samieth data
class (distinguishable wind direction or wind spesdrval in this case). Thus, the number
of redistributed frequencies is half of the sum atif n absolute differenciesl. The
ReDistribution Index RDI) is simply the redistributed part of the whole alatindow
subset o processed data.

RDI = N,
N
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Theoretically, RDI returns zero where the compatistributions are identical, while RDI

egauls 1 where the compared distributions are edntdifferent (i.e. from the wind rose

that has no south winds to the case of south womdg). In practice, RDI values are
always greater than zero because of natural winctuations. Noise level of RDI values
depend on climate conditions and the length of datelow subset, but it is generally
below 0.2. On the other side, RDI value of 1 mightmet only in places with seasonal
wind roses (i.e. suptropical trade winds) and Iengjt data window that does not cover
such seasonal variations).

3. DETECTING BREAK POINTS IN TIME SERIES

Inhomogeneity of data series often includes sigaift redistribution of values by data
classes. The greatest number of redistributed satuseached at the point of the complete
change. Further, redistributed values are lessifeatand returned to the noise level when
the new distribution is established. Following tlugical principle, peaks in RDI series of
wind direction / speed indicate break points indviata series.

The example of Novi Sad - Rimski Sawi (Fig. 3) shows a major inhomogeneity
break point. Since the RDI peak lies at the begigmif 1982 for the 4-year moving values,
homogeneity break dates back to 1978. This peddaisired both in wind direction and
wind speed data. This inhomogeneity is confirmedtation metadata. Since this station
began to work as a synoptic station, an old wingevia replaced by anemograph in order
to obtain more accurate and precise data for synabiservations. Another point with
suspected inhomogeneity appears in 1985 (datinky ibak981), but only in RDI series for
wind direction.

In order to confirm detected break points, it ighty recommended to run the
ReDistribution Test with different data window sizeonfirmed break point should appear
at more than one data window sizes with variatmin@ne to two weeks with delay of up to
two months. For example, such multiple runs of RBIues confirm detected break point
in homogeneity dating in 1978 (Fig. 4). All RDI gas indicate the same point of
inhomogeneity. Also, suspected break point for wdidkction dating in 1981 is now
confirmed. Series in Fig. 4 are shifted back to fhgear moving values in order to
illustrate this multiple pass indication.
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Fig. 3. ReDistribution Index (RDI) series for winddirection and speed, moving 4-year

window period, Novi Sad - Rimski Sagevi, 1967-2005
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Further data analysis might show the type of pmobtegarding wind data. Such
analysis include displaying of wind direction fremqeies ("wind roses"), or wind speed
frequencies (by defined intervals - data classesulation of mean wind vector (or its
components) for two consequential window periodgesE types of information might be
of great help in determing causes of inhomogenagywell as in selecting ways for
homogenisation of series.

4. TYPES OF INHOMOGENEITIES

According to occurences of ReDistribution Index (Rpeaks in direction and / or speed
series, there are three basic types of inhomodeseit wind data.

Type 1.RDI values oboth series have peaks at the same time. This prdgtroaglans that
both direction and speed data have simultaneousgeneity breaks.

Possible causdsr this type of inhomogeneity are:

Change of instrumenSuch change might consider a change of instrutypet(as
in the given example), where major instrument prioge (precision, sensitivity etc.) might
be completely different. This also might be an aatiion of replacement of an instrument.
Such information is usually included with the metizd

Change of location / surrounding3his includes both relocation of instrument
(position and / or height) and changes of surraumpdbjects (i.e. tree growth or cut,
buildings or other objects arised or lowered dowlletadata might be incomplete
regarding this problem, especially in changes afosundings.

Change of observeiThis might occur in observations that are not makem the
wind recording devices. Objectivity of the obserweight be questioned in such cases,
because at least one observer (before or aftedebected break point) had no correct
measurements. Still, it is almost impossible tovprthe correctness of the data.
Homogenisatiorof the series is a set of various mathematicakections. Since the source
values from the instruments might be derived frormast entirely new conditions
(instrument technical properties, position, diffégrebstacles in surroundings), estimated
correction value / function (if any) should incorate a lot of calculations, where
uncertainties might overwhelm the correction vaiiself. Therefore, homogenisation of
such series inot recommended
Type 2.0nly RDI values ofvind direction series have peak (not joined by the other RDI
peak).

Possible causdsr this type of inhomogeneity are:

Change of instrument orientatiorilhis is usually case when an instrument
orientation is corrected to geographical coordimater if it is, in seldom cases,
miscorrected from geographical coordinates). Meaation of instrument might happen
at incorrect installation of instruments (i.e. whexagnetic north is used as a reference
direction), but it might also happen when the unstent is not properly maintained.

Change of measurement precisidarious instrument types have different number
of distinguishable wind directions (there might &el6, 32 or 36 directions plus calms).
Such changes are seen as distortions of "wind 'rodés "wind roses" with fewer
numbers of directions look more "starry" when iduoing those with more directions
(Petrovi, 2000). Thus, "starry" roses are not always shguie true distribution of wind
direction frequencies.

Homogenisatiorof the series is possible only in some selectsésa-or example, case of
instrument orientation ("rotation” of the wind rpsdould have a correction of azimouth
value for a certain angle (Fig. 5 and 6). Detectibrmngle might be more accurate when
the resulting wind vector is calculated before aftdr the break point. On the other hand,
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such accuracy is not quite practical for appliaatisince there is a limitation of precision
in detecting wind direction. Distortion of "wind ses" might be homogenised, but only if
the result is the wind rose with fewer directionis. such case, precise wind data
information is lost, and there is no point in horaoigation.

01981 01982

Fig. 5. "Wind roses" between two consequential mowg years (1981-1982), original
values, Novi Sad - Rimski Safevi

E 01981 @1982

wsw T Ese

Fig. 6. "Wind rose" between two consequential movig years (1981-1982), corrected
values, Novi Sad - Rimski Sa&evi

Type 3. Only RDI values ofwind speedseries have peak (not joined by the other RDI
peak). This practically means that the wind spesttument is changed, while wind vane
was replaced correctly or even remained intact.

Possible causdsr this type of inhomogeneity are:

Change of instrument calibrationLike any other instrument, wind speed sensor
must be calibrated for the correct values. In tichee to changes in friction of mechanical
parts of the instrument, the values are smallem thae values. Therefore, the instrument
must be calibrated again or replaced. Changesstfumentation are usually featured in
the metadata, but the genesis of the problem iestlmever actually recorded.

Change of instrument sensitivitjdue to the same reasons, instrument sensitwity t
low wind speed might change, so the threshold vétweinitialisation of wind speed
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instrument might increase. However, recorded highdwspeed values might remain
unchanged. As in previous case, some informatigghtvbe available in the metadata, but
not the genesis of the problem with instrument.

Homogenisatiorof the series is possible only in some selectsgsa-or example, in case
of instrument calibration, homogenisation shouldpegformed the same way like any
other scalar value. On the other side, changessifument sensitivity usually have an
unknown number of cases with low wind speeds replagith zero values (and reversly).
As a result, such case brings an unknown correctedne and homogenisation is not
recommended.

5. USE OF METADATA

True detection of inhomogeneities must includeube of metadata. Detected break point
should be verified by a search through metadatattfertrue cause of inhomogeneity
(Aguilar et al., 2003).

However, metadata might be incomplete in most c@@ksmetadata often have an
incomplete information about instruments, especi#tiieir technical features. Detailed
descriptions of locations, surroundings, obseraas sometimes even station locations are
questionable because of the possible losses ofdatetéi.e. damaged, destroyed or "lost"
in some other country). In many cases there wapractice of recording changes of
surroundings of the observation site.

Even with presumption of having the complete techincoverage in metadata, it is
almost impossible to find all detailed descripti@ighe station surroundings. While some
of such descriptions might be discovered with bodd, tree growth or cut is practically
impossible for detection. Moreover, it is still fikilt to estimate direct influences of
surroundings on the instrumentation.

Despite the development of homogenisation techsigtiere is still a significant
number of detected break points that are not eefifn metadata, hence the cause of the
detected inhomogeneities remains unknown (Auek. ,e2@03, Miller-Westermeier, 2003).
Some metadata might be partly recovered by usihgraiechniques that attribute data
quality, such as the Real Precision Method (Petro¥D98). These techniques might
discover a "hidden" information on the observerd @gliability of observations. Therefore,
discovering new facts is quite useful for completad metadata.

6. FURTHER ACTIONS

Since some causes of inhomogeneities have influenaeore than one weather element,
detection of inhomogeneities should be performedasnmore elements as possible.
Matching break points clearly indicate major changé an observation site (i.e. station
relocations) and determine their influences on ntag®n records.

The ReDistribution Method offers many possibilitiés detection of various
changes in observations. Any series that might laawvempirical distribution of its values
might be processed in order to detect new inhomaigea (like any other homogenisation
test) or to obtain more information for completiohmetadata. This also might include
elements whose "homogeneity" makes no scientifiseséi.e. visibility, start / end time of
observing weather phenomenae). Some preliminanjtseare encouraging for evaluation
this method with such series, but only as a tooldetection and hence estimation of
missing metadata. Discoveries and assumptions wffaets about a weather station are
always of great help in searching for new inhomegess.
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URBAN EFFECTS ON THE TEMPERATURE TIME SERIES OF
PRAGUE

Vit Kv étoni, Michal Zak
Czech Hydrometeorological Institute, Prague
vit.kveton@chmi.cz, michal.zak@chmi.cz

1. INTRODUCTION

An urban heat island is a metropolitan area whighsignificantly warmer than its
surroundings. As population centres grow in sipenfivillage to town to city, they tend to
have a corresponding increase in average temperatinich is more often welcome in
winter months than in summertime. This phenomersoralled the "urban heat island
effect.” It is caused by larger absorption of shaste solar radiation due to greater
absorbing capacity of buildings, roads etc. Thdiation is then stored in these materials
and later, mainly during night, it is irradiated tihe form of long-wave radiation and
therefore it is warmer in the inner cities thantheir surroundings. If we study an urban
heat island, we usually try to determine the intgnsf urban heat island. Intensity of
urban heat island appeares in the difference ipégature of the city and outside, of the
rural areas.

2. DATA USED FOR ANALYSIS

Data for time period of 1961-2005 have been usedhalysis. Prague temperature time
series at following stations were used: Klementinttarlov, Ruzyg, Kbely, Libus and
Uhiingves. For assessing of urban heat island interfsitpwing rural stations have been
used: Doksany and Orgjov. The position of these all used stations @asden on the Fig.
1.
For the analysis, we have used following tempeeatiivaracteristics: annual average of
daily maximum, annual average of daily minimum avwerage air temperature. Further,
annual number of the so called ,characteristic*sdagve been used. As “characteristic”
day we mean day with temperature above given tbtéshVe have used the following
characteristic days:

- Tropical days that are days with maximum air terapge 30°C and more;

- Summer days that are days with maximum air tempey&@5°C and more;

- Frost day that are days with minimum air tempeshelow 0°C;

- Ice day that are days with maximum air temperabatew 0°C.

91



Fig. 1: Map of used station, black line is border bPrague

3. HOMOGENIZATION OF DATA

Of course, all data we have used had to be hompggnFor this purpose we have used
MASH method (see e.g. [1]) to detect main breakntoiand/or shifts and their

approximate size. Then we have used auxiliary graghcumulative sums of relative

differences of annual temperatures from averagel-P®®5 according to followed

formula:

2’ ((ai-a)/a — (bi-b)/b), wherei=1, ...,45,

ai, bi are annual temperatures in i-th year, ard average temperatures for the period
1961-2005 on the tested station and the regidaéibs REF respectively. A letter a is
related to the tested station, a letter b to tlmiost REF of given station group. An
example of such graph for average air temperatanebe seen on Fig. 2 for original data
and on Fig. 3 after homogenization. As we can gese sums are 5 to 10 times smaller
after homogenization.
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4. RESULTS

For exploring the intensity of urban heat island wsed graphs showing variations of
differences in temperatures for years 1961-2008. situation for average temperature can
be seen on Figs. 4 and 5 for two examples, firstdffierences between Prague station
Klementinum and rural station Doksany (that arecstnin the same altitude), and the
second one shows the differences between Pragugh@er station Ruzyne and rural

station Ondrejov (where Ondrejov lies some 100 ghéi then Ruzyne). From both graphs
it can be seen that the influence of urban heahdhas intensified during last 45 years,
this intensification is smaller when compared Klatmum in the centre of Prague with

rural station Doksany (intensification of about@0/10 years) then in the periphery (Fig.
5, intensification of about 0.3°C/10 years).
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Fig.4: Variation of differences in average temperatre for stations Klementinum and
Doksany

Focusing now on the minimum temperature, situatiwrine same pairs of stations can be
seen on Figs. 6 and 7. As for the historical ceofrd’rague, there is relatively large
intensification of urban heat island (about 0.18@years), but no changes can be seen for
Ruzyne-Ondrejov graph (Fig. 7). As for maximum temgures, the situations are shown
on Figs. 8 and 9, the influence of the urban h&land intensity is only very small for the
historical centre and no evidence of it can beaeteon periphery of the city.
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Fig. 9: Variation of differences in maximum temperdure for stations Ruzyne and
Ondrejov
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Fig. 10: Variation of differences in number of frog days for stations Klementinum
and Doksany
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Fig. 11: Variation of differences in number of frog days for stations Ruzyne and
Ondrejov

Finally, graphs on Figs. 10 and 11 present vanataf differences in number of frost days.
We can see that also here the differences arefiseymti only for the city centre. But now
the situation is somewhat different. The numbefro$t days generally decreased during
the last 40 years, so the increasing differencésdmn Klementinum and Doksany mean
that the number of frost days in the inner cityrdases more slowly then outside of the
city.

The above mentioned results can be well demondtratel summarized on the graphs
showing the differences of trends of temperaturesvéen Klementinum and other
stations. The columns in these graphs are orde@mtding to increasing distance from the
city centre (Klementinum - 0 km). These graphspmesented on Fig. 12 for temperatures
(average, minimum and maximum) and for number oératteristic days (tropical,
summer, frost and ice). We would expect that tHeuemce of the urban heat island
decreases with increasing distance from the ciyreelt means that we would also expect
to increase these differences in trends with dcggaAs we can see for temperatures it does
so, but with some exceptions. These exceptionsaused by generally inhomogeneity of
the urban heat island in various directions. Fpdibr characteristic days (Fig. 13), the
situation is not as clear or easy as in the casenaperature itself. Generally the number of
characteristic days decreases and this decregsewsng considerable with the increasing
distance from the city centre.
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5. SUMMARY OF RESULTS FOR 1961-2005

We have found relatively large intensification famimum temperatures (0.13-0.15°C/10
years) caused by urban heat island, as well asverage air temperatures (0.06°C/10
years), but only small intensification in maximuemiperatures (0.02-0.03°C/10 years).
The changes in number of characteristic days atevery helpful in the sense of urban

heat island intensity changes. Number of summes dayural station Doksany is similar

to the station Prague Klementinum. This could be tlu special location of Doksany

station that expresses by above-average tempenatdes warm weather conditions. We
could detect increase of tropical days (1 day/l@rge Number of ice and frost days
decreases in the periphery and outside of thefaster than in the inner city. This could be
caused by the influence of building heating, bettattilation, etc.

Finally, let's mention some more general remarksualPrague heat island by other
authors. Huth and Beranova [2] studied Prague sand under different synoptic
conditions. They found that maximum urban heatnlaccurs in summer, whereas
minimum occurs in winter. The highest frequencyidfan heat island occurs under windy
weather conditions with north-northeastern comptmenhe highest intensity of Prague
heat island (about 2.58°C) can be observed und#yalonic weather conditions and
when north-northeastern winds are prevailing. Besidhey have found that long-term
trend of increasing intensity of heat island iswthh2°C/100 years, when the highest trend
can be detected under north-northeastern and southwestern wind weather conditions
(2.2°C) and no trend can be detected under eatitesmtern and west-northwestend wind
weather conditions.

Brazdil and Budikova [3] have studied period of 19295 and they have found positive
and statistically significant trends documentingliaidnal warming of the Klementinum
station with the most conspicuous and significaatming in winter and spring (0.06°C/10
years). It is similar to what we have found for @ge air temperature. This warming is
well correlated with growth of the population (frdb0 thousands in 1850 to 1.2 millions
in 2000), consumption of energy and expansion @bthlt-up area in Prague

6. CONCLUSIONS

We have found well pronounced urban effects ontéingperature time series in Prague,
mainly in the inner city. But we have also founansoproblems that could be caused by
influence of local conditions on measurements @s@ntativeness of location, e.g.
thermometer in Klementinum is situated 6 m aboweigd, closed space of the courtyard).
Another question is the eventual insufficiency ofrtogeneity of temperature time series,
mainly in number of characteristic days. Therefoi@e detailed study should be made to
solve these problems and answer these questions.
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ABSTRACT

During the last decade, the Climate Change Rese@rohp (CCRG) has devoted its
efforts to the compilation of different temperataiaasets for Spain. Following the trends
in global research, our focus has changed from inhptd daily data. The recent release of
the Spanish Daily Adjusted Temperature Ser83ATS Brunetet al, in press) constitutes
a great advance for the analysis of climate changde Iberian Peninsula during the
instrumental era, including 22 long-term statiomssiitable for climate change and
variability analysis.

Our homogenization methodology combines severahigaes for an optimum adjustment
of monthly and daily temperatures. For the adjustnoé monthly data, our scheme relies
on the application of direct and relative homogation techniques. Direct
homogenization is applied to the late 19th centamg early 20th century data, where
almost all the network was impacted by the changenfopen stands (basically
Montsouris) to the Stevenson Screen. In these tiond] relative homogenization proves
to be inefficient, so two replicas of the ancietdnsls were constructed and placed in
Murcia & La Corufia, next to the official StevensBareens of the Instituto Nacional de
Meteorologia. The paired observations recordedgnduaslmost three years, were used to
obtain correction factors for the so-called "scrb@&s", previously to the application of the
Standard Normal Homogeneity Test Daily data is sté by linear interpolation of the
monthly factors.

1. INTRODUCTION

One of the principal needs for climate analysighis availability of high quality and
homogeneous data series. The observed fractidreaflimate data does not only allow us
to describe the last couple of centuries of théegw climate, but also plays a crucial role
in the calibration of proxy records and models. BEoese reasons the reconstruction,
quality control and homogenization of climate tisezies constitutes an important effort to
be overtaken by the climate community.

Many methods have been successfully applied byerdifft groups of scientists to
homogenize annual to monthly values. Translatinghtilg homogenization factors to
daily adjustments is a difficult task (Aguilat al, 2003), although great improvements
have been made recently (for example, Della Meittal, 2006). The CCRG current
approach consists of the interpolation of the migntactors into daily values using the
effective approach described by Vincetal (2002), which efficiently accounts for the
annual cycle between months and allows obtainirgaeably homogeneous series for
most proposes.

The rest of this paper is structured in 4 additigeations. Section 2, describes the Spanish
Daily Temperature Series (Brunet al, in press) and the quality control procedures
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applied; section 3 deals with homogenization procest section 4 discusses our
procedures and makes conclusions; section Slistquoted references.

2. DATA AND QUALITY CONTROL

The Spanish Temperature Series is composed by2hmaaat reliable long-term stations
(see table 1) of daily maximum and minimum tempegatThe longer series start back in
1850, although a few of them do not have data tinéilfirst decade of the 20th century.
Data is kept up to date with new incoming valued #re stations’ distribution permits a
good coverage for the analysis of multidecadal enatjpire variability and change in Spain
(see figure 1).
Although most of the data was kindly facilitated the Spanish Instituto Nacional de
Meteorologia, the CCRG did an important effort aatadarchaeology and digitization,
recovering important sections of the series, thartewost for the climate community until
that time (see Brunedt al, in pres3. The total amount of data now available ads up to
around 2 million maximum and minimum temperaturkeies.
All the ingested data, with independence of itscpdence, was quality controlled with the
application of the following tests:

= Comparison of original source monthly mean and s#tanonthly
mean
Values out of [-50,50]°C interval
Tmax < Tmin
Number of days per year, month
Duplicates
Excedence of 4SD
Interdiurnal differences > 25°C
4 or more consecutive identical values
Excedence of 4SD of difference between candidade@flerence series
Visual comparisons among neighbours
Only a small fraction of data where flagged (0.58%lthough they resulted in a
considerable number of individual checks (rough?0D0). After consulting the original
sources, some 8,000 values were recovered ancctaayeéhe rest remaining unrecoverable
and lost to the series.

R N R

Table 1: Spanish Daily Temperature Series, SDATS.i&t of Stations.

Location Longitude (°) Latitude (°) Elevation (m) erfdod
ALBACETE 01°51’47”.W 3825708 -N 698.56 1893-2003
ALICANTE 00%29°'40” - W 38222°00-N 81.5 1893-2003

BADAJOZ 06°49'45"-W 38°53'00”-N 185 1864—-2003
BARCELONA 02°10'36"-E 41925'05”-N 420.1 1885-2003
BURGOS 038B6'57"-W 42021°22" N 881 1870-2003
CADIZ 06212'37”.W 36227'55"-N 30 1850-2003
CIUDAD REAL 03%55'11”.W 38059'22".N 627 1893-2003
GRANADA 03%37'52"-W 37°08’'10”-N 685 1893-2003

HUELVA 06%54'35".W 37°16'48"-N 19 1903-2003

HUESCA 00°19'35”.W 42°05’00”-N 541 1861-2003
LA CORURAA 08°25'10".W 43°22°'02"-N 67 1882-2003

MADRID 03%40'41" W 40°24°40”-N 678.9 1853-2003

MALAGA 04°-28'57"-W 36°39'57”-N 6.54 1893-2003

MURCIA 01207'14” W 37°58'59"-N 57 1863-2003

PAMPLONA 01°38'21”.W 42°46’06” -N 452 1880-2003
SALAMANCA 05%29'41”.W 40°56’50"-N 789.8 1893-2003
S. SEBASTIAN 02902'22" W 43°18'24” N 251.6 1893-2003
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SEVILLA 05%53'47"-W 37°25'15”-N 31 1893-2003
SORIA 02°29'01”-W 41°46'29"-N 1083 1893-2003
VALENCIA 00%22'52" W 39°28'48”"-N 114 1864—-2003
VALLADOLID 04°-44'35" W 41°38'40"-N 691.4 1893-2003
ZARAGOZA 01°00'29”-W 41°39'43"-N 245 1887-2003

3. HOMOGENIZATION PROCEDURES

The CCRG’s homogenization methodology (see figureelies on the combination of

three different techniques. Direct homogenizatisnneeded to solve a network-wide
problem, the change from ancient screens (mostintdburis Screens) to the standard
Stevenson Screen. This is indispensable to avadutiderestimation of trends in daily

maximum temperatures, as open stands are highlgatag by direct solar radiation.

QCd daily data of TMax

and TMin \ Calculation of Monthly Values of
TMax and TMin ) .
T~ > Screen Bias Minimisation
over monthly series of
Blind break-point detection over annual, TMax and TMin
seasonal TMax, Tmin, Tmean with «—

automated SNHT (1997)
Breakpoint validation (metadata, plot checks, ...)

Application to - Generation of correction pattern

Monthly, monthly Tmax and

Seasonal, Annual Tmin (As described

Tmax. Tmin. DTR in Aguilar et al, 2002)

TMean Series

(STS)\ Validati f
Interpolation to daily data alidationot
(Vinfent etal., 200%/) - dal"y corrected SDTS

values

Figure 1: Homogenization procedures of the CCRG.

To remove the screen bias, the CCRG has built twontbburis-replicas in the
northwestern (La Coruiia) and northeastern (Murctahers of the country, which were
installed in 2003 nearby the Stevenson Screenarotighe official meteorological station
(Brunetet al, 2004). After having an almost 3 years long ddfasarection factors are

derived by regressing Montsouris data to Stevedsta (see figure 2).
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Figure 2: Empirical evaluation of the screen biasn Murcia.

After the screen bias minimization, the relativarslard Normal Homogeneity Test is
applied to the series following the procedure dbedr by Alexandersson and Moberg
(1997), modified by Aguilaet al. (2002). For this propose, a blind run of the testone
for the whole dataset over the time series of anmwerages of daily maximum
temperature, daily minimum temperature, daily manperature and diurnal temperature
range, obtaining a number of possible breakpoifiteese potential inhomogeneities are
checked against the available metadata and grdiyh@salyzed by the inspection of the
data and the z series (standardized differenceandidate-reference series). Breakpoints
are then validated or rejected and a preliminaryrecbion pattern is drawn. The
homogeneousections between accepted breakpoints are teetedrtificial trends by
evaluating the slope of the candidate-referencesefhe definitive correction pattern is
applied to the monthly averages of daily maximurd amnimum temperatures. Diurnal
temperature range and monthly means are derived tfihe homogeneous maximum and
minimum series.

A third step is to translate the monthly factor®idaily factors. This is achieved by the
application of the interpolation described by Vintet al. (2002), which avoids unnatural
discontinuities at the end of the month and presetiie monthly averages. The monthly
factor is assigned to the "L¥lay, and the factors for the rest of the month liaxeally
interpolated. As corrections for daily maximum aagily minimum temperatures are
independent, a reduced number of daily maximum eglare minor or equal to the
corresponding daily minimum temperature. To cortbcs situation, they are forced to
preserve the ration of change of the DTR from thmimal monthly series to the
homogenized monthly series

4. DISCUSSION & CONCLUSSIONS

The CCRG’s procedure for homogenization is a stpvdrd to achieve reasonably
homogeneous values of daily temperatures, suit@blenost climate analysis. Although
we acknowledge that our approach does not include carrection dependent on the
particular weather of the day (i.e. different cotiens should be applied to a sunny and a
cloudy day) we do account for the annual cycle aathcompromising the monthly
average, which is derived from a solid and welleédsfromogenization procedure of annual
to monthly time series.
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Despite of this, our approach allows the use of SBATS in the calculation of extreme
indices (see Brunegt al, 2006; Moberget al, accepted) and its application to other
datasets may improve data availability, and, ofreeuthe analysis. Figure 3 shows an
example of homogeneous indices calculated after dpelication of the CCRG
methodology.
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Figure 3: Annual Index TX90p (% of excedence of thé&0th percentile of the 1961-
1990 reference period).Dashed line: inhomogeneouwdex calculated over the original

data.; solid line: homogeneous index after the remval of the screen bias (1908) and
the inhomogeneity produced by the relocation in 195

In conclusion, the SDATS represents a new toothonate variability and change analysis
in Spain, containing extended, quality controlled domogenized daily records for the 22
stations having the longest series available.
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ABSTRACT

Homogenization of daily meteorological series difficult task. Several kinds of problem
have to be taken into consideration in the coufdgeomogenization: selection of a proper
homogenization method with regard to the data usedation of reference series,
completion of missing values, annual course of stdjents, and others. This paper
presents an attempt to create a homogeneous sérilegly air pressure and temperature
readings in the city of Brno (Czech Republic). Thasic approaches were adopted: (i)
homogenization of monthly series and projection esftimated smoothed monthly
adjustments in annual variation of daily adjustreeand (ii) homogenization of daily
values in individual months and direct estimatidrdaily adjustments, again smoothed by
low-pass filter. Differences in the results obtairfeom these two approaches are further
discussed.

INTRODUCTION

In the recent years considerably more attentionbdess devoted to the analysis of the
daily data widely recorded and stored in databa&e®r to analysis, the need to
homogenize the data and check their quality ariSdsere is no widely accepted
homogenization approach that could be generalinedapplied to various meteorological
elements, different climatic patterns, etc., and will probably never be possible. This is,
for example, due to the fact that the statisticadpprties of daily data and regional
differences between them make general homogenizatidaily values difficult, as well as
involving more demanding data handling. During datacessing, several kinds of
problem have to be taken into consideration. Theselve selection of a proper method
for homogenization with regard to the data used,fulfilling all the conditions necessary
to applying selected tests of relative homogengtg. normal distribution), creation of
reference series (defining selection criteria), pation of missing values, annual course
of adjustments, and others.

Only a few studies, in comparison with monthly emaal data series, have been
devoted to techniques addressing daily values.ekkample, Brandsma (2000) compared
monthly adjustments, daily adjustments derived fraonthly adjustments (using iterative
cubic spline interpolation to preserve monthly athuents) and daily adjustments derived
from weather types. Wijngaard et al. (2003) did mse measured values, but their
characteristics, such as diurnal temperature rargk its annual mean, as well as the
annual mean of the absolute day-to-day differefmetemperature, and the annual number
of wet days for precipitation. Following various rhogeneity tests, these series were
labelled as recommendations for further analysis.
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Mekis and Vincent (2004) derived daily adjustmdndsn monthly adjustments. These
were obtained using linear interpolation between-month “target” values objectively
chosen so that the average of the daily adjustmmrés a given month is equal to the
monthly adjustment. This approach does not regheecreation of a daily reference series
or the identification of inhomogeneities in dailgniperatures. Moreover, finally
homogenized series of daily temperatures are cobdatith homogenized monthly data-
sets.

The present paper is dedicated to the searchgoy@er methodology for daily data-set
handling and its subsequent application to daitypagssure and temperature series for
Brno in the period 1848-2005, with the aim of areata homogeneous series for Brno
with regard to both elements. Although there are,general, no gaps in the Brno
measurements, data are unfortunately not availabla a single site, so it becomes
necessary to combine different series to get om® Beries suitable for further analysis.
The basic Brno stations were tested separatelyrdtative homogeneity and, after
homogenization, they were combined using overlags. All calculation was performed
using AnClim and ProClimDB softwares {8ének, 2006a, 2006b).

1. ABRIEF HISTORY OF METEOROLOGICAL OBSERVATIONS | N BRNO

Meteorological observations in Brno began in 1788 work of Captain Emeritus
Ferdinand Knittelmayer, but his observations fa& pleriod 1799-1812 are preserved only
in the daily averages. For the subsequent year3-1®19, the observations exist only in
the form of monthly averages. On the basis of sdvdaily readings, meteorological
observations were published in the daily newspapééhrisch-Standische Brunner
Zeitung” from January 1820 to December 1847. Insgmars, parallel observations from
two places in Brno were also made. Although montrdiue series for air pressure, air
temperature and precipitation totals have been lgemeed and analysed (Brazdil et al.,
2005), work with daily readings or daily averageguires further research. For this reason,
the analysis provided in this paper works only vd#tta from 1848 onwards.

Meteorological observations after 1848 come fromRaul Olexik (1800-1878), a
physician from St. Anne’s hospital (Fig. 1). He waebably making observations from as
early as the end of 1845, but it was only from 184& his measurements started to be
published regularly in the Austrian Meteorologicékarbooks, i.e. when his station
became part of the network of the Central Meteaicl Institute in Vienna. He observed
at 0600, 1400 and 2200 hours. On 3 December 1853ntréed the point of his
meteorological observations from the hospital (B04.s.1.) a short distance, to his new flat
at Pek#éska Street 100 (219 m.a.s.l.). Meteorological okmteyns at this new site
continued until 30 June 1878. By this time, Gredohan Mendel (1822-1884), abbot of
the Augustinian Monastery and a pioneer genetisias helping to complement Olexik’s
measurements, something he continued alone froolyl1878 in the monastery garden
(204 m a.s.l.) until 30 November 1883. He begat wiandard readings at 0700, 1400 and
2100 hours. Alfred Lorenz (1825-1890), a professothe I. R. Technical University,
continued meteorological observations in Brno fribv@ university building (225 m a.s.l.),
located close to the city centre, from 1 Janua4lintil his death in June 1890. Upon his
death, air temperature and pressure measuremdintidede stopped and no new place for
observation was to be found (Brazdil, 1979).
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Fig. 1. Location of meteorological stations in Brnb1l — St. Anne’s hospital; 2 —
Pekarskd Street 100; 3 -Augustinian monastery; 4 —I. R. Technical University; 5—
Pisarky, waterworks; 6 —Kvétna Street; 7 — Tutany Airport

However, from 1 June 1890 a meteorological stagiotine city waterworks in Pisarl
(204 m a.s.l.) (further as Br-Pisarky) began operations, with a full observa
programme up to 1937 and with air tempere measurements continuing up to 1€
Further meteorological stations in different patBrno were established later, of whi
only the two used in this paper are mentioned. firfse of them was located close to 1
previous station on K&na Streetfurther as Brndkvétna), in the garden of the resea
agricultural institute (223 m.a.s.l.), with obsdrgas from 1 August 1922 to 31 Decem|
1970. The second station (B-Tufany) is located at the Brno airport, sc-east of the
city of Brno (238 m.a.l.), i.e. opposite to all the previously men&drstations, which ai
concentrated in its western part. Observationgestathere on 14 April 1958. For tf
reason, compilation of the Brno daily temperaturd pressure series is made with resj
to this station.

In summary, addressing knowledge of the historytehperature and presst
measurements in Brno from 1848 onwards, with rdsfgebomogenization, it should |
stressed that measuremt

- were provided from different parts of Brno, at dient altitudes

- were provided by different types of instrume

- were provided in different observation terms befamd after 187

- are limited by lack of available overlap for obs#igns predating 18¢
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2. DATA USED

For outlier identification as well asr relative homogeneity testing, other stations \
long+term series in the broad surroundings of Brno vadse used (Fig. 2). A list of ther
with basic characteristics, is given in Table 1. Wéwe used all the measurements, i.e
only daily averagedut also separate series from individual obsermatiours. As ha
already been mentioned, as well as standard olismrsdimes at 0700, 1400 and 2]
hours local mean time, observations were alsoezhwut at 0600, 1300 and 2200 ho
Finally it wasdecided, that all the terms should further be ¢é@ats if they were 070
1400 and 2100 hours in the hope of disclosing ptssnhomogeneities arising out
various observing times during homogeneity testifige original observing hours we
taken nto consideration during decis-making about adjustments of inhomogenei
found.
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Fig. 2. Geographical distribution of stations usedor homogenization of the Brno
series (T —air temperature, P — air pressure)

Table 1. Basic information about sttions used for homogenization of the Brno serie
(station coordinates are given for their last or reent locations)

Air temperature

Station name Latitude Longitude| Altitude Beginning End Observing houi
(N) (E) (m.a.s.l.)

Brno (various places) 49°12| 16°37° 225 1 Jan. 1848 31 Dec. 18897 (06), 14 (13), 21 (2
Brno-Piséarky 49°12"| 16°34° 203 1June 1890 31 May 196B7, 14, 21
Brno-Kvétna 49°12" | 16°34° 223 1 Aug. 1922| 31 Mar. 197®7, 14, 2
Brno-Tutany 49°09" | 16°742° 241 14 Apr. 1958 31 Dec. 20097, 14, 2
Bystrice pod Hostynem 49°241 17°40° 315 1 Sep. 1865 31 Dec. 20p67 (06), 14, 21 (2
Cesky Tesin 49°44° | 18°37° 280 1 Jan. 1885 31 Oct. 19387, 14, 2
HoleSov 49°19" | 17°347 224 1 July 1895 31 Dec. 20097, 14, 21 (22
Jihlava 49°23" | 15°32° 560 27 July 1873 31 Dec. 19347 (08), 14, 21 (2.
Olomouc 49°36" | 17°15° 215 1 Jan. 1876 31 Dec. 19607 (08), 14, 21 (2
Prague-Klementinum 50°05| 14°25° 191 1 Jan. 1775 31 Dec. 20p67, 14, 2
Prerov 49°25" | 17°24° 203 1 Apr.1874| 31 Dec. 19797, 14, 2
Vienna-Hohe Warte 48°137 16°21° 199 1 Jan. 1872 31 Dec. 20p67, 14, 1!
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Air pressure

Station name Latitude | Longitude| Altitude Beginning End Observing hours
(N) (E) (m.a.s.l.)

Brno (various places) 49012 16°37° 225 1 Jan. 1848 31 Dec. 18897 (06), 14 (13), 21 (2
Brno-Piséarky 49°12 16°34° 203 1June 1890 31 Dec. 19807, 14, 2

Brno-Kvétna 49°12 16°34° 223 1 Aug. 1922 31 Dec. 19627, 14, 2

Brno-Tufany 49°09 16°42° 241 14 Apr. 1958 31 Dec. 20097, 14, 2

HoleSov 49°19 17°34° 224 1Jan. 1961 31 Dec. 20067, 14, 2
Prague-Klementinum 50°05 14°25 191 1 Aug. 1787 31Jan. 2002 14

Vienna-Hohe Warte 48°13 16°21° 199 1 Jan. 1872 31 Dec. 20067, 14, 1!

The correlation coéitients for both elements analyzed are high enofaghall stations
involved (Fig. 3). Their values were calculatednfroriginal data (not from series of fii
differences), so they are biased by inhomogenattiesshift (the values would otherwi
be higher) and also by trends (the values would beetowthe trend were removed frc
the series). Correlations of monthly averages myleen than those of daily averages dut
the winter months, while the opposite holds in sanme. the correlationsf monthly
averages drop below the values of daily data. Rfumit follows that both monthly ar
daily data should be used for data homogenizatdaly data are more sensitive
inhomogeneity detection, especially during the smmonths

200 —— Air pressure, daily S Lo Air temperature, daily
0.95 1 Tk [] 0.95 00700 @1400 m 2100
0.90 - 0.90 -
0.85 - 0.85
0.80 1 080 1
0.75 0.75 1
GRGRIL BRI BRI RELREL BEL REL BRI RILBAL HEL HE 0.70
J FMA M J J A S O N D J FMA M J J A S O N D
100 o Air pressure, monthly _ 100 Air temperature, monthly
095 | | M T - 095 {[TH [HI . T
0.90 0.90 -
0.85 - 0.85
0.80 - 0.80 -
0.75 4 0.75
0.70 e L 1 Ue 1 Ue e 0 LU Lo e e L L 0.70 +-Ha LI Ll L L
J F M A M J J A S O N D J F M A M J J A S O N D

Fig. 3. Medians of correlation coefficients for all pas of stations, for daily and
monthly air temperature (50 values) and air pressue (6 values— without Prague-
Klementinum at 1400 hours

3. HOMOGENIZATION

Homogenization includes the following steps: ction, verification and possib
correction of outliers (extreme values), creatidirederence series, homogeneity tesi
(various homogeneity tests), determination of inbgeneities in the light of test resu
and metadata, adjustment of inhomogees and filling in missing values (Fig.
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Fig. 4. Planof the homogenization proces

3.1 Outlier identification

Data quality control was carried out in two waystims study: (i) by applying limit
derived from interquartile ranges (either to indial series, i.e. absolutely or, better,
difference series between candidate and referargessi.e. relatively), (i) by comparir
candidate station values to values from neighbtaiross.

In comparisons with neighbour stations, the fivetleorrdated series were select
(correlations calculated from series of first diffieces— see e.g. Peterson, 1998),
values of correlation coefficients being at leasiOf no limit for distance or altituc
difference has been applied. Only series witl same observation hours were selec
For the evaluation of outliers, various charactess were considered. A count
statistically significant different neighbours (cpaned to candidate station) exceeding
confidence limit (0.95) was evaluated means of difference series (neighbour mi
candidate station), for each month individually.s€=a in which more than 75%
neighbours differed significantly from the basetista values were checked visually.
help in establishing the nature of thetliers, the values of neighbours were standarc
with respect to candidate station average and atdndeviation and a new (theoretic
value for the candidate station was also calcul— as a weighted average from 1
standardized values of the nhbours. Further, the coefficient of interquartémges (q7—
g25) above q75 (or below g25) were evaluated (tatied from the standardized neighb:
values), and applied to candidate station value. rElason for this was to assess simil¢
of neighbou values used with regard to test value: the maees of neighbours a
similar, the higher is the value of the coeffici

The final decision on removing outliers was basedhe percentage of the count
significantly different neighbours, differce from “expected value”, coefficient
interquartile range, and finally by visual (subjeej comparison of the standardized val
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of neighbours with the candidate station valueg. Bishows an example of the output
decisionmaking about outlie.

Id “rear [Momh] Day [St_base]  Rernark St 1] stz2]|sts|st4|sts Jex]Ec Jst 1 _bdst 2 bict 3 HsSt 4 (St 5| Exoect val |-

| ¥ 315.0|Alitudes limits | 282.0] 203.0) S62.0( 2150) 199.C
CQ1TESIO_T_07:00 st_1, distance | 111.7 b
QO3*REROM_T_07:00 st_Z, distance 29.0
BZJIHLI1_T_07:00 st_3, distance 2371
QZILk_01_T_07:00] st_4, distance 508
BEYHOAHD _T_07:00 st_5, distance 192.€
B1BYSHO1_T_07:00 | 1886 1 1 13.6 6.7 128 -11.58] 100] 111 1123.0 6.9 -12.9] -11.3[ -9.9[131 -11.9
B1BYSHO1_T_07:00 | 1886 1 2 7.4 -2.4 -7.2| -1.0f -68| 10 1123.0 -3.0 -7.3| -0.5] -B.T7[124 -7.0
B1BEYSHO1_T_07:00 | 1886 1 3 1.6 2.6 1.0 1.8 149 4.7 1.4 0.9 2.4 2.0( 38 1.2
B1B¥SHO1_T_07:00 [ 1886 1 4 2.0 3.4 0.9 1.5 22 1.1 2.2 [IR:] 2.1 2.3) -01 1.2
B1B¥SHO1_T_07:00 [ 1886 1 5 4.4 4.4 3.7 4.5 20 0.1 112310 3.1 3.6 5.2 21]-11 3.2
B1B¥SHO1_T_07:00 [ 1886 1 =] 1.6 2.6 0.6 149 06 3.7 1.4 0.5 1.4 07 27 0.6

Fig. 5. Example of output with auxiliary characteristics for quality control evaluation

In some cases, in which at least two neighboursewet available, interquarti
ranges for each individual month of the candidatées were applied (i.e. abstely) and
the errors emerging were checked. This method lasiderably inferior results i
comparison with the relative method, but no othessibility existed for cases in tl
distant past.

3.2 Homogeneity test

As well as monthly, seasonal and anraverages, series of daily data were also teste
this case we used all days of a particular monthfarther an aggregation of “seasons
year” calculated from the first days of all montlise second days, etc. (see Fig.
Although such “aggregatseries cannot be used for common time serieg/sisabecaus
the time is “cracked”, it can be very useful foetpurposes of finding discontinui
(seasonal to annual resolution), while originallydaalues, even when used only witt
particular montk, can suffer from annual course (this is the éaisair temperature rath:
than air pressure, mainly in winter) and normaltysometimes on the border of the C
significance level. Using the aggregates over seasmd year leads to series for wl
normality is fulfilled without problems, and thanks lower signeto-noise ratio this
approach is better for detecting real inhomogesmitin the series. Significa
autocorrelations within a number of first lags (slagppear to present a larger pem and
have to be further investigated. Series are monesigtent in winter with stronge
circulation effects, rather than in summer withptsvailing radiation factor:

_Iolx
vealDay  [wtHl [ [vivin Jixexl [ieil [ o
192427 68 115 133 98 71
s o1 fi0z 43 len e |y
192428 41 110 138 B2 70
192430 missing 9.2 16.5 6.5 missing

1924 31 missing missing missing missing missing
1925(1 12 5.9 1589 1049 8.6
19252 -0.0 5.2 160 111 8.2 Ll

Fig. 6. An example of using daily data for homogety testing

Several relative homogeneity tests (significance level 0.05) wereedusthe
Alexandersson Standard Normal Homogeneity Test SKid@&xandersson, 1986, 199!
the Maronna and Yohai bivariate test (Potter, 19818 Pettit test (Pettit, 1979), tt-test
(Mitchell et al., B66) and the Easterling and Peterson test (Eagjerfeterson, 199&
Tests were applied to 4@ar sections of the series tested for monthlyages and -
years series of daily data because the altern&ypothesis of the Alexandersson ¢
bivariate tests assumes the presence of only one inhomogeane#t series (we applie
SNHT for a single shift). Series longer than 40rgeasere divided into several parts w
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an overlap of ten years (or five years for dailyajlaThis is important in the light of
tendencies to overestimation of detected inhomadgesenear the ends of series (see
Alexandersson, 1995). Reference series were creafearately with respect to each 40-
year (30-year) parts of a candidate series (thignsevith its own selection of neighbours
in each part). For daily data, 185 sections ofesefof 49 original elements-terms-stations)
were created and tested.

The use of series with durations of 40 and/or 3@ryeseems to be reasonable for
homogeneity testing. Shorter series would not beswgtable from a statistical point of
view, while, on the other hand, longer series Uguantain more than one inhomogeneity
(the typical duration of a period with one inhomoggy does not usually exceed 30-40
years — see e.g. Auer et al., 2001).

To ensure that only one inhomogeneity detectedhleyAlexandersson or bivariate
tests was present in a series, a further modifinatvas introduced into the AnClim
software. The series was divided at the positioa detected inhomogeneity and sections
before and after it were tested separately. If tieroinhomogeneity was found, we can
rely on the results of the given test for the whigdegth of the series (especially the
significance of a test statistic).

3.3 Reference series creation

Reference series were created in two ways: (ivanage from the best correlated stations,
(i) an average from nearest stations. Correlatioefficients used for station selection
were calculated from the series of first differesyo@hen inhomogeneities are manifested
in the only value (see e.g. Alexandersson, MohE9§6; Peterson, 1998). Various types of
reference series with analysis of their advantagesdrawbacks have been discussed, for
example, by Spanek (2005).

The values of correlation coefficients were nobwkd to drop below 0.60 between
neighbour stations (selection by means of cor@itand no distance or altitude limits
were applied as additional conditions for air pueesand temperature. Weighted averages
were calculated using correlations and/or recidreabues of station distances as weights.
Values of selected neighbour stations were stamtdo candidate station average and
standard deviation to avoid problems with biasderemce series. This can often happen in
the event of missing data in one of the neighbeues. The standardization was done for
each particular month individually (also for dadgta). No transformation of values has
been applied to the data.

In the first stage, a list of proposed neighbouwtishs was obtained, which was
subsequently checked and its approved version hes finally used for the reference
series calculation.

3.4 Assessment of detected inhomogeneities

The main criterion for determining a year of inhayaneity was the probability of the
given inhomogeneity, i.e. the ratio between thentai detections for a given year from
all tests for the given station (using all typesreference series, tests, daily, monthly,
seasonal and annual series) and the count ofealtelically possible detections. The count
of detections for groups of years was also takén actcount (some inhomogeneities
started in the course of the year and thus werefesaed in at least two years). If metadata
did not confirm the detected shift (in most caséisg percentage limit of all possible
detections was taken higher and some other infeomét.g. distribution of the given year
within individual months or seasons, graphs ofettéghces with reference series and some
other characteristics) was required to decide wdrethe undocumented inhomogeneity
could be regarded as “indubitably” proven and cquosetly corrected. For assessment of
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the inhomogeneities detected, the Real Precisidexi{RPI — see Petrovic, 2004) may
also be applied to find sections of series thatilhchange in the quality of
measurements.

3.5 Adjustment of inhomogeneities

Adjustment of inhomogeneities detected was adddebgemeans of the reference series
calculated from the average over the five statiwith the highest correlation coefficients
with the series being adjusted (correlations wexdeutated again from the series of first
differences). The adjustment value was estimatedhasdifference between averages
calculated from difference series between the deatel the reference series. The start of
inhomogeneity was allocated to a particular monthefe this was possible).

When dealing with daily data, there are severalr@gghes to adjusting data for
inhomogeneities detected. We may use either mon#dpstments which can be
distributed into individual days (e.g., Mekis andn&ent, 2004) or we can calculate
adjustments for daily data directly.

Using monthly data in this paper, the estimatedviddal monthly adjustments were
smoothed by low-pass filter (weights applied toaadpt months were approximately 1, 2,
1) to suppress the influence of random errors ensttries (the effect of smoothing results
in a more realistic annual course for the adjustsjen line with what is better physically
justified). The monthly adjustments obtained wdrent distributed (interpolated) among
individual days and the final daily adjustmentsajagpossibly smoothed to eliminate the
edges of lines occurring each month) were theniegpd data.

In the second case, the daily adjustments differessries (reference and tested) for
each day of the year were used, taking 20 yeawdeind after the change. Final daily
adjustments were then smoothed using a low-pdss fiilr 60 days (to each side).

Various characteristics were analyzed before apglyhe adjustments: increment of
correlation coefficients between candidate andreefee series after adjustments, change
of standard deviation in differences before andratie change, presence of linear trend,
etc. In the event of any doubts, the adjustments wet applied.

3.6 Further considerations

The above-mentioned steps were performed in seiterations. At each iteration, more
precise results were obtained. Missing values \ikee in only after homogenization and
adjustment of inhomogeneities in the series. Tlasar for this was that the new values
were estimated from data not influenced by possshiés in the series. Moreover, when
missing data are filled in before homogenizatidmyt may influence inhomogeneity
detection in a negative way. The gaps were fillgdrieans of linear regression between
filled value series (dependent variable) and aresige series (independent variable),
separately for each month. For assessing the gudlihe process, various statistics were
monitored, e.g. differences of averages and stdndiaviations in periods before and after
the gap.

4. HOMOGENIZATION RESULTS

As has been shown above, the values of correlatefficients for daily data (using each

month individually) are comparable with values gairfrom monthly averages. The same
holds true of correlations between tested and eater series. The medians of correlation
coefficients for monthly air temperature range frér@7 in the summer months to 0.98 in
the winter months for individual observation houegjain the results at 1400 hours
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correlate the best. For daily data, the correlatimn individual months range from 0.87 to
0.95. For air pressure, daily data correlates betw@97 in summer and 0.99 in winter,
monthly data between 0.94 and 0.99.

From these results, it follows that it is worth wiog with daily data in the course
of homogenization, even if it is more demanding pared to “simple” monthly averages.
By employing daily data we have longer series 281 times, depending on number of
days in a particular month) and we can then aldtetbédetect shifts near the end of the
series (not resolvable for monthly averages withaks of less then five years to the end of
series). Fig. 7 gives count of inhomogeneities detefor daily and monthly series by the
Alexandersson test with reference series createddans of correlations.

100 100
Air pressure, monthly Air pressure, daily
80 80 -
60 - 60 4
40 | 40
20 20 4
0 0 : e N :
J F MA M J J A S O N D J FM A M J J A S O N D
100 100
Air temperature, daily Air temperature, monthly
80 - 80 -
00700 @ 1400 m 2100
60 60 4
40 40 |
X
20 20 |
0 4 0
J F M A M J J A S O N D J F M A M J J A S O N D

Fig. 7. Percentage of inhomogenities in air pressarand temperature series for daily
data and monthly averages, detected by the Alexandson test, related to the total
number of series used

The annual course of numbers of inhomogeneitiesvident from the figure, as are the
differences between air pressure and temperatacings, as well as observation hours.
The large difference between monthly- and dailyeblagetections is, among other things,
due to the fact that in the Alexandersson testsimges is divided into sections in the
position of each detected break. Since the sepatam more members, we are able to
detect relatively more inhomogeneities (mainly e shorter sections). In this sense, the
numbers between daily and monthly series are nwmipagable. But the aim was to show
that during homogenization we should try to usenmfation that is as dense as possible,
using daily data, individual observation hours, etc

The advantages of using daily data mentioned abov@pparent from the example in
Fig. 8. In the event of missing values and breaa the ends of series it is more difficult
to detect inhomogeneities in the series if one waevikh only monthly data.
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Fig. 8. Differences between tested and referenceries for daily (left) and monthly
(right) data for Brno, air temperature at 0700 (06M) hours, July 1873—-1902

4.1 Homogenized pressure and temperature seriesBfno

The creation of homogenized air pressure and teatyser series for Brno covering the
period 1848-2005 consists of several steps. Rinst,individual series for the different
Brno stations (Brno stations before 1890 & BrnoaRdg, Brno-Kwtna, Brno-Tdany — see
Chapter 2) were homogenized according to the methgg described in Chapter 4. In the
second step, a common compiled Brno series wadajmee by adjusting the individual
parts. Starting from the recent observing statioBrao-Turany (reference station, 1958—
2005), Brno-K¥tna data were adjusted to its measurements tornobtaseries for the
period 1923-2005. In the next step, the Brno-Pisététion was adjusted to the combined
Kvétna-Turany reference series to obtain a series for thieg&890-2005 (Fig. 9). This
approach was applied separately for each obsenviatie (0700, 1400 and 2100 hours).

Air temperature

06,14,22  07,14,21 06,13,21 term
Brno (various places) 1848 1590 period
- 07, 14,21
Brno — Piséarky "
1890 1962
_y 07, 14,21
Brno — Kv étna
1922 1970
Brno — Tu fany 07, 14,21
1958 00!
Air pressure
06,14,22 07,1421 06,13,21 term
Brno (various places) 1828 1490 period
_ 07, 14,21
Brno — Pisarky
1890 1937
T 07, 14,21
Brno — Kv étna
1922 1962
Brno — Tu fany 07, 14,21

1958 2005

Fig. 9. Scheme of creation for the series compildmy combining measurements from
several locations in Brno

The principle of combination used for the indivitllgrno stations is identical to that
employed for adjustments of inhomogeneities applted data in the course of
homogenization. Two approaches may be selectedthateises monthly averages or one
that works directly from daily data. The only diéace is that final offsets are not
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computed by comparing periods before and aftectiamge; in this case we use the whole
period in common (shortened to 20 years if it i3ger). The overlap periods vary from 5
years (air pressure) or 13 years (air temperatnrébe first round to 15 years (air pressure)

or 20 years (air temperature) in the second round.
Fig. 10 gives an example of when final adjustmerdhtained either from monthly

averages or through direct use of daily data. dtveeappropriate to calculate adjustments
from daily values using a low-pass filter for 60ygaor, leading to the same results, using
a low-pass filter for two months and subsequentstritbuting the smoothed monthly

adjustments into daily values.
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Fig. 10. Annual variations of adjustments applied @ air temperature series at 1400
hours for Brno-Kvétna to the reference station Brno-Titany: a) monthly-based
approach (1 — raw adjustments, 2 — smoothed adjusints, 3 — smoothed adjustments
distributed into individual days), b) daily-based aproach (4 — individual calendar
day adjustments, 5 — daily adjustments smoothed bipw-pass filter for 30 days, 6 —

for 60 days, 7 — for 90 days)

The values measured at different observation haxtsibited quite different annual
variations of adjustment, making it useful to wavikh them directly, and not just with
calculated daily averages. For example, dependintp® formula used for the calculation
of daily averages, real inhomogeneities may be ethtthere.

A fully compiled series for the period 1848—-2005svegain tested for homogeneity
as a whole. Finally, homogenous Brno pressure amgpérature series for 1848—-2005 at
0700, 1400 and 2100 hours were obtained, from wbarhesponding daily and monthly
averages were calculated. Fig. 11 shows fluctuationannual averages both for the
compiled homogeneous Brno series and the origieaés from the various places, in

which it was derived.
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Temperature ()

Fig. 11. Fluctuations of annual averages of air teperature series at 1400 hours (1 —
compiled Brno series, 2 — Brno—various places andriiBo-Pisarky, 3 — Brno-Kvétn4a, 4
— original Brno—Tutany, 5, 6, 7, 8 —series smoothed by Gaussian lowspdilter for 10
years)

5. CONCLUSIONS

This work was carried out in quest of a proper méthogy for daily data homogenization
and made an attempt to apply it subsequently tly dai pressure and temperature series
for Brno in the period 1848-2005. Different methdds the homogenization of daily
values were sought, and finally applied to find glboke inhomogeneities and to obtain
adjusted, homogeneous series. Although furtherstiy&tion in this matter is required,
progress so far may be summarized as follows:

(i) Two basic approaches, based on the homogenizatfi monthly series and
projection of estimated monthly adjustments intsraoothed annual course of daily
adjustments, or homogenization of daily valuesrafividual months, estimating proper
adjustments for each calendar day with smoothipgsédents, can be used.

(i) The same final adjustments may be obtainedhfeaither monthly averages or
through direct use of daily data. For the dailyxes-based approach, it seems reasonable
to smooth them with a low-pass filter for 60 dalise same results may be derived using a
low-pass filter for two months (weights approximgte:2:1) and subsequently distributing
the smoothed monthly adjustments into daily values.

(i) The values of the correlation coefficientstlveen the candidate and reference
series for daily data (working with each month wuidiially) are comparable with values
gained from monthly averages, although daily dataleetter in some months, monthly
data in others. For this reason, a combinatiorott pproaches in (i) is useful.

(iv) It is profitable to analyze series of indivaluobservation hours because
inhomogeneities manifest in different ways withireit series — this is the case for the
number of inhomogeneities detected, the value aingh, the correlations between
reference and tested series (and thus detectalolitinhomogeneities) and other
characteristics. Series of daily averages can sasveomplementary information in the
course of homogeneity test evaluation. For inhomegg assessment, we recommend the
use of as much information as possible.

(v) The data processing in this work has been dignmeans of LoadData software
(application for downloading data from central daise, e.g. Oracle), ProClimDB software
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for processing whole datasets (finding outliersnbming series, creating reference series,
preparing data for homogeneity testing, etc.) an@lin software for homogeneity testing
(http://www.klimahom.com/software). Further develognt of the software, e.g.
connection with R software, is to be assumed.
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DEVELOPMENT OF MASH HOMOGENIZATION PROCEDURE
FOR DAILY DATA

Tamas Szentimrey
Hungarian Meteorological Service
szentimrey.t@met.hu

1. INTRODUCTION

The MASH procedure was developed originally for log@nization of monthly series. It is
a relative method, and depending on the distributibexamined meteorological element,
additive (e.g. temperature) or multiplicative (epgecipitation) model can be applied. In
the earlier program system, MASHv2.03, the follogvisubjects were elaborated for
monthly series: series comparison, break point rgpoint) and outlier detection,
correction of series, missing data complementingoraatic usage of meta data and last
but not least a verification procedure to evaluaéehomogenization results.

The new version, MASHv3.01, was developed for hoemizption of daily series as well
as for quality control of daily data and missingilyadata completion. During the
procedure normal distribution is assumed, there&brihe present version of the software
additive model can be applied, that is appropeate for temperature elements.

2. RELATION OF DAILY AND MONTHLY HOMOGENIZATION

The alternative possibilities are as follows:

— To use the detected monthly inhomogeneities tyréar daily data
homogenization.
— Direct methods for daily data homogenization.

The problems connected with the possibilities:

— The direct usage of the detected monthly inhomeigies is probably not
sufficient.

— Direct methods for daily data homogenizationr@bpably not enough efficient
thinking of the larger variability (less sigrialnoise ratio).

So we have the following question:

How can we use the valuable information of deteatedthly inhomogeneities

for daily data homogenization?
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3. THE ADDITIVE MODEL OF RELATIVE METHODS

Relative methods can be applied if there are mtmgos series given which can be
compared mutually.

3.1 Additive model for daily values (e.g. temperate)

In case of relative methods, the additive modelrfare daily series in a small climate
region is as follows,

X#(y,m,d) = p(y,m d)+E*(m.d)+IH *(y,md)+e*(y,md) (1)

where the notations arej: station, y : year, m: month, d: day,

furthermore,u(y, m,d) is the common and unknown climate change sigEéfI(m,d) are
the spatial expected valueld (y,m,d) are the inhomogeneity signals aad(y, m,d)

are normal white noise series. As concerns the d)jp,e(y, m,d) there is no assumption
about the shape of this signal.

3.2 Additive model for monthly means

From daily model (1) can be obtained the followmgdel for the monthly means,

X (y) = tn(y) + E7 +IH 3 (y)+7(y) 2

where the means are X (y)= X*(y,m), u,(y)=uly.m), Ex(y)=E*(y,m),
IHa(y)=1H=(y.m), £5(y) =% (y.m),

and ,um(y) is the common and unknown monthly climate charigeats, E; are the

monthly spatial expected value$ ,ff(y) are the monthly inhomogeneity signals and
st

En (y) are normal white noise series. There is no assampbout the shape of signals

,um(y) and the type of inhomogeneity signals is in gdreesdep-like function in time with
unknown break points and shifts.

4. USAGE OF ESTIMATED MONTHLY INHOMOGENEITIES FOR D AILY
HOMOGENIZATION
4.1 Possibilities and problems

Direct methods for daily data homogenization a@bpbly not enough efficient owing to
the larger variability that means less signal ts@atio. However the direct usage of the
detected monthly inhomogeneities for daily homogeation is probably not sufficient.
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Let us assume that we have the estimatibif'(y) with good quality for the monthly

mean inhomogeneitiet *(y) = IH *'(y,m). It is valuable information but the direct usage

of such step curve for daily homogenization mayhwblematic, as it can be seen in Fig.
1. Consequently the question is how can we obtgpraopriate smooth estimation

IH*(y,m,d) for daily inhomogeneitiesH*(y,m,d) by using the estimated monthly

inhomogeneitiedH *(y)?

Estimated Monthly Inhomogeneities for a year
15

1

0.5

0

31 211 241 27 331 361

-0.5

-1

-15

-2

25 e

-3

Fig. 1. Example for estimated monthly ihomogeneitefor a year

4.1.1 Smoothing according to the method of Vincerst al.
According to Vincent et al. (2002), (Mekis, 2006 tfollowing condition is given for the
daily inhomogeneity estimatiorH St(y, m, d).

The condition for the monthly means st SI(Y, m) = Iﬁ;t(y).

It seems to be a natural condition if we think te equality of IH *'(y,m)=IH (y),
however it is possible that too strong inhomogee®itnay be obtained occasionally.

4.1.2 Smoothing according to the MASH method

Let us consider another train of thought. Let us$ fooget that the monthly estimates,
IH(y), are not real values, these are estimated vahigstus stochastic variables. We

have to be aware that to know the réldlﬁ(y) Is impossible. Consequently the monthly

estimatesll—]rff(y) may be modified, but the modification must be colfed of course.The
essence of the applied procedure is as follows.
i, Smooth estimationH St(y, m,d) for daily inhomogeneities by using the

monthly estimatesH ,ff(y) with a not too strong condition, e.g.:
[, : 1H = (y, m,d,) = IH*(y)
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ii, Test of hypothesis to control the new monthdyimations which are the monthly means
of daily estimationsH *(y,m,d): IH3(y):=1H*(y,m)
Fig. 2. is an illustration of smoothing applied@ASH method.

Smoothed Monthly Inhomogeneities (Estimated Daily Inhomogeneities)

1
0.5 }
o 4

31 61 151 181 211 241 27 331 361

Fig. 2. Example for smoothing of monthly inhomogeeities

4.2 The MASH procedure for daily data homogenizatio

The algorithm of MASH for daily data homogenizatisras follows.
1. Monthly meansX *(y) from daily data X *(y,m,d).

2. MASH homogenization procedure for monthly ser)'eﬁ(y) ,
estimation of monthly inhomogeneitie$i ;‘(y)

3. On the basis of estimated monthly inhomogerseitié ,ff(y),
smooth estimation for daily inhomogeneiti¢is:*(y, m d).

4. Homogenization of daily data:
X (y,md)=X*(y,md)-1H*(y,md).

5. Quality Control for homogenized daily daka*(y, m,d).

6. Missing daily data complementing.

7. Monthly means)?,ff(y) from homogenized, controlled, complemented
daily data X *(y,m,d).

8. Test of homogeneity for the new monthly serhzsf(y) by MASH.
Repeating steps 2-8 withX(y), X*(y,m,d) ifit is necessary!

The procedure includes also quality control (QQ) amssing data completion for the daily
data.
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5. INTERPOLATION TECHNIQUE USED FOR QUALITY CONTROL (QC) AS
WELL AS DATA COMPLEMENTING

In this session the mathematical background of &pplied interpolation technique is
presented. Let us introduce the following notations

5.1 Notations

Daily data for a given month:

X, (t)ON(E; (). D,(t) (j=1.,M stationt=1,...30)
Candidate dataX (t) , and reference data, (t) (i # j).
Interpolation of the candidate data:

X, (t)=2,0(0)+ >4, ©)X () where >, (t) =1.

i%] i)
RMSE (t)
D, (t)
The optimum interpolation parametess? (t), A(t) (i # j;t =1,..30) which minimize
RMSE (t) are uniquely determined by the expectations, stahdieviations and the

correlations. However we have the problem how we estimate these necessary daily
statistical parameters.

RMS error and representativity valueRMSE (t) , REP(t)=1

J

5.2 Assumptions for the daily statistical parametes
i, E(t)-E()=e;, D,t)/D(t)=d, . (i#jt=1.30
i, corr(Xh(tl),ij(tz))= re M (j,.j,=1..M;t,,t, =1,..30)

ry, - correlation structure in spacey; : correlation structure in time
= Partial corr..cort, (X, (). X, (t,)) = corr, (X, (). X, (t,)=0

S

5.3 Statements

If the assumptions i, ii, are fulfilled then
Fp)= A, AP ()= A7, REPY()= REP™ (1=1..30)

i
where A%y, AT, RER™ are the optimal parameters of monthly interpotat
)%j(t):AjO-l-z/‘ji)zi where ZAH =1

i] i#]
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5.4 Consequences
The monthly statistical parameters can be usedduy interpolation.
i, Data completion based on interpolatiof; (t) = A% + > A%'X, ()

il
izj
i, Quality control can be based on the followingrslardized error:
X (t)- X, (t)
Z,(0)= D, (t])(l— Répf’m
J J
where A%, A%, REP™ are the optimal parameters of monthly interpotgtand D; (t)

is the daily standard deviation.

) O N(02)

6. TEST OF HYPOTHESIS FOR THE STANDARDIZED ERROR SERIES

The standardized erro&(t)IN(01) ( t =1,..,n) if data have good quality.

But we have the problenP:( max\Z(t)\ < zj depends on the autocorrelation.
t

6.1 Statement

i, If z(t)(t=1.,n)is a Markov process, furthemore
i, Pl1z)|<z||z(t-1)|<z)=P([zlt)|<z) (t=2..n),
then P( mflx\z(t)\ < zjz |j P 1z(t)<z).

Example: If Z(t) ( t =1,..,n) is a normal AR(1) process then i, ii, are fulfille

6.2 Decision according to test of hypothesis

The dataz(t) is wrong if and only if |Z(t)| >z, where critical valug, is defined by the
significance levelp (e.g.: p=0.01) as,

p( maxz(t) <, )2 (20(z,)-1)" =1-p |

where ®(z) is the standard normal distribution function.

6.3 Multiple QC for daily data

More standardized error series are examined withootmon reference series in order to
separate the wrong data of the candidate statiome€ion of the wrong data can be based
on confidence intervals.
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7. EXAMPLE FOR APPLICATION OF MASH FOR DAILY DATA

Examined data: daily temperature series (1901-19%03tations in Hungary.

Temperature element: (max+min)/2. The homogeniagtiocedure 4.2. was implemented
and some patrtial results are presented in Talile3,,

Table 1. Partial results of Quality Control for dally data (output ERROR.RES)
Detected errors in Septenber 1903 at Station 10

stl st2 st3 st4 st5 st6 st7 st8 st9 stl0
1903 91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -3.4
1903 92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.2
1903 93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0-3.1
1903 94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.0
1903 95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.6
1903 96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.7
1903 9 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4.9
1903 98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0-2.9
1903 910 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -21.8
1903 9112 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.5
Original Data
1903 9 1 20.5 17.1 20.0 17.5 21.0 18.1 18.7 19.5 19.3 12.3
1903 9 2 19.8 17.9 20.8 15.5 21.5 14.9 18.4 19.3 20.2 13.2
1903 9 3 19.1 17.3 20.8 15.5 21.3 15.8 18.5 17.2 17.5 11.3
1903 9 4 19.7 17.5 19.8 15.3 19.0 15.8 18.8 19.2 17.2 10.4
1903 9 5 20.3 17.8 20.5 16.0 21.0 17.4 19.3 20.4 17.8 13.2
1903 9 6 20.9 18.7 21.3 17.3 20.0 18.6 19.9 21.4 18.8 13.8
1903 9 7 22.9 21.5 22.5 17.8 22.0 19.5 18.9 23.6 19.0 13.9
1903 9 8 22.5 20.9 25.0 19.0 23.0 19.8 19.1 23.5 19.5 15.5
1903 910 17.7 18.4 17.0 13.8 13.6 19.0 14.3 18.9 13.7 12.7
1903 911 16.5 13.7 18.3 11.8 14.5 13.5 13.1 18.8 14.1 6.2
Longterm neans in Sept enber

16.7 15.9 16.2 14.9 15.9 15.5 14.6 17.0 14.7 16.6

Table 2. Verification results for the annual seris (output MASHVERI.RES)

TEST STATI STICS for ANNUAL SERI ES (OQUTPUT of MASH)
Critical value (significance level 0.05): 20.53
1. Test Statistics Before Mnthly Honpgeni zati on

Station TSBM Station TSBM Station TSBM
4 317. 85 6 241. 41 2 155. 04
9 127. 66 7 91. 66 10 68. 36
1 62. 55 8 61. 84 5 42. 06
3 15. 82 AVERAGE: 118. 42

2. Test Statistics After Mnthly Honopgeni zation

Station TSAM Station TSAM Station TSAM
7 28. 64 5 25.11 9 22.73
4 18. 52 1 18.12 8 15. 26
6 14. 96 2 14.82 10 12. 41
3 10. 26 AVERAGE: 18. 08

3. Test Statistics After Mnthly&Daily Honbgeni zation

Station TSAMD Station TSAMD Station TSAMD
7 28. 89 5 25. 40 2 25. 06
9 21.98 1 17. 60 4 16. 52
8 15. 23 6 14. 66 3 9. 69
10 9. 00 AVERAGE: 18. 40
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Table 3. Average of verification results for the mnthly series

AVERAGED TEST STATI STICS FOR MONTHLY SERI ES (10 Stations)

Average of Test Statistics Before Monthly Honpgeni zation: TSBM
Average of Test Statistics After Monthly Honpbgeni zati on: TSAM
Average of Test Statistics After MonthlyDaily Honbgeni zati on: TSAVD

MONTH TSBM TSAM TSAMD
1 28.5 12.0 12.1
2 21.1 16.6 17.0
3 41. 2 24.0 22.4
4 73.7 17.5 17.8
5 82.1 15.7 13. 4
6 100. 7 14. 7 12.5
7 84.5 16.1 14. 2
8 61.7 16.0 14. 3
9 131. 4 12.9 13.1

10 56.3 14.6 16.0
11 38.9 10. 4 11.2
12 34.5 18.7 20. 4
SP 90. 6 19.9 20. 2
SuU 92.6 18. 7 17.2
AU 101.3 17.1 19.6
W 32.1 18.3 16.6
Y 118. 4 18.1 18. 4

Critical value (significance level 0.05): 20.53
Test statistics (TS) can be conpared to the critical value.
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TESTING OF HOMOGENISATION METHODS PURPOSES, TOOLS,
AND PROBLEMS OF IMPLEMENTATION

Peter Domonkos
H-1155 Budapest, Vasvari P. u. 5, Hungary
Tel: 36-209911774
dpeterfree@freemail.hu

1. INTRODUCTION

There has been a large number of homogenisatiomotetdeveloped in the latest decades,
for correcting observed climatological time seridswever, only few papers analyse their
practical efficiency with comparative tests. Theliea test proceduresEgsterling and
Peterson 1995; Ducré-Robitaille et al., 2003;Syrakova 2003; Sepanek 2004) were
applied on relatively few homogenisation methodsd dhe degree of similarity of
statistical properties between observed and siedldata sets were hardly or not at all
examined.

In my opinion a high degree of similarity betweée simulated and observed time
series must be implemented, otherwise any testiediwoe may bring misleading results.
As the properties of observed climatological tinegies are quite diverse, and even the
same homogenisation procedures may be applied dvitbrent parameterisations and
supplementary parts (e.g. in relation to filtermglier values or automatic consideration of
metadata), it is not a simple task to construaadly usable comparative test procedure. In
this paper some principles and initial steps asewtised, and some preliminary results are
presented.

2. PRINCIPLES

A complete homogenisation procedure comprises abvagments. The first step is
usually the selection of set of time series whiah be examined together. It is followed by
filtering of outliers, the creation of referenceige and calculation of relative time series,
the use of statistical methods for finding inhomugjges [= IH hereafter] in relative time
series, etc. In this study the efficiency of ongmsent is examined only: what is the
capability of the applied statistical method todfithe timing of the IHs and assess the
optimal corrections. From combined homogenisatimtgdures (e.g. MASH) segments of
this type were separated before testing.

Further principles are as follows:

i) Only homogenisation methods having the followipgperties are tested: a) objective
and reproducible, b) widely used in climatologyits) usable mathematical description is
easily available in climatological journals or ihetissues of previous homogenisation
seminars. | constructed the necessary computergnsgrelying on these sources, with
one exception (MASH, see later).

i) Tests are fulfilled on large simulated datasséthe statistical characteristics of relative

time series from observations are closely apprahdhe those of simulated data sets
through the thorough preparation of the simulatrethod.
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iii) Methods, usually applied for finding real jumpn climate, are tested as well, since
finding climatic jumps is a twin-task of homogernisea, both require the same type of
statistical tools.

iv) In the present phase only relative time sermeth at least 0.4 autocorrelation are
examined.

v) Segments of homogenisation procedures those meenpurely objective steps are
tested. As in the present phase the way of creadifegence series is not tested, the same
way of creating relative time series is supposeecdézh homogenisation method.

3. HOMOGENISATION METHODS UNDER TESTING

Seventeen versions of 11 objective homogenisatiethoas are under examination. Two
of the examined methods (the Multiple Linear Regias and the later version of the
Standard Normal Homogeneity Test) are able to tldieth sudden shifts and gradual
changes (trends), but most of them are for detgdudden shifts only. The list below
comprises the tested homogenisation methods, ihbegth the simplest ones which are
followed by the more and more complex types:

a) t-test [tta] (Ducré-Robitaille et al., 2003)

b) t-test [ttb] (Kysely and Domonkos, 2006)

c) Buishand-test [Buia] (maximum of the absolutduga of accumulated anomalies,
Buishand, 1982)

d) Buishand-test [Buib] (difference between maximuamd minimum values of
accumulated anomalies, Buishand, 1982)

e) Standard Normal Homogeneity Test for shifts ¢B8IMHa] (Alexandersson, 1986)

f) Wilcoxon Rank Sum test [WRS] (Karl and Williant987)

g) Multiple Linear Regression [MLR] (Vincent, 1998)

h) Bayesian test (Ducré-Robitaille et al., 2003)hwserial correlation analysis (Sneyers,
1999) [Baya]

i) Bayesian test (Ducré-Robitaille et al., 2003)hnypenalised maximum likelihood method
for calculating number of change-points (Caussiand Lyazrhi, 1997; Mestre, 2004)
[Bayb]

j) Pettitt-test [Pett] (Pettitt, 1979)

k) Mann-Kendall test [M-K] (Aesawy and Hasanear980

l) method of Mestre [Mest] (Mestre, 2004)

m) method of Mestre with parameterised minimum-length [Mesb]

n) Standard Normal Homogeneity Test for shifts tnedds [SNHT] (Alexandersson and
Moberg, 1997)

0) Easterling-Peterson test [East] (Easterling Reidrson, 1995)

p) Multiple Analysis of Series for HomogenisatidMASH] (Szentimrey, 1999)

g) Multiple Analysis of Series for Homogenisationtiwparameterised minimum unit-
length [MASD]

In certain cases | made some supplements or matiifits relative to the original
homogenisation methods. Parameterised versionsMiestre-method and MASH are
produced, because all the selected homogenisatiethoals are tested with various
minimum unit-lengths. Minimum unit-length [denotbgt u] means the shortest length of
periods to which distinct statistical charactecsitan be assigned during the search of IHs.
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In most of the methods it is not fixed by origimastructions, but it is definitely 1 single
value in the original Mestre-method and in the ioaf MASH. (“Number of values” in a
series is referred as “number of years” herealiecause it is the most frequent case in
homogenisation procedures.)

At the Bayesian test | found the description @ngicance-test part to be non-
reproducible (Ducré-Robitaille et al. 2003), theref two other significance-tests are
applied instead, producing two versions of the et he Mann-Kendall test is supplied
with the test of serial correlations, because otissr the frequency of first-type errors
seemed to be too high in white noise processed-tdst the standard deviations are
estimated from the whole series, instead of frope&r long sections of the series.

T-test, Mest, East and MASH methods have innetrunBons how to deal with
multiple IHs, but most of the methods do not camtauch unambiguous instructions.
Moberg and Alexandersson (1997) give recommendatidmat can be an optimal way of
detecting multiple IHs in a procedure (namely inF8N which includes step-by-step
detection of individual IHs. The application of #fseproposals is implied in all of the
methods that have no other relevant instructions.

In case of MASH, | have the opportunity to use phegram with the assistance of
the original constructor (Tamas Szentimrey, HuragaNeteorological Service).

Further details about nine of the eleven homogeiois methods can be found in
Domonkos (2006).

4. PREPROCESSING

Before the beginning of efficiency tests, some prafory steps must be done. This section
presents how the simulation method was developetidaals with the problem of finding
evaluation methods for measuring efficiencies ahbgenisation methods.

4.1. Examination of an observed data set

One of the first tasks is to calculate statistat@dracteristics of an observed data set, since
these characteristics must be compared with the sgpe of characteristics of simulated
data sets before determining simulation method gayducing data sets for the test
procedure. Therefore, common statistical charatiesi (moments, distribution, serial
correlation), as well as mean characteristics téated IHs are calculated for an observed
data set. All the homogenisation methods are used, the parameterisation of the
individual methods is varied, in order to increate number of the comparable
characteristics. Before the beginning of the homasggion procedures, relative time series
are derived for each data series of the observéa sk, according to the guides of
Alexandersson and Moberg (1997).

The observed data set consists of 215 temperatutd 12 precipitation time series.
They are monthly or annual means (totals) of teatpees (precipitation), their length is
98 - 100 years, and most of them are originatedh ftbe observing network of the
Hungarian Meteorological Service.

The obtained statistical characteristics variepating to the type of the examined
meteorological element (temperature or precipitgfiand the season of the year, but they
can be well clustered in another way, accordintipéoserial correlation of the relative time
series. In the present work only time series withleast 0.4 serial correlations are
examined, so mean statistical characteristics oftéfiperature and 2 precipitation
(relative) series were selected for later compasseith simulated characteristics.

Detailed description about the observed datarsttize examinations performed on
that is presented in Domonkos (2006).
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4.2. Creation of the simulation method

An iteration technique was applied, namely simalatexperiments were repeated many
times in order to gain similar statistical charastecs of simulated data series to that of
observed series. Though large numbers of stafisticaracteristics were compared, it
appeared during the experiments that a set okstati characteristics of detected IHs is
partly more typical to the rate of factual smalklk¢lative to factual medium-size IHs, than
to the factual mean frequency of all IHs. It iselk because of the fact that non of the
homogenisation methods can detect very small Iels éso Ducré-Robitaille et al., 2003;
Sepanek 2004), thus direct information about the frequeatthem cannot be obtained.
To reduce the chance of possible biases becauaa whproper simulation method, the
number of compared statistical characteristics naes®d above 200. Yet it seemed that the
function-type of the magnitude-distribution of sinéls can be chosen partly arbitrarily.
Several results indicated that this distributionciese to that of the white noise, and
eventually it was set to be just equal to the dhgtron of the white noise. Further
properties of the simulation method were deducethfthe results of the approximation
experiments. The main findings are as follows:rgdeency of small IHs is much higher,
than that of IHs with medium-size or large magnisidsee also Domonkos, 2006); ii)
Frequency of short-term IHs is much higher, thars Mith long duration; iii) The
examined time series can be well modelled composimg following elements: a)
stationary white noise, b) change-points in certaire-points, c) gradual linear changes,
d) platform-like changes (= pair of change-poinithwhe same magnitudes, but with the
opposite directions) and e) short-term platfornelgdhanges. The latter is theoretically the
same type as d), but I mention distinctly, becaisefrequency turned out to be
surprisingly high, and its effect on the generadrelsteristics of the time series is partly
similar to that of the white noise. The lengthlod simulated series is always 100 years.
To determine a proper simulation method the forfrfsegiuency distributions and suitable
parameterisations were searched by iterations fihakesimulation method is presented in
Appendix I.

4.3. Handling of outliers

In the observed data set elements with higher 4hstandard deviations are very seldom. It
is true both for the original and the relative tirseries. Anomalies higher than this
threshold were corrected before the homogenisaporcedure, so that they were
substituted with the mean of the time series {ith O anomalies). This practise is applied
in all of the homogenisation procedures, and botte observational and simulated time
series.

4.4. Testing of the simulation method

Before the utilisation of the simulation methodpteperties were tested by the comparison
of wide range of statistical characteristics ofedétd IHs. All the 17 homogenisation
methods are involved. The compared characteriatiesmeans of frequencies of detected
change-points, means and standard deviations ohdgmitudes of detected change-points,
and in cases of MLR and SNHT the characteristicdatécted gradual changes are also
compared. Parameters of the applied minimum ungtle () and significance threshold
(c) are varied, thus the number of the compareds$ita! characteristics is as high as 204.
Figure 1 presents the distribution of the diffeesn between observed and
simulated characteristics. Empty bars show the murabthe differences belonging to the
individual categories, while darkened bars showgiMeid sums of occurrences. The
weights are the sample sizes of detected IHs, fndmnch the characteristics of observed
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data set were calculated. It can be seen thatmagirity of the differences are smaller
than 10%, and they are never higher than 20%. atgest differences, which are higher
than 10%, are partly explainable by the relativiely simple sizes belonging to these
cases.

Distributions of serial correlations are also camga. The observational
characteristics are calculated from the 72 reldiive series whose serial correlations are
higher than 0.4. Ten thousand time series werelated) and the serial correlations were
higher than 0.4 in 4533 cases. The comparisonlafive frequencies of above 0.4 serial
correlations are shown in fig. 2. The fitting iscelent; the distribution of the simulated
serial correlations seems to be the smoothed versfidhe distribution of observational
serial correlations.
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Fig. 1. Distribution of differences Fig. 2. Distributions of serial
between the same type statistical correlation of the examined

characteristics of detected inhomogeneities time series
for observed and simulated time series

4.5. Measuring efficiency

The way of evaluating efficiency of a homogenisatioethod is not so simple as it could
be expected over non-quantitative speculations.weetexamine a simple example: We
have a relative time series with two change-pdjatgl no more IHs, neither any noise, see
fig. 3.a). The time-points and degrees of the slafe i) year 40, +3 and ii) year 60, -2. In
this idealised case all the values of the seriegldvbecome 1 after a perfect correction.
Method ‘B’ (fig. 3.b) detects precisely IH i), bf#ils to detect IH ii), thus it recommends a
correction of +3 for the first 40 years of the seri

a) b) C)
4 4 4
3 3 -=v\l ------------------------------------ 3
2 | = 2 2 |
0 = T T 0 T T T T 0 . , |
1 21 41 61 81 1 21 41 61 81 1 21 41 61 81

Fig. 3. The effect of IHs (a), and that of the adjstments of time series, relying on
imperfect detections of IHs (b and c), on the detéable slope of linear change. (See
more explanation in the text.)
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Method ‘C’ (fig. 3.c) does not detect well the IHisfinds IH neither around year 40, nor
around year 60. However, method ‘C’ detects a cégunt in year 30 with a shift of
+1.2, and recommends a correction of +1.2 for its¢ 80 years of the series. The skill in
detecting IHs is 50% for method ‘B’ and 0% for n@dhC’, but the reproduction of the
trend of the series is good in case ‘C’ and failgerge, than without correction) in case
‘B.

Two measures of efficiency are introduced: a) ISk change-point detection”
evaluates the skill only in detecting relativelyga shifts. (In certain cases it is the only
purpose of the use of a homogenisation method:Geheral efficiency” is a complex
characteristic. It calculates the average of 14nelds characterising different kind of
skills of the homogenisation methods. 4 elemengsfar evaluating the skill of detecting
relatively large shifts, 4 elements measure thiabgity of trends, 2 elements measure the
reliability of the range of long-term changes, @ndlements characterise the reliability of
further properties of variability. The full desdign of the verification method is presented
in Appendix .

Efficiencies are expressed in percent unit, agdteof the improvement relative to
the perfect solution. The correction is perfectalif the change-points and the gradual
changes are precisely detected. If the distandbeotorrected time series, relative to the
perfect solution is just as large as that of theoarected series, the efficiency is zero. If the
corrected series is worse than the uncorrectedtbeefficiency is negative.

Some more specifications of the evaluation methgal as follows: The perfect
solutions are known only for simulated series. Tha&ulation of perfect solutions takes
into account the possibly previous modificationsaaese of outlier values. However, there
Is a further factor complicating the calculationedficiency. While all of the IHs of relative
time series are usually considered to be the itidiesiof errors in the candidate series, this
rule may not be valid for very small IHs. Small Iisrelative time series can be caused by
changes in climatic gradients or by the imperfestnef the reference series. Therefore a
part of the small IHs is considered to be noisdall®are presented in Appendix IlI.

5. TESTING OF EFFICIENCIES OF HOMOGENISATION METHOD S

The efficiency characteristics evaluated accordmgt.5. were calculated for simulated
data series, generated according to 4.2. All thehdmogenisation methods and wide
ranges of u and c parameters were applied. The eumibgenerated series for each
method and each of the applied parameterisatiorslways one thousand. The total
number of experiments performed (considering aéf ttomogenisation methods and
applied parameterisations) with the simulation rodthf 4.2. is approximately? 10’
In addition, further experiments were made withtaiar modifications of the simulation
method, in order to get an insight into the stapiif the results. Results obtained with the
base simulation method and with one modified vergiew large IHs) are presented in this
paper. The description of modified simulation meti®included in Appendix | and llI.
Efficiency values, obtained from adjacent valués parameter applications, are
smoothed with a Gaussian filter.

6. RESULTS

6.1. General efficiency

The Standard Normal Homogeneity Test is a very [awpand the most often applied
homogenisation method was in the last two decales.earlier version (SNHa, for shifts
only) was usually applied. Now, its efficiency cdme checked. Fig. 4 shows the
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distribution of general efficiency in the functiorsf minimum unit length u) and
significance threshold]. c = 1 means the recommendation of Alexandersson anceig
(1997) for 0.05 significance level, whic = 0 means the omission of applying significa
threshold. The highest efficiency is 74.0%, anbleliongs to the parameterisationu = 6
andc = 0.59. Wenote that Moberg and Alexandersson (1997) searshinHat least 1-
year long series, thus tru in their application tends to be not shorter thawyears.
However, the optimal significance threshold is sisipgly low.
In fig. 4 the efficiency surface a quite large area around the optimal parameteansa
flat, thus a wide range of paramepairs can be chosen maintaining near optin
efficiencies. However, application of a strict sfgrance threshold or a pair of shw and
very smallc may resilt in a substantial decrease of efficiel

Fig. 5 presents the distribution of efficiency MASH (original MASH and MASI
together) in the same way as fig. 4 does it for 8NMASH is a more sophisticat
method;it has been worked out for detectingy possible combination of IHs in tin
series. The originally recommended parameterisaou = 1 andc = 1 (Szentimrey,
1999). Results show that the optimum efficiencglightly higher (75.6%), than that
SNHa, but the optimal parameterisaticu = 3 or 4,c = 0.75) differs from thos
recommended originally.

2 4
u 6810

Fig. 4. Variation of general efficiency of SNHa with mimmum unit-length (u) and
significance threshold coefficientc). Floor represents 0% and top of the wall mean
100%.

Fig. 5. Variation of general efficiency of MASH and MASb with minimum unit-length
(u) and significance threshold coefficientc).

As the area around the optimum flat again, paiggasémeters can freely be chosen fro
rather wide range without an apparent loss of iency. Nevertheless, using the origii
parameterisation, the efficiency is 72.2% ¢
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Fig. 6 presents all the optimum efficiencies bglag to the examined methods. It
can be seen that most of the values are withinrewarange (70 — 76%). According to
these results the best methods are the Mesb, Mi8&t, Bayb, MLR, MASH and SNHa,
while the Mann-Kendall test and the t-test provigiech lower general efficiency than the
other methods.
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Fig. 6. General efficiencies of individual homogesation methods, applying the
optimal parameterisations.

The optimal significance thresholds are usually Imlmwer, than the original
recommendations, except for Mest and M-K. The ommsef significance investigation
provides the optimum efficiency in Baya, ttb, ttadan the first phase of East. The optimal
u spreads over 3 - 10 years, and it tends to dexzm#l rising efficiency. Leaving out of
consideration the very special case of M-K, thealation between optimal minimum unit
length and efficiency-optimum is —0.73.

6.2. Skill of change-points detection

Fig. 7 presents the order of the skill values ofiropm parameterisations for all the
examined methods, in the same way, as Fig. 6 sliba&vgeneral efficiencies. All the

values, except for that of M-K, range between 80 80%. Mesb and MASb are the most
efficient two methods again, but the order subsalintdiffers from the third place. tta

seems to be very efficient for this task, while thek of MLR is much weaker in this

examination, than in the general efficiency resulise optimal parameterisation usually
differs substantially from that of the general @incies, except for Mesb and MASb. The
optimal unit length is 3 or 4 years for each of thethods. The optimal significance
threshold is stricter in tta, ttb and East, butrelasver, than for general efficiency for most
of the methods. Omission of significance examimgtior the use of a very low

significance threshold is the optimal choice fory8aBayb, SNHa, SNHT, Buia, Buib,

WRS, Pett and M-K.
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Fig. 7. Skill of changepoint detection for individual homogenisation methals,
applying the optimal parameterisations

6.3. Case of few large inhomogeneiti

Although the base simulation method imitates wék tmean characteristics of |
temperéure time series observed in Hungary, the real tgedes characteristics &
diverse. One of the frequent versions might be“tbw large IHS” type, since in case
higher than average level of continuous qualitytcnthe development of large sls or
biases may be prevented, while the features ofl dkhalccurrences are likely the sai

Fig. 8 and 9 show the efficiency distributions oéstre method (Mest and Mes
for base dataset and few large IHs dataset, ragpctComparing the resultit turns out
that the efficiency much more depends on the cheniatics of the candidate series ¢
guality of the reference series, than on the agpfiemogenisation method. In case
Mesb the optimum efficiency drops from 76.0 to 88.8wing to the hange from base
type to few large IHs type. The optinc values are increased, but the shape o
distribution remained resembling otherw

Fig. 8. Variation of general efficiency of Mest and Mesb wh minimum unit -length
(u) and significance threhold coefficient (). Basetype data set
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Fig. 9. Variation of general efficiency of Mest and Mesb wh minimum unit -length
(u) and significance threshold coefficientc). Type of data set
few large IHs.

Fig. 10 presents another example of effici¢ distribution for few large IHs typ
time series. Applying Buib method the optimal affiwy is slightly lower (51.2%), the
that for the best methods. The distribution is pomsusly flat. The optimum significan:
threshold is near to the one for Orobability of first type errors in white noise pesses
but the choice of = 0 (omission of significance test) results in@éncies lower with fev
tenths of a percent only. The optimw is 13 years, and the range of near optiu values
spreads over 7 to 18 years.

Fig. 10. Variation of general efficiency of Buib with mnimum unit-length (u) and
significance threshold coefficientc). Type of data set: few large IHs.

In spite of the large changes in the measuredieficees, the order of optimu
efficiencies tends to be conservative against semges characteristics. Yet a little chai
can be noticed in the top places: for few large tifse the highest optimum gene
efficiencies belong to 1) Mesb (53.8%), 2) Bayb.(88), 3) MASb (52.7%), wile the
order of the highest skills of char-point detection is 1) MASb (82.0%), 2) Mesb (81.7
and 3) tta (79.6%).

7. DISCUSSION AND CONCLUSIONS

Large number of test experiments with simulatedh dadt imitating relative time seri
from observations, ith at least 0.4 serial correlation were performéat 17
homogenisation methods. All the calculated efficiea belonging to realist
parameterisations are positive. It means that ppécation of any kind of homogenisati
method generally improve e quality of climatological time series. (It doest mean
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however, that substantial false corrections nevappbn.) Positive values of general
efficiency calculated according to Appendix Il. methat the corrected time series are
usually more appropriate for investigating climatariability, than the original series,

independently from the kinds and sources of resigda@rs in the corrected series. In
addition, most of the methods prove rather highcieficy in detecting and correcting

change-points of relatively large magnitudes.

Most of the methods have similarly high optimunficgncy. It indicates that
numerical values of efficiencies depend more orptioperties of the data set under testing
and on the chosen measure of efficiency, than erhttimogenisation method. However,
some exceptions have been found. Both types ofdloailated efficiencies for the Mann-
Kendall test, and the general efficiencies fortthest are always substantially lower, than
the efficiencies for the other methods.

It must be noted that the resemblance in efficgencefers at first to the optimum
values. Although the distribution of efficiencies usually flat around the optimum
efficiency, and thus parameter-pairs can be chdsen a rather large area, the use of
original parameterisations recommended by the oactsts of the methods sometimes
results in considerably lower efficiencies. Thisolgem is unusually serious for the
Easterling-Peterson method. That method contaihsogphase examination of change-
points with the application of a specific signific threshold for each phase. It has been
turned out that the best choice is the omissiahesignificance-test in the first phase, and
even a very weak significance threshold seems thdéest for the second phase (at least
for time series with at least 0.4 serial correlasio The calculated general efficiencies for
base type data set are 72.9% with the optimum peteaisation, but as low as 41.1% with
the original parameterisation. Interestingly, thell of change-point detection is high
(84.1%) with the original parameterisation, whidmows that the scale of reasonable
expectations from a good homogenisation method brustider than the reliable detection
of large IHs.

The optimal parameterisation depends on the pregef the time series under
examination. It is a problematic point, since tregtiency and size-distribution of IHs are
unknown in practice. However, stochastic-type infation can be obtained by pre-
examinations, for example serial correlation gigash information. A long-term purpose
of efficiency-test investigations is to find metisoahd parameterisations whose application
ensures high efficiencies for a wide range of tgages properties.

The optimal parameterisation often contains veeakvsignificance thresholds. It
may have two explanations: a) The condition of mimn 0.4 serial correlation usually
goes with a relatively high contamination of IHsettefore the detected change-points can
be approved without examining the statistical digance; b) Uncovered mid-size IHs
might cause larger biases, than the applicatiamotcessary, but small corrections.

It seems that relatively complicated homogenigatieethods are not always more
efficient, than the simpler ones. For example,ahdier and simpler version of the SNHT
(Alexandersson, 1986) produces higher efficienbgntits later development created for
detecting both shifts and trends. The EasterlingiBen method also seems to be an
improper way of development, because the genefatiezicies are low, except for
parameterisations those are far from the originatept of the method.

During the evaluation of the results it must bexsidered that the category of
relative time series with at least 0.4 serial datrens has been investigated so far, and the
two, partly arbitrarily chosen measures of efficgncannot be enough for drawing
eventual conclusions.

Main conclusions of this paper are as follows:

Efficiency depends on the applied homogenisatiothotk but also on the
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preferred purpose(s) of the homogenisation.

Achievable efficiency is very sensitive to the istatal properties of the
examined data set, but the rank-order of the aptirefficiencies among the
different homogenisation methods tends to be coatee.

The efficiency testing procedure gives advice abloetptimal values of
significance threshold and minimum unit-length.

So far results show that for R1 > 0.4 type relatinee series the Mestre
method and the MASH are the most efficient homaggion methods.

REFERENCES

Aesawy, A.M., Hasanean, H.M. 1998: Annual and sealsolimatic analysis of surface
airtemperature variations at six southern Meditexean stations. Theor. Appl.
Climatol. 61,55-68.

Alexandersson, H. 1986: A homogeneity test appiedrecipitation data. J. Climatol. 6,
661-675.

Alexandersson, H. and Moberg, A. 1997: Homogeromatiof Swedish temperature data. Part

Homogeneity test for linear trends. Int. J. Clinhatd, 25-34.

Buishand, T.A. 1982: Some methods for testing tbedygeneity of rainfall records. J.
Hydrology,58, 11-27.

Caussinus, H. and Lyazrhi, F. 1997: Choosing aalimaodel with a random number of
change-points and outliers. Ann. Inst. Statist.iMat9/4, 761-775.

Domonkos, P. 2006: Application of objective homagation methods: Inhomogeneities
in time series of temperature and precipitatiofijddas, 110, 63-87.

Ducré-Robitaille, J-F., Vincent, L.A. and Boulet, 803: Comparison of techniques for
detection of discontinuities in temperature seties.J. Climatol. 23, 1087-1101.
Easterling, D.R. and Peterson, T.C. 1995: A newhoektfor detecting undocumented

discontinuities in climatological time series. lat.Climatol. 15, 369-377.

Karl, T.R. and Williams, Jr. C.N. 1987: An approaith adjusting climatological time
series for discontinuous inhomogeneities. J. Cinfgipl. Meteor. 26, 1744-1763.

Kysely, J. and Domonkos, P. 2006: Recent increasedrsistence of atmospheric
circulation over Europe: comparison with long-tewariations since 1881. Int. J.
Climatol. 26, 461-483.

Mestre, O. 2004: Detecting multiple change-poimtsaigaussian sample using dynamic
programming. In: Fourth Seminar for Homogenizatiand Quality Control in
Climatological Databases. WMO, WCDMP-No. 56, 89-92.

Moberg, A. and Alexandersson, H. 1997: Homogermatf Swedish temperature data.
Part 1l: Homogenized gridded air temperature comgarith a subset of global
gridded air temperature since 1861. Int. J. Climafo, 35-54.

Pettitt, A.N. 1979: A non-parametric approach te tthange-point problem. Applied
Statistics, 28, 126-135.

Sneyers, R. 1999: Homogenizing time series of dogical observations: the search and
adjustment for inhomogeneities. Second SeminarHomogenization of Surface
Climatological Data. WMO, WCDMP-No. 41, 5-14.

Stepanek, P. 2004: Homogenization of air temperataries in the Czech Republic during
a period of instrumental measurements. In: FoudaimiSar for Homogenization and
Quiality Control in Climatological Databases. WMOCB®MP-No. 56, 117-133.

Syrakova, M. 2003: Homogeneity analysis of climagatal time series — experiments and
problems. Idjaras, 107, 31-48.

142



Szentimrey, T. 1999: Multiple Analysis of Series fdomogenization (MASH). Second
Seminar for Homogenization of Surface Climatologibata. WMO, WCDMP-No.
41, 27-46.

Vincent, L.A. 1998: A technique for the identificat of inhomogeneities in Canadian
temperature series. J. Climate, 11, 1094-1104.

APPENDIX I. Simulation of time series

a) Denotations

D — duration of the effect of IHs

G- random element of the standard Gaussian distsibu
Int(..) integer part

K(..) function whose value is O or 1.

N — length of the time series (100 years)

p— parameter of time series, it characterisesdteeof short-term IHs and the
magnitude-distribution of IHs.

g—  random element of the uniform distribution othex period [0,1)

r— parameter characterising serial correlatioseofes of IHs, its value is
-0.5.

sign(..) function whose value is -1 or 1 accordimghe sign of the parent value
W — white noise process with standard Gaussiaritiion W ™ =[W,,W,,...,Wy]

X —  generated (target) time serie€™ =[x, X,,...,Xy]

Y —  (time series of) accumulated effects of longatéHs

AY — (time series of) long-term IH events. Each évepaired with a specific
year.

Z —  (time series of) accumulated effects of shemtatIHS

AZ — (time series of) short-term IH events. Eachmeigepaired with a specific
year.

Note: serial numbers of the elements of time senesndicated as indices of variables, but
these indices are often omitted. IndiceDofG, K andq denote else, namely the repeated
use of similar type variables/functions.

b) Simulation of data series of base data set

(i) 196-year long series are generated, and alwagyslices of years 48 - 147 are the target
series.

(ii) IHs and noises are introduced in each yeat {foeir values can be 0, naturally).

(i) Types of the terms for introduction to timerges: a) long-term IHAY), b) short-term

IH (Az) and c) white noisew). Note: certain part of- andz-type terms are handled as
noise later (see Appendix IlI).

(iv) Forms of the IHs: a) sudden shift, b) graddadnge, c) platform-like change, d) bias
for one specific year. Form d) is a specific calsel@ss c).

(v) Introduction of long-term IHs.

(v)/1: Size and direction of the IH

This term includes an IH whose magnitude can bgelawnith the probability given in K
as well as a small IH with the probability givenka:
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Ay, =K, (q,) 8ign(05-q,) 08+ 4p) [bs ") + K, (q,) [G,, (1)

where K(a) = 1, ifa< 0.012, and Ka) = 0 otherwise; Ka) =1, ifa< 0.07, and Ka) =
0 otherwisep has the same distribution @sloes, bup is constant for a time series.

(v)/2: Form of the IH
The form ofAy;’ is (A) sudden shift, (B) gradual change or (Catfdrm-like change, with

0.4, 0.25 and 0.35 probability, respectively.
For (A)- and (B)-form IHs:

Ay, =-1-r* Dy -r [F, 2)
where F =0 for the first (A)- or (B)-form IH of the seriesnd F = Ay, otherwise k
indicates the year of the previous introductiorif or (B)-form IH.

For (C)-form IHs:

Ay, = By; (3)

(v)/3: Calculation of thg; components of the series
(A)-form IHs:

Y, =Y, +Ay, foreach]j D[i, N], (4)

where y; .1 denotes the value of terynbefore the actual adjustment.
For (B)- and (C)-form IHs duration-values mustpaéred at first. For B-form IHs

D, =5+ 2[Int(48[g;°), (5)

Y=Y+t (J=1+05D,)Ay, for each j Ofi — 05D, ,i + 05D, —1], (6)

Dl
and for (C)-form IHs:
D, = Int(300g;>), 7)
Y; =Y, tAy, for eacth[i,i+D2]. (8)

(vi) Introduction of short-term IHs
The size and the direction of this term is caladaby the same functions as those of long-
term IHs (eq. 1), but the frequencies (determingthk K-functions) are different:

AZ =K 4(q,) 3ign(05-gg) [(8+4p) g *P) + K 4 () (G, (9)

where K(a)=1, if a <0.04-0.03p, and K(a) = 0 otherwise; K(a)=1, if a<0.5-0.4p
, and Ky(a) = 0 otherwise.

Az, =1-r? [Nz -r %, (10)
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The form of this term is always platform-like chang

3
D, =Inf 120 | (11)
1+ 0.3Az]
z;, =2;_,+Az foreachj Ofi,i +D,]. (12)

(vii) Introduction of white noise term
W = G3 (13)
(vii) X=Y+Z+W (14)

(ix) Serial correlation oKX is calculated, and the series is added to the s#dtd the value
IS not lower than 0.4, but discarded otherwise.

c) Simulation of data series for the data set of ¥elarge IHs

The procedure is the same, as for the base datexsept for K always equals to zero.

APPENDIX II. Calculation of efficiency

Time series are considered to be the sum of IHremske componentsX = -V + W (the
series of positiver values indicates the theoretically perfect coroes). The series of
estimated corrections by homogenisation methodensted witHJ.

a) Skill of change-point detection

It takes into account 6 characteristics. All ofrthbave 2 values: good (1) or bad (0). The
skill is calculated as the weighted average oflikeharacteristics. The weights are 1-1 for
characteristics 1) — 4), and 2-2 for charactessiicand 6).

The way of evaluation is presented for negativitssionly (there is no logical
difference in the evaluation of positive shifts).

1) Detection of large, long-term changes. The fofrthe I1H:

i-1

i+k-1
1[ D - ZijZS for eachk [[1,2,...10] (15)

= j=i—k

The best estimation of the change-point (denoted w):

. 1 i+2 i-1
v :3(ZV1 - Zvjj (16)

j=i j=i-3

The detection is good (1), , j O[i —2,i + 2| for which v/ =1<u; —u,, <V, +1; and
0 otherwise.
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2) Detection of large, short-term changes.

1

i+k
k[zlv - Zv j>3 for eachk 01,23,

j=i j=i-k

i+m-1 i-1
but Cm,mO[ 456] for which ;[ Svi- Yy, j <25

j=i j=i-m

The detection is good (1), ifj, | D[i -2+ 2], for whichu; —u

3) Detection of medium-size, long-term changes.

i+k-1
i(Zv - Zv J>15 for eachk 0[12,...10]
j=i j=i-k

The way of the verification is the same, as folechs

4) Detection of medium-size changes with very ldogation.

[szllv i j>15 foreacth[lZ 20]

The way of the verification is the same, as folechs

(18)

(19)

i1 21, and 0 otherwise.

(20)

(21)

5) Change-point appears in tbeseries, and the detection is right.

Au, =u; —u;_, 21; v of eq. (16) is positive;
min(Av) < Au, +1,
Au, —1< maxAv),
min(Av) = min(v,,Vi,;,Vi,, ) - max{(v,_,,v. ,v, ),

max(Av):max(vi,viﬂ, |+2) mm(v—1’V 2Vi—3)’

(22)
(23)
(24)

(25)

6) Change-point appears in tbeseries, but the detection is false.

Au, =u; -

u_, =1, butv of eq. (16) is not positive.
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b) General efficiency

It takes into account 14 characteristics (d1, d&14). The verification results are
expressed in percents of the perfect correctiohgyathe 0 means neither improvement,
nor deterioration relative to the initial state €ldeneral efficiency is the simple average of
the 14 characteristics.

1) The same as the 1) of skill of change-point cteig.

2) The same as the 3) of skill of change-point cteig.

3) The same as the 5) of skill of change-point cteig.

4) The same as the 6) of skill of change-point deie.

5) Difference in the slopes of the linear regressio) for the whole series.

d; = ‘b(ul—loo) - b(Vl—loo)‘ (26)

6) Difference in the slopes of the linear regressitor the last 50 years of the series.

dg = ‘b(USl—loo) - b(v51—100)‘ (27)

7) Rate of right decisions about the significaretetlfe 0.05 level) of the slopes of linear
changes for the relative time series (X).

8) Rate of right decisions about the significaretetlife 0.05 level) of the slopes of linear
changes for the second half of the X series.

9) Difference in the ranges between the extremeechde-averages.

1 i+9 k+9 1 1+9 m+9
d, =—| ma u |—min » U, ||——| ma V. [—min| ) v,
9 10 = i Jz:é J 10 JZI: J ;ﬂ J

wherel K.l.mO[12,..N -9] (28)
10) Absolute value of the range-differenc(:jéf) - ‘dg‘ (29)

11) Combined characteristic for biases in size @nid/sign from the perfect corrections,
and for time-lapses. First the combined charadteffier year i, (hi, i =[1,2,...N]) is

performed. Leth 7V (the reverse case is handled with the same loggs).
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J

h = mkin{gk + U, —min(ui ,max(vj )B
' : (30)
where gk is a penalty-term of k-year lapse:
Ok :eXF(Cl(p[k_CZ))_C3, (31)
¢1=0.369, c2 = 3.207, ¢3 = 0.2062, p = 05 Lt Jo] J = max@i-k).
Jz=min( +k,N) 504k =10,1,2,....15].
Gy = ”i‘,‘]-""(h -h) i O[L,2,....N]

(32)
12) The same as 11), but p = 1.
13) The same as 11), but p = 2.
L 2
dy, = Z(Ui _Vi)
14) SSE error-term: i=1 (33)

APPENDIX Ill. NOISE-PART OF INHOMOGENEITIES

A part of long-term IHsY) and short-term IHsZ) is not considered to be errors of the
candidate series, so it is handled as noise. Ttee afithis type noise increases with
decreasing IH-magnitudes, and it is higher forfptat-like changes, than for lonely shifts
and gradual changes. The probabilities of nd®ddr given IHs are determined according
to the rules below:

1) Base data set, platform-like IHs.

P, =max06- 04[4y]0), (34)

where Ay; is determined by eq. (2) of App. |. Eq. (34) asplicable forAz-type terms.
2) Base data set, lonely shifts and gradual changes

P, =max03- 04[Ay,|,0). (35)

3) Few large IHs, platform-like changes.

P, =max06- 02[/ay;]0). (36)

4) Few large IHs, lonely shifts and gradual changes

_ 4
P, = ma{ 04 15 [y, ,O). (37)
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HOMOGENIZATION OF AIR TEMPERATURE AND RELATIVE
HUMIDITY MONTHLY MEANS OF INDIVIDUAL OBSERVATION
HOURS IN THE AREA OF THE CZECH AND SLOVAK REPUBLIC

P. S&panek’, K. Mikulova?
! Czech Hydrometeorological Institute, Regional €G#fBrno, Czech Republic
% Slovak Hydrometeorological Institute, Slovak Relfjb
petr.stepanek@chmi.cz, katarina.mikulova@shmu.sk

ABSTRACT

Homogenization of monthly averages of air tempeea@and relative humidity has been
carried out for the area of the Czech and SlovaguBkcs for the period 1961-2005.
Because of presence of a noise in the seriesstgtatihomogeneity tests give their results
with some portion of uncertainty. Using varioudistecal tests along with various types of
reference series made it possible to consideralhgase the number of homogeneity tests
results for each tested series and thus to assessogeneity more reliably.
Homogenization was performed on individual hourlpservations and comparison
demonstrating the improvement of results compadhe homogenization of daily
averages was made. Air temperature and relativaditynseries were compared in order
to help identify to what extent multi-element prssig can help improve the
homogenization of individual elements. All data ggssing and analysis were carried out
using AnClim and ProcClimDB (softwares developeddotomatic processing, analyzing,
homogeneity testing and adjusting of climatologutaia).

INTRODUCTION

Long time series often suffer from non-climatic eeffs. It became well known and
accepted fact that such inhomogeneous or erronseniss can lead to biased results in
climatological time series analysis. Inhomogensitreay occur when stations are relocated
and by changes of observer, instruments and ologerprocedures. This type of
information should be documented in station metabat there are numerous cases where
such metadata is incomplete or missing, so we efnthen only upon statistical test
results. A large array of statistical techniquess hbeen developed to detect
inhomogeneities in climatological time series. dag methods and different countries
approaches are described e.g. in Petegtah (1998) and Szalai et al. (1999, 2004).
Different tests often identify different inhomogéres (particularly for smaller
amount of change), application of different typdsreference series usually leads to
different results as well, differences occur alsooag individual monthly, seasonal or
annual series. In a number of instances, partigulahere detections in series coincide
were identified, adjustments can often be clearjified, even in the absence of metadata.
The existence of good quality reference seriesery ¥important for the detection of real
inhomogeneities. That is why it is useful to in@uals many series for a particular area as
possible, to help identify series abnormalities.tle case of air temperature, spatial
correlations decrease with distance quite slowhy so, it makes sense to analyze large
areas. In this study the homogenization of bothcGzand Slovak Republics series was
considered useful and appropriate. To further emeethe quality of homogenization, the
number of test results was increased by testingtmhomeans of individual observation
hours (i.e. those taken at 07:00, 14:00, 21:00 sdacal time). Additionally, two
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meteorological elements, air temperature and weatumidity were mutually compart
for detected inhomogeneities and were used whesidening final adjustments of seri
Single shift inhomogeneities are the most frequectimatological time seric and easiest
to detect. Only single shift inhomogeneities wexamsined and adjusted for in this stt
so far. Data formatting and processing was perfdrmsing dtabase software calle
ProcClimDB (Sépanek 2006b). Homogeneity testing and time serieslysis was
conducted on AnClim software @panek, 2006:

DATA CHARACTERIZATIO N

The Czech and Slovak Republics cover a total afe428 kn?. Both Republics ar
mountinous. The Czech Republic ranges from 115 m ta2 1®0at its highest pes
(Srézka). Despite being smaller, the Slovak Republis Aanuch greater height ran
ranging from 94 m to 2655 m at Gerlachovsky Stibnfrwest to east the climatic influen
of ocean diminishes and the continental influence megjvely increase

Air temperature and relative humidity were analyasdseries of monthly means
observations taken at 07:00, 14:00 and 21:00 Houed time, and daily averages. Statit
with a minmum length of 25 years were selected. For theodesince 1961, 230 statio
measuring air temperature and 217 stations meagsueiative humidity were availabl
The mean minimundistance between stations is 18.6 km, and n altitude 448 m,
(median 80 m). Nine stations are situated above 1000 rh,asd 4 above 1500 m a.

Because of processing of large number of statiaifferent methods c
homogenization (e.g. different reference serielferdint tests) were examined in sma
areas such sa Southern Moravia (Czech Republic) and Westernvagia (Slovak
Republic), see Fig. 1. From the results of thesasrthe most useful types of refere
series and homogeneity tests were selected aneaangly applied to the whole area
the Czecland Slovak Republic

& relative humidity

®  air temperature

0 50 100

Fig. 1. Area of interest (Czech and Slovak Republs} with marked borders of the test
area: Southern Moravia and Western Slovakia. Rightop: location within Europe (at
a different scale)

Air temperature was found to correlate \ well throughout the Czech and Slo\
Republics (see Fig. 2). Medians of correlation ioieints (from all the stations) vary on
around 0.9 for all months in case of observationrtgal:00,
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Fig. 2. Correlation coefficients for individual observation hours (07:00, 14:00, 21:00),
for air temperature (T) and relative humidity (H) (using 25.420, resp. 22.595 station
pairs - values)

and drop to 0.8 in case of hours 07:00 and 21:@@refations were lower in summer
months and higher in winter. Values of correlatiarefficients for daily averages are
comparable with the hour 14:00, i.e. values of raeslivary around 0.9, and during winter
they are even higher. Relative humidity correddietter in summer than in winter, again
the best for the hour 14:00. Daily averages arepaoable with the hour 14:00, and their
values of correlation coefficient are similar ogler than in case of individual observation
hours. Relative humidity correlations decreasetixaly quickly with distance, but the
stations network was sufficiently dense to creaneehh correlated reference series (see Fig.
8).

1. METHODOLOGY DESCRIPTION

In the case of series with missing or incompletetaoh@ta, only statistical tests for
homogeneity are relied upon to identify inhomogeegi Unfortunately using solely the
results of statistical tests during homogenizai®mproblematic due to the fact that the
detected year of inhomogeneity is often given \gitme error, or not identified. &ianek
(2004) demonstrated that the determination of threect year of inhomogeneity for air
temperature, where the difference was less thatC0Q.&6ccurred in less than half of the
cases. In the remained of cases, false years ofrageneity were given, or the years were
not detected. According to this result, inhomogee®iless than 0.5°C are likely to be
difficult to detect.

Because of this uncertainty in the result of honmegg testing, it was attempted to
increase the reliability of inhomogeneity deterntiora through processing as many test
results for each candidate series as possibleesSefiindividual observation hours were
used, and several statistical tests for homogematg applied, various types of reference
series were calculated for each candidate semesmanthly series as well as seasonal and
annual averages of the series were tested. By caomgball of these it was possible to
considerably increase the number of test resuitedch tested series, thereby increasing
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the reliability of the homogenization process. Tlgl the statistical processing of a large
number of test results, it was possible to caleulaé probability of each inhomogeneity of
a given series (probability calculated as a portbbrount of detected inhomogeneities -
for each year, group of years or whole series arasmount of all theoretically possible
detections). One of the advantages of this appragad¢hat a sum count of all detected
inhomogeneities out of all the theoretically poksitietections in the series can be used for
assessing quality of measurements of a partictdéioe as a whole.

Processing of the series during quality control aondhogenization included the
following steps: detection, verification, where assary the correction of outliers (extreme
values), creation of reference series (various Jyafgpemogeneity testing (using 3
homogeneity tests), inhomogeneities (years) detextion according to test results and
metadata, adjustment of inhomogeneities and, drtlyeaend, filling missing values. These
steps are outlined in the Fig. 3. and are furtigeu$sed in the text.

Monthly, Seasonal and
Annual Averages

| Quality Control - Outliers
I

[

Interquartile Ranges | | Comparing to Neighbours
[
|Combining Near Stations |

[Qrrrmrrrar sttt :

| Homogeneity Testing |

Alexandersson test | | Bivariate Test | |Easterling and Peterson
[

| Reference Series | =
I Several

[ I Iterations
from Correlations | | from Distances
[ I

| Hom. Assessment | Probability

| Adjusting Data |

|Fi||ing Missing Values |

Fig. 3. Scheme of data processing during quality atrol and homogenization of the
series

1.1.OUTLIERS IDENTIFICATION

Data quality control was carried out in two ways: applying limits derived from
interquartile ranges (it can be applied eithematividual monthly series, or preferentially,
by difference series between candidate and refersages), and, secondly, by comparing
values to values of neighbouring stations

Where comparing neighbouring stations, the fivet loesrelated neighbors were
selected (correlations calculated form first difiece series, see e.g. Peterson 1998), the
values of correlation coefficients being at lea&t, ®o limit for distance nor for altitude
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difference was applied. Only series with the saneenent and observation hour were
selected. For outliers evaluation, the followingu&cteristics were considered.

Counts of statistically significant different nelgturs (compared to base station)
exceeding confidence limit (0.95) were evaluateamfrdifference series (neighbour and
base station), the differences standardized torpe@n and standard deviation equal to one
(to enable using standardized normal distributido), each base station and month
individually. Cases, where more than 75 % of neighb significantly differed from the
base station value, were visually checked. To Helpct outliers, the values of neighbours
were standardized with respect to base statiorageeand standard deviation and also a
new (theoretical) value for the base station wasutated - as weighted average from the
standardized values of the neighbours (using Hidéegts as weights, with power 1 which
seems to be sufficient in case of air temperatang] 2 in case of relative humidity).
Further, coefficient (multiply) of interquartile mges (q75-g25) above q75 (or below g25)
were evaluated (calculated from the standardizéghbeurs values), and applied to base
station value. The reason for this was to assessithilarity of used neighbours values
with regard to the outlier test value: the moreueal of neighbours are similar, the higher is
the value of the coefficient.

The final decision on the removal of outliers wassdd on a percentage count of
significantly different neighbours, the differenitem the “expected value”, coefficient of
interquartile range and finally value was condudbtgdvisual (subjective) comparison of
the standardized values of neighbours with the bg®n value.

1.2. COMBINING NEAR STATIONS MEASUREMENTS

In order to produce longer time-series, the neighigostation measurements (within 15

kilometers in case of temperature, and 10 kilonsetercase of relative humidity, nearer

stations having preference) was merged into onmagimum gap of two combined series

was allowed to be 4 years, the minimum length obnstructed series was 25 years. In this
instance, 14 stations were recorded and the yeamerfjing then used as metadata
information during series homogenization.

1.3.HOMOGENEITY TESTING

The AnClim software (Spanek, 2006a) was used to identify the inhomogieseipplying
following tests for relative homogeneity (signifie levelo=0,05) on monthly, seasonal
and annual data:

« Alexandersson test (SNHT for a single shift) (Aledarsson 1986, 1995)

e Bivariate test of Maronna and Yohai (Maronna anth&id. 978, Potter 1981)

« Easterling and Peterson test (Easterling and Retei995)
To ensure that only one inhomogeneity was presesgiies when using Alexandersson or
Bivariate test, a further modification was introddcinto the AnClim software, which
divides the series at the position of the foundmbgeneity and test the parts before and
after the detected inhomogeneity separately. ladditional inhomogeneity was found in
these two parts, we can rely upon the results efgilien test for a whole length of the
series (especially the significance of a testsiaji
These tests were applied for the whole studied @neaCzech and Slovak Republics). For
the tested area, additional tests were also usstlidy differences in detection capabilities
of individual tests and influence of various typéseference series (see chapter 4.2).
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1.4.REFERENCE SERIES CALCULATION

In order to increase the number of homogeneity testults and thus better assess
inhomogeneities in the series, two different caltohs of reference series were
performed:

e as an average from selected stations based oratmins

e as an average from selected stations based omchsta
Each of these types of reference series has batintabes and disadvantages. By using
correlations, the reference series created is thst rsimilar to tested series (and thus
suppressing variability in the differences/ratiesiess the best), but stations with similar
inhomogeneities to the tested series can be sdlddtavever this effect can be minimized
by using first difference series for calculation @brrelation coefficients, then
inhomogeneities are manifested in one value (sge Adexandersson, Moberg, 1996,
Peterson 1998). For the latter type of referencdeseby using distances, the geographical
vicinity of the selected stations are preserved, diffierent climatic conditions even for
near stations (due to different altitude etc.) cacur. Differences between reference series
are further discussed e.g. by Mikulova and Step&p@®84) or Stepanek (2005).

Weighted averages of neighbour series for refereecies calculation were applied.
The values of the selected neighbour stations skmdardization to base station average
and standard deviation to avoid problems with llaseference series. This can often
happen in cases of missing data in of one of thghbeur series. No transformation of
values (in case of air temperature and relativeitlitly) was applied to data.

In the first stage, a list of proposed neighbowatishs was obtained. The list was
subsequently checked, comparing correlation caeffts, distances, and also difference in
stations altitude. This approved list was then Ifjnaised for the reference series
calculation.

1.5.ASSESSMENT OF DETECTED INHOMOGENEITIES

The main criteria for determining the year of inlaganeity was the probability of the
given inhomogeneity, i.e. count of detections gieen year from all the testing of a given
station expressed relatively to count of all théoedly possible detections. For detected
inhomogeneities, a limit of 20% of all possible e#tons was used in cases where there
was no information in metadata about the changémi of 10-15% was sufficient in
cases where the inhomogeneity was in agreementmétiadata. The count of detections
for groups of years was also taken into accounnésmhomogeneities started during the
course of a year and thus manifested in 2 yeatsaat). In cases where there was no
mention in the metadata concerning a detected 6hiitch was most common), other
sources information were used. Distribution of ¢inen year within individual months or
seasons, graphs of differences with referencessarnd some other characteristics, were all
used for deciding whether the undocumented inhom&ige could be regarded as
"undoubtfully" proven and thus be corrected.

The mentioned decision limits were estimated suively, from selected set of
stations, so that only clear inhomogeneities wengected (an aim being not to “over-
homogenize” the series). These limits are apprtpf@a the studied elements series of the
analyzed area, for other elements or areas wouwd tbe determined according to the
given purposes.

1.6.ADJUSTMENT OF INHOMOGENEITIES

Adjustment of the detected inhomogeneities wasezhiwut by means of reference series
calculated as an average of five stations with Higiest correlation coefficients to the
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series being adjusted (correlations were calculaggdn from the first difference series).

The amount of change was estimated as a differbat@een averages calculated from

difference series between the candidate and referseries from a period taken 20 years
before and 20 years after the year being adju3ieel period was truncated in case another
inhomogeneity within the period was encounteredestehadjustments were applied to all
monthly data. Where possible, the start of inhomegg was determined to a particular

month.

Inhomogeneities within 4 years of the end of aesedould not be adjusted. This
happened relatively often in recent years, becaofsehe transition to automatic
measurements (being successively introduced si®85)1 The parts of series with
inhomogeneities near the ends of series had terhewed from further processing.

Various characteristics were analyzed before apglyproposed adjustments including:
increment of correlation coefficients between cdatk and reference series after the
adjustments, change of standard deviation in diffees before and after the change,
presence of linear trend, etc. In case of doubjisatients were not applied and the
respective series was considered for removal framhér processing.

Estimated adjustments are influenced by randomrseriro the series. To produce a
smoother and physically more justifiable annualrsewf adjustments, weighted averages
of the adjacent months were applied (with weighgs1).

1.7.FURTHER CONSIDERATIONS

The above-mentioned steps (creating referencessdranogeneity testing, assessing and
adjusting possible inhomogeneities) were perforineskveral iterations. In each iteration
more precise results were obtained. The final adyests of inhomogeneities were
estimated from original data, taking into accoumbhamogeneities detected in all the
previous iterations. It was necessary to use algiiata for the final correction (but used
reference series were calculated from adjuste@sarithe last iteration), so that the final
adjustments were estimated using periods withoytirdmomogeneities (a period taken for
an adjustment was truncated when there was fouoith@ninhomogeneity in the series).

The filling of missing values was performed onlyeathomogenization and adjustment
of inhomogeneities in the series. The reason fisr was to enable the new values to be
estimated from data not influenced by possibletshif the series. Moreover, when
missing data are filled before homogenization, they influence correct inhomogeneity
detection (above all when a gap is longer thany@s and there is an inhomogeneity -
change of mean - near the position of the missiage). Filling the gaps was done by
means of linear regression between filled valueesddependent variable) and a reference
series (independent variable). Reference serieg walculated as an average of five
stations with the highest correlations with respgecthe series with filled value. For the
linear regression model, values 20 years before2éndfter the value being filled were
used. Again, for assessing quality of the proceaspus statistics were monitored, e.g.
differences of averages and standard deviatiopsriiods before and after the gap.

A remaining question on the homogenization is thi#uénce of the transition to
automatic measurements which started in the statedwork of the Czech Republic in
1997 and in the Slovak Republic since 1995. Foresofrthe series it is too early to assess
the influence of automation, for other stations ¢fffect was already very well detectable.
The crucial problem is that the change do not neshiih the only data characteristic, such
as arithmetic mean, but rather influencing sevpraperties of the series, and moreover,
these changes in series properties can not belydirded linearly to the previous
segment (before the change). That is why we ne@odsess long series (after the breaks)
to be able to detect all the possible influences &st but not least, to invent appropriate

155



approaches for such analysis. Another difficultyhiat there exist only few stations with
comparative measurements, and stations from ottes are influenced by several other
factors that are problematic to enumerate andttheappress.

2 SERIES FOR HOMOGENIZATION

2.1 Finding and removing outliers

For outlier identification, the approach descriteatlier in chapter 3.1 was applied. We
tried to detect causes of anomalous monthly datadayng the problems in daily data (the
same method as mentioned above, applied to daiéywighin individual months), but due

to huge database of processed values and shorftdigeeo we were not able to check all
the detected values. This area will be the sulgeéarther work. For the purposes of this
study, approved errors were removed from furtherc@ssing and were replaced by
missing values. Considerably higher count of ordlieccurs during summer months, in
both processed elements (see Fig. 4)
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Fig. 4. Left: count of removed outliers for individual observaton hours, for relative
humidity (RV) and air temperature (T). Right: count of removed outliers for
individual months, for relative humidity and air te mperature

2.2 Verification of homogeneity detection procedurén the selected area

Due to the huge database (1.2 millions of monthiyues for all the elements and
observation hours within the whole area of the Gzmud Slovak Republics, compared to
“only” 240.000 months in the tested area), some@gghes were tested in smaller areas,
namely Southern Moravia and Western Slovakia (sgelf.

We analyzed various types of reference series.eltvese created either by means
of correlations or distances (using either simplaveighted mean), using either original
series or series with removed outliers, using eithe same element and observation hour
of the neighbour stations as was that of candidatesing arbitrary observation hour from
neighbours, or by using monthly or seasonal andi@naverages. Altogether 18 different
reference series were analyzed for each candi®af=rence series from distances and
using arbitrary elements and observation hoursegjhibours were not calculated because
this option makes no sense.

Correlation coefficients for the different referenseries are shown in Fig. 5. In
case of air temperature, the medians of correlstaye very similar, in winter there is no
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difference, in the summer months a maximum diffeeeof five hundredths. The reference
series for relative humidity differ, on the conyrarather in the winter months, during the
summer months the differences are again very small.

Relative humidity

1.00
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Fig. 5. Correlation coefficients (medians, calculad from 47 values) between various
types of reference series and the tested series;, fiodividual months. For explanation
of used names of reference series see Fig. 6

Homogenization results for the questioned referesgces and the Alexandersson test
are shown in Fig. 6. The highest count of detestadmogeneities occurs in the reference
series created by means of distances, the samesmlemmd observation hour, using
original series and unweighted mean. It is cleat this is caused by higher portion of
random error in the tested candidate — referenifereince series compared to the other
types of reference series. Generally, series whetiéers have not been removed give a
higher count of detected inhomogeneities. The lowesnt of detected inhomogeneities
occurs in the reference series created by meanerddlations. In Fig. 6 we can also see
portion of the count of corrected to all detectedomogeneities, which can be used for
evaluation of the best reference series. The highkres of the portion are achieved by
reference series created from correlations; thet nafcient method to find true
inhomogeneities is by using seasonal and annuahges for reference series calculation,
series with removed outliers, and the same metegicad! element and observation hour of
the neighbour stations as in the tested series.

Following the presented results, for the homogeinaof the series within the whole
area of the Czech and Slovak Republics, refereagesscreated both from correlations
and distances, using neighbours with the same ekearal observation hour as that of
candidate series and using weighted average weliedp
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Fig. 6. Count of detected inhomogeneites for variauitypes of reference series and
ratio of the number of corrected inhomogeneities @0 adjusted elements and
observation hours) to count of all detected inhomagneities. COR — reference series
created by means of correlationsPIST — by means of distanceslElem — reference
series created using neighbours with the same elenteand observation hour, AllElem
— neighbours with different hours can be selectednoW — simple mean from
neighbour series, otherwise weighted mean is use@Adj — series with removed
outliers, Orig — original series (no removal of detected outliejs S — seasonal and
annual averages, otherwise monthly averages are usdresults for Alexandersson test

Various types of reference series give slightlyfedént results due to random error
present in the series. Where detections coincide, possible to better rely upon the test
results. Including other types of reference sestesuld lead only to a small improvement,
therefore it seems more appropriate to gain furtbst results through testing individual
monthly, seasonal and annual averages, testingagil observation hours etc.

2.3 Homogenization results for the whole studied aa

As mentioned in chapter 3.1, we have used thres tes homogeneity, two types of
reference series, monthly as well as seasonalramabhaverages.

For the limits in which the values of correlatiovefficients between candidate and
reference series vary, for daily averages, see lbtsxfi.e. median, lower and upper
quartile and limits for outliers) in Fig. 7. Comsm of individual observation hours is
shown in Fig. 8. For air temperature, the lowedtes of medians (0.95) occur during
summer months (for the hours 07:00 and 21:00)thetour 14:00 they do not drop below
0.98, the same occurs for daily averages. In cdselative humidity, the correlation
coefficients with reference series are markedlydgwnainly during winter months, but
still usable for homogeneity testing. Again, valdes the observation hour 14:00 are
higher than those for 07:00 and 21:00, being coatpgamwith daily averages.
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Fig. 8. Correlation coefficients between candidatand reference series (medians), for
individual observation hours, applying correlations for reference series calculation
(from 227, resp. 214 values for each category)

Fig. 9 shows the count of homogeneity tests detestfor individual observation hours.
Since data from the same place were used, bothiféemperature and relative humidity,
it is clear that inhomogeneities are more obviowstected in the air temperature series.
One conclusion is that, effects such as statiomcaglon manifest more profoundly in air
temperature series (and within air temperature Iypaiuring summer months).
Nevertheless, an important role can also be playddwer correlations between candidate
and reference series in case of relative humidity.

100 - —— 100 X —
90 | Air temperature ’ 1lmn 90 | Relative humidity
80 M Tl 1R 80

Fig. 9. Percentage of significant inhomogeneitie®.05) detected by used tests (SNHT
test, Bivariate test, reference series created bothy means of correlations and

distances, altogether) related to the total numbernf series used. For individual

months
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In individual tests, the count of detections inividual years for Alexandersson,
Bivariate and Easterling and Peterson tests islaimf we do not consider ends of the
tested series. The similarity of Easterling ancePein test with Alexandersson one was a
surprise because during simulations (for seriek wibperties of air temperature series in
the Czech Republic) that have been done previdpsisented e.g. in Stepanek, 2005), the
Easterling and Peterson test gave many more inhenaities, compared to Alexandersson
test, that had no justification. This field is hiighted for further study, to better assess the
relative power of these tests.

Counts of inhomogeneity detections — years — foloua types of reference series
show the same fluctuations, but for referencesesesreated by means of distance, the
count of detections is about 10 percent lower foteanperature and 20 percent lower for
relative humidity compared to reference seriestetehy means of correlations.

Detected inhomogeneities were the subject of chrefumtrol before accepting final
adjustments; this primarily took account of metaddiut also a number of auxiliary
characteristics (see chapter 3.5). Fig. 10 shomad &djustments applied to the processed
series. For air temperature, lower values of adjasts were applied for the hour 14:00
compared to the hours 07:00 and 21:00. The sanmevimehs valid for the improvement of
correlation coefficients between candidate and resfee series after realizing the
adjustments. Relative humidity adjustments difterifhdividual observation hours and part
of a year, e.g. in summer the highest values afstifjents occur for the hour 21:00, while
in winter for the hour 14:00, the same course carséen repeated for the correlations
improvements after realizing adjustments.
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Fig. 10. Adjustments - averages of their absolute alues and improvements of
correlation coefficients (between tested and refenee series) after realizing the
adjustments, for air temperature and relative humidty, for individual months (using
40, resp. 32 values for each category)
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In respect of air temperature (counts of detectdmrmogeneities and amount of
adjustments) the difference between summer andewimonths can be explained by
different influence of active surface upon the fation of air temperature regime in these
distinct periods. In winter, prevailing circulatidactors and reduced vegetation ensures the
influence of effects leading to inhomogeneitieg(station relocation) is smaller, while in
summer, resulting from prevailing radiation factarsd increased volume of vegetation,
the influence (of relocation for instance) is gegafl he role of different active surfaces are
also manifested in the fact that values of cori@tat are higher in winter months (climate
conditions are similar for larger areas) in comgum with summer. Due to this
characteristic, correlations were improved maimysummer, in winter months the effect
of homogenization was smaller (both for the adj@stta and correlations improvement).
Relative humidity is a complex meteorological elaménfluenced by many factors
including air temperature, precipitation, wind spheevaporation. This has the effect that
explanation of inhomogeneity manifestation throughm year is much difficult than in the
case of air temperature. For instance, precipitaiio the analyzed area is effected by
station relocation primarily in winter, mainly due the larger error in measurements
connected with solid precipitation (manifested bwttcount of detected inhomogeneities
and amount of adjustments).

Homogenization results obtained for air temperatame be generalized to a wider
area (outside the analyzed area), since the spatigdlations of air temperature decrease
with distance slowly. On the contrary, relative hdity correlations decreas rapidly with
distance, so the presented results (annual codirsgh@mogeneities characteristics, etc.)
can differ outside this study area.

3. SUMMARY

Our results indicate that analyzing series of imhial observation hours improves the
detectability of inhomogeneities. This is becaude®mogeneities manifest in the different
series in a different way: count of inhomogenejtiamount of change, correlations
between reference and tested series (and thugalalgg of inhomogeneities).

If we compare individual observation hours, inhoerogjties are better detected for
the individual observation hour 14:00 — mainly hesma of higher correlations between
candidate and reference series. Since inhomogesaitay manifest only in one of the
observation hours and thus be masked in daily gesrgperforming homogenization on
both individual observation hours and daily avesagiethe same time is recommended.

Valid for both the processed elements: stationceglon and other effects that lead
to inhomogeneities in the series are more profoundinifested in summer months than in
winter months in this study. In the case of air penature, large differences of the used
inhomogeneity characteristics occurred betweerviddal months; the annual courses for
relative humidity are, on the contrary, found torbech smoother. For relative humidity,
the height of correlation coefficients (in summes)ncides well with the count of detected
inhomogeneities, amount of adjustments, and cdimalamprovement (after adjustments).
Inhomogeneity characteristics for air temperatusrenfound to have a different annual
course: higher correlations were found in winter thie count of detected inhomogeneities
and amount of change were highest in summer.

Data processing and analysis was conducted usiog€liRTDB and AnClim
software. This software is available from a setehttp://www.klimahom.com/software/
Ongoing development of this software, e.g. conoectiith R software, is planned.
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APPENDIX I. ANCLIM SOFTWARE DESCRIPTION

General characteristics

o A comprehensive tool for processing monthly timeiese (from transformations
through quality control and homogenization to tisegies analysis)

o Operates under Windows 95/98/NT/ME/2000/XP

o User friendly: a lot of graphical components, gsplarifying the results, etc.

o Continuous development 1995-2006

Functionality
0 Series overview:
= basic statistical characteristics, tests of randesanoutliers detection etc.
= normal distribution testing, histograms
= graphs of the series
0 Regression models:
= linear, polynomial regression.
= multivariate linear regression graphs of the series
0 Adjusting data:
= replacing outliers, filling missing values
= various transformations, converting series intonaal@s from a mean, etc.
= calculating differences/ratios of two series
= switching between monthly or seasonal and annuabges
0 Homogeneity testing:
= absolute homogeneity tests
= relative homogeneity tests (Alexandersson SNHT rioua modifications, Bivariate test, Easterling and
Peterson test, Vincent MLR, and others), creatifereace series
= adjustment of the inhomogeneities
0 Time series analysis:
= one series analysis (autocorrelations, power spactr MESA, dynamic MESA, etc.)
= two series analysis (coherency analysis, etc.)
= filtering the series (low-pass, band-pass, highsfiiters)
0 Automation:
= functions for automatized processing of selectedtions (tests) for up to 1000 files (stations):
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APPENDIX II. PROCLIMDB SOFTWARE DESCRIPTION

* General characteristics

o Database software for processing climatologicaaskets (supports dbf IV files)

o Two modes of processing: monthly or daily data

o Automation of the processing (processing for a milist of stations, using all the
stations in database)

o Full control of the processing: many parametersefach option can be set, various
outputs are created

o Flexibility in modifying or adding new functions

* Functionality
Basic statistical characteristics computation, nddigribution testing, etc.
Finding outliers and extreme values
Neighbouring stations analysis (reconstructionglitjucontrol, etc. )
Calculating correlation coefficients between all praérs of a given list of stations
Reference series calculated as:
= an average from the best correlated stations
= an average from the nearest stations
= an average of all stations available for a givear ynd month (regionally)
o Processing output from the AnClim software homoggrtesting
Adjusting the series for inhomogeneities
o Filling missing values:
= from differences
= using linear regression
0 Calculating monthly or seasonal and annual averagésylating differences with a given referenceeseretc.
o Export to txt files, Excel, import from txt to dbhd other formats
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ABSTRACT

In this study a comprehensive quality assurance (QA) system for both station
and sea level pressure data is designed and applied to hourly pressure records (for
1953-2002) from 761 Canadian stations, to produce a high quality database of station
and sea level pressures for various climate studies. The main principles of the QA
system are described in detail, followed by a brief emphasis on the decision making
and error correction algorithms. The general performance of the QA system and the
main problems in the Canadian historical pressure database are discussed and
illustrated through various examples.

The results show that there exist serious systematic errors (i.e., sudden
changes in the mean, or mean-shifts) in the Canadian pressure database, which are
caused either by the use of wrong station elevation values in the reduction of
barometer readings to station or sea level pressure values (e.g., the “50 feet rule” or
station  relocation  without wupdating the station elevation), or by
transposition/swapping of station and sea level pressure values, or by mistakes made
in the archive data ingestion or data recording/digitization processes (e.g., use of a
wrong base number). Random errors also exist and are mainly due to transposition of
two digits or miscoding of one or two digits. These errors must be corrected before
the data are used in various climate studies, especially climate change related studies
(e.g., assessment of climate trends and variability, weather regimes).

1. INTRODUCTION

Climate change has become an important issue, because increasing evidence
suggests consistent warming trends over the past century, with a faster warming rate
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over land compared to oceans (Houghton et al. 2001). More and more efforts have
been devoted to the assessment of climate change and their impacts. However, one
needs long-term homogeneous records of climate data to characterize climate
variability and climate change in the past, and to validate numerical model
simulations. It is imperative to conduct quality assurance and homogenization of
climate data before these data are used for various climate studies, especially climate
change related studies.

Atmospheric circulation plays an essential role in the climate system because
of its effects on the distribution of heat and moisture over the globe. Surface
atmospheric pressure is an important variable that describes atmospheric circulation.
Moreover, with the thermodynamic connection, the variations in surface pressure
should reflect the variations in surface temperature. Therefore, analysis of surface
atmospheric pressure is critical to our understanding of climate variability and
climate change.

Several studies on the collection and analysis of atmospheric pressure data
have been carried out lately. As a result, several good quality pressure data sets of
global or regional coverage have been developed, mainly to provide vital inputs for
numerical model studies of global climatic variations and changes (e.g., Smith and
Reynolds, 2003; Kaplan et al., 2000; Allan et al., 1996, Trenberth and Paolino, 1980).
Many data-quality related problems were found and corrected in these studies. These
problems include data errors and discontinuities or inhomogeneities, and high-latitude
station data problems (which are reportedly to have arisen from lack of data
availability for the Arctic region).

In the mean time, there have been several studies using Canadian pressure
data. Slonosky and Graham (2005) developed a Canadian monthly mean station
pressure (SP) dataset with 71 stations that have data records for 50 to 130 years. They
found strong correlations between the variability of atmosphere circulation and
surface temperature anomalies. They also reported several major inhomogeneities in
the dataset. Nkemdirim and Budikova (2001) examined trends in monthly mean SLP
in western Canada using data from 51 stations for the period from 1956 to 1993, and
reported a significant decline in annual mean and winter mean SLP over the Arctic.

However, the original records of surface atmospheric pressure are hourly
measurements, from which the commonly used monthly or daily mean pressure
values are derived. Unfortunately, the hourly pressure data archived in Environment
Canada have not undergone a quality control (QC) or quality assurance (QA)
procedure (only recorded with missing flags). Slonosky and Graham (2005) corrected
some problems in their analysis of monthly pressure data, while Nkemdirim and
Budikova (2001) did not (and hence their results are most likely unreliable). In order
to produce a high quality, homogeneous pressure database for various climate studies,
a comprehensive quality assurance and homogenization of Canadian pressure data is
long overdue.

The necessity of applying a QA procedure to meteorological data has long
been recognized. The earliest QA systems were developed, aiming at radiosonde data

166



(Gandin 1988; Collins and Gandin, 1990). However, more and more efforts have
been put towards developing QA systems for high temporal resolution surface
meteorological data, such as daily or hourly data (Kunkel et al. 1998, Graybeal et al.
2004, Shafer et al. 2000). A complex QA procedure consists of a number of checks
on data; it uses the checking results comprehensively to determine whether or not a
value is suspicious and how to correct the suspicious value if possible. Since not all
flagged data are erroneous, a complex QA procedure should check all flagged data to
screen out those most suspicious values (for correction or exclusion) and to remove
flags from data that are deemed consistent with other reliable data. A modern
complex QA system is not only to identify, but also to correct suspicious data
whenever possible.

The Environment Canada (EC) digital archive contains pressure data from
1953 to date. For the early decades, data were digitized from original paper forms,
without any quality control performed after digitization. Actually, even for the real
time data (those from electronic reports), the QC procedure is quite limited according
to the EC National Archive hourly data quality control documents published on the
EC’s website (Environment Canada 2004). Thus, a QA procedure for hourly pressure
data is developed in this study with the goal of combining existing techniques and
fitting them to Canadian historical data.

In this study, we develop a QA procedure for Canadian hourly pressure data.
The data and the QA procedure are described in sections 2 and 3, respectively.
Section 4 describes the decision making method, and section 5, the error correction
algorithms. The corrected data series are analyzed in section 6, and this paper is
completed with some concluding remarks in section 7.

2. DATA

Surface atmospheric pressure is usually recorded for both the station and the
mean sea levels. Generally, the atmospheric pressure values at the station elevation
are called station pressure (SP) and are calculated from the station barometer readings.
Then, the mean sea level pressure (SLP) is derived from the SP, so that the
barometric pressures at stations of different elevations can be compared at a common
level (mean sea level) for synoptic purposes. Generally, SP data should be more
reliable than SLP as fewer calculations are involved. However, SLP data have been
used quite often for various purposes such as constructing atmospheric circulation
indicators (e.g., Wright 1984, Jones et al. 1999), developing long-range climate
forecast models (e.g., Christensen and Eilbert 1985), and analyzing severe weather
phenomena (e.g., Wang et al. 2006, Alexander et al. 2005). Therefore, high quality
data for both station and mean sea levels are needed for various studies.

Considering a further interest in producing a gridded pressure dataset, we
should apply the QA system to as many stations as possible. There are 1085 stations
available for both SP and SLP data in the EC data archive. Only stations with
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continuous records for at least one year and days with at least eight records were
included in this study (although at most stations atmospheric pressure are reported
hourly, with 24 measurements per day, some stations have only one report every 3- or
6-hour or have hourly reports for only part of day, e.g., from 03:00 to 16:00. The
number of hours of pressure reports per day could vary from station to station and/or
from one period to another). Because SLP data are derived from SP data, and we will
use both elements for QA, the checking procedure will be applied to data only when
both SP and SLP data are available. A total of 761 stations (see Fig. 1) are analyzed
in the study.

Figure 1. Location of stations analyzed in the study.

3. The QUALITY ASSURANCE SYSTEM

The QA system consists of five components. These include checking for
upper and lower climatological thresholds/limits, for temporal pressure changes, and
for hydrostatic, temporal, and internal consistencies. For each station, all valid (non-
missing) values are subject to these five checks. Based on the results of these checks,
a decision regarding acceptance or correction or rejection of the data is made.

a. Limits check (LC)
The climatological thresholds/limits check is a very commonly used checking

procedure to wipe out outliers (e.g., Hubbard et al. 2005; Graybeal et al. 2004;
Shafter et al. 2000). In this study, the climatological thresholds were determined as
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the lowest and highest values in the 1971-2000 period (for each station with at least
15 years of data in this period) that are associated with acceptable values of one-,
two-, and three-hour pressure changes (i.e., those that are below the corresponding
limits of pressure change; see section b below). If the lowest or highest hourly value
is associated with unacceptable values of pressure change, we exclude it and seek for
the second lowest or highest hourly value. This procedure is repeated until the
acceptable climatological thresholds are found.

There are only 216 Canadian stations of at least 15 years of hourly pressure
data in the 1971- 2000 period. Among these stations, the lower limits range from
940.2 hPa to 981.8 hPa for SLP, and from 846.7 hPa to 972.9 hPa for SP; while the
upper limits range from 1040.2 hPa to 1079.5 hPa for SLP, and from 917.1 hPa to
1060.6 hPa for SP. Since the climatological limits were determined using 30 years of
data, an arbitrary tolerance of 3.4 hPa (0.10 in. of Hg.) was added to the thresholds
for each station. For a station of shorter data record, we use the lowest lower limit
among its four “nearest” surrounding stations as its lower limit, and the highest upper
limit, as its upper limit. Note that station elevation is also a factor we considered here:
each of the four “nearest” stations must have an elevation difference from the short
term station that is less than 200 m (otherwise it is replaced by the next nearest station;
the 200 m limit is reasonable because it is only for choosing the climatological limits).
This limit for difference in elevation is important for setting the climatological limits
of station pressure, especially for elevated stations.

b. Pressure changes check (PC)

The limits for one-, two- and three-hour pressure changes taken from the EC
hourly data quality control document (Environment Canada 2004) are used in this
study. They are 3.9 hPa/hr, 6.9 hPa/2-hr, and 9.9 hPa/3-hr, respectively. These limits
were developed in the early-mid 1990’s by experienced meteorological technicians.
Note that, for very rare events, the true pressure tendency could exceed these limits
[e.g., Le Blancq (2003) reported that 3-hourly station pressure tendency was 28.9 hPa
on 11 February 2003 from 10:00 to 13:00 at Sable Island, Nova Scotia, Canada]. A
flag was issued to a datum if at least one of the associated pressure changes exceeds
its limit.

c. Internal consistency check (IC)

The physical relationship that SP < SLP is evaluated for stations with non-
zero station elevation. Both SP and SLP data are flagged if this relationship is broken
down. However, consecutive flags due to an identical value of SP and SLP are a
special issue here. Slonosky and Graham (2005) reported discontinuities in SP data
series that are due to a change in the definition of “station elevation”. The latest
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edition of the “Manual of Surface Weather Observation” (Environment Canada 1977)
states that “prior to 1 January 1977 the term ‘established elevation’ was used” and
that “an established elevation of zero metres (MSL) was assigned to all stations
where the cistern elevation was less than 15 metres (50 feet)”. As a consequence, the
station pressure and the sea level pressure were identical at these stations before
January 1977. Therefore, a special flag is activated when identical values of SP and
SLP are found for at least one month. Actually, this “50 feet rule” problem could also
lead us to flag a long run of consecutive hourly records during the hydrostatic check
described below.

d. Hydrostatic check (HC)

The hydrostatic check has been used routinely in upper-air radiosonde data
quality control (Gandin 1988, Collins and Gandin 1990). It plays a crucial role in
identifying errors of height or pressure or temperature at mandatory isobaric surfaces.
We use it here to detect errors in both station and mean sea level pressure data.

For station pressure P, and sea level pressure P,, the hydrostatic check is
based on the hydrostatic model

Z—ln—x(T+ )/( ——1 (1)

where Z is the station elevatlon (in meters), R is the gas constant for dry air,
T, =273.15K, g is the acceleration of gravity, a is the standard lapse rate

(0.0065°C/meter), and Td is the average of the current dry bulb temperature and the

dry bulb temperature recorded 12-hour earlier (unit: °C).
However, since November 1976, the following formula is used in Canada for
calculation of mean sea level pressure (Savdie 1982; WMO 1954):

) (2a)

gz
P =P ex
0 z p( RT

_ 7 _
T, =T, +Tdry)+a7+esCh(Z)+F(Tdry) (2b)

where
e = (7—, T )—0.00014i,”.3+0.0116i,,‘.+0.279
s — \Ltdry 0
C,(Z)=2.8322x10"Z* +2.225x107°Z +0.10743
_ — _
FT,,)=bT,, +b,T, +b,
The third term in (2b) represents a humidity correction, where e is the surface vapor

pressure and C, (Z) is the humidity correction factor (a function of Z). The last term
accounts for correction of plateau effects, and b;, b,, b3 are plateau correction
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parameters specific to each station. Note that neglecting humidity and plateau
correction, the combination of equations (2a) and (2b) is equivalent to (1).

The hydrostatic residuals R, are defined as
R =Z, -7,
3)
where Z is the recorded station elevation (taken from station history metadata and
hence can reasonably be deemed correct), and Z,, is the estimation of the station

elevation by substituting the related hourly P, or P or Tdry values in model (1). In

the absence of data error(s), R, values shall be very close to zero. However, a
tolerance of R, is used here to allow for small errors in the value of P, or P,, or even

in the dry bulb temperature T‘dry or the recorded station elevation Z (but

undocumented large elevation changes can still be identified by this check). In this
study, we assume that the recorded hourly dry bulb temperature values are correct.
All hourly pressure data (both P, and P.) associated with a R value that is greater

than its tolerance are flagged as a result of this hydrostatic check.
For each station, the tolerance of R_ is determined by

L—Yo <R Su+yo (G
where u and ¢ are the mean and standard deviation of the hourly R_ time series,
respectively. A value passes the hydrostatic check if the above relationship holds. The
value of y is determined by analyzing the time series of R, for each station,
separately. Generally, in the absence of errors, both u and ¢ should be near zero (cf.
Fig. 2a). However, it was found that many data problems and errors could influence
the estimates of W and o . Therefore, it is impossible to use one single value of 7y
for all stations. For example, as shown in Fig. 2b, a clear step was found in the time
series of residuals R, on 3 October 1965, with most of the residuals (in absolute
value) before 1965 equal to the station elevation (19.2m), which is apparently an
error caused by the “50 feet rule” problem (cf. subsection 3¢). An improper value of
Y could lead to flag all values of both P, and P, before October 1965.

We also encountered a number of cases in which the ¢ values are large (cf.
Fig. 2¢). Further investigation reveals that all these cases are associated with highly
elevated stations (i.e., stations of very high elevation; e.g., the elevation of Old Glory
Mountain is 2347m), which indicates that this very likely reflects the problem with
the sea level pressure reduction (cf. Mohr 2004 and Pauley 1998): Reduction of
station pressure to the mean sea level assumes a fictitious air column between the
height of the station and the mean sea level. The air temperature decreases with
increasing height from the surface. However, the mean temperature of the fictitious
air column is unknown, and is usually approximated in Canada by using a standard
temperature lapse rate and the dry bulb temperatures recorded now and 12 hours

171



earlier (cf. Savdie 1982). Also, a plateau correction has been added since November
1976 for all stations in Canada (Savdie 1982), aiming to get approximately the same
amplitude of the annual variation of sea level pressure at all stations, regardless of
their elevation (WMO 1964; Mohr 2004). However, as a result of the standard
pressure reduction method including the plateau correction, misleading sea level
pressure values can be obtained for high-altitude stations (Mohr 2004). Evaluation of
the existing pressure reduction method and correction of the pressure reduction
problem are beyond the scope of this paper. We just need to be aware of this problem
and to set a larger tolerance of R, for highly elevated stations according to the mean

and standard deviation of its R, time series, so that other types of errors can still be
identified.
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Figure 2. Time series of differences between the recorded and the estimated station elevation for
hourly observations at (a) Abbotsford Airport, British Columbia (BC); (b) Victoria Int’l Airport,
BC; and (c) Old Glory Mountain, BC.
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Figure 3. Time series of R,, Py, and P, for the selected period of hourly observations at (a, b)
Cape Hooper, NU and (c, d) Dease Lake LWOS, BC. The dash curve in b and d shows the
corrected P, values.
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Figure 3 shows another type of error that was found for many stations,
especially the Arctic stations. For some reason (maybe an error in the archive data
ingestion), the station pressure values for the period from 1992-2002 were wrongly
loaded for 40 stations, including 18 Arctic stations. Although it is hard to find the
exact reason that caused this kind of error, the associated R, values (Figs. 3a and 3c)
are incredibly high, showing a clear step-change that would be easy to detect
statistically, and most of the associated P, values (see Figs. 3b and 3d) are
unrealistically high and obviously wrong. This type of errors can be easily identified
through visualization of the R, and pressure time series together, as shown in Fig. 3.

Data inhomogeneities caused by station relocation (with big elevation change),
observing instrument change (e.g., sensor used in automatic stations), and so on could

also lead to step-changes (mean-shifts) in the R, time series and hence large p and
o values. As shown in Fig. 4a, the R, time series for station Lytton (BC) shows a

clear step-change on 1 July 1989, which was found to have arisen from a station
relocation with 27.4m elevation decrease. This step-change can also be identified
from the original time series of P, (Fig. 4b).

(a)

40

Rl(m)

20 . . . .
1870 1875 19880 1985 1880

1020

P, (hPa)

1970 1975 1980 1985 1990
Year

Figure 4. Time series of R, (a) and P, (b) for the selected period of hourly observations at Lytton
(BC). The green curves in both panels indicate the adjusted values. The bold line in b shows the
mean value of raw P, before and after the change-point.
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Since step-changes in the R, time series could affect the estimates of p and
6 and hence the R, tolerance used in hydrostatic check, we need to identify, and
correct for, significant step-changes in R, time series so that more realistic R,
tolerance can be determined. Considering the nature of the R, time series, for the
vast majority of stations it is reasonable to assume that R, has an independent
identical Gaussian distribution with mean p and variance 6?2 under the null
hypothesis of no step-changes. Thus, testing whether or not there is a step-change in
the R_ time series for the period from N, to N, (1SN, <N, <N;n=N,-N;+1)
is to test

Hy:R, (1)=u+g, (5)
against
+¢€,, N, <r<c
Hy:R.(n={1"" 1 ©6)
U, +¢€,, c<t<N,

where step-size A=, —; # 0and €,denotes a zero-mean Gaussian variable with

variance ¢ 2. In the first homogeneity test (i.e., at the beginning of the process),
N; =1and N, = N. In the successive tests, N, or N, or both of them are set to the
changepoints identified in the previous test(s), that is, the time series is segmented at
the newly identified changepoint and a successive test is applied to each new segment
of the time series (N, and N,are the first and last data point of the segment being
tested; see Wang and Feng 2004 for the details).

Detection of an undocumented step-change can be done with the T,

statistic as in the Standard Normal Homogeneity test (Alexandersson 1986), or

equivalently using the following F . statistic:

= 7
Fie = max F, (7

where

(SSE, — SSE,)/1
.= (3)
SSE, /(n—2)

and

SSE, = Y [R.() -1

v 9)
SSE, = Y [R.()—1, " + Y [R.(D-11,]°
=N, t=c+1

Similar to those in Wang (2003) and Lund and Reeves (2002), the critical values of

the F,,,, statistic here are obtained from 10 million simulations under Hy for each

series length n. Also, the F,. statistic above, which has an F-distribution with (1, n-2)
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degrees of freedom under Hj, can be used to assess significance of a documented
step-change (i.e., one that is supported by metadata) at time c. Both the F,,, and F,

statistics are used in this study to identify R, time series that have a significant step-
change, along with metadata (if available). These R, time series are further
investigated, along with the related P, and P, time series, to identify the cause and
correct for the step-change (via correcting the erroneous pressure values).

(a)

(b)

Figure 5. Absolute values of the mean and standard deviation of R, (unit: m) time series
calculated from raw pressure data. Stations of large step-changed(s) in the R, time series are
marked with a square to indicate the cause being the ‘50 feet rule” problem, a circle to indicate
a long run of obviously wrong P, values, and a triangle to indicate a station relocation without
updating the station elevation.
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As shown in Figure 5, significant step-change(s) in the R, time series are
found to have mainly arisen from either the “50 feet rule” problem (see those marked
with a square), or a long run of obviously wrong P, values (see those marked with a
circle), or a station relocation without updating the changed elevation (see those
marked with a triangle). The absolute values of the mean and standard deviation of
R, time series calculated from raw (uncorrected) pressure data, which are also shown
in Figure 5, are large at the stations of obviously wrong P, values (probably due to
erroneous data ingestion), much larger than those at other problematic stations
(because the error in elevation due to the “50 feet rule” problem or station relocation
is relatively small).

Once all the R, time series are corrected for all step-changes identified, their
new mean and standard deviation (calculated from corrected pressure data) can be
used in Eq. (4) to set the R tolerance, in which the y value can now be selected by
predetermining the rate of error using the methodology mentioned in Hubbard et al.
(2005). In this study, we want to cap the random error rate uniformly across the
country. We select the values of y with the goal of keeping a 0.2%o error rate for

each station (thus, for a station with 50-year hourly observations, there will be 87 data
flagged for further investigation).

e. Temporal consistency check (TC)

If a constant pressure value runs consecutively for 12 hours or longer in
duration, all these hours are flagged as a result of the temporal consistency check.

4. DECISION MAKING METHOD (DMM)

We apply the afore-described five checks to hourly station and sea level
pressure data (P, and P,) recorded at each station, subsequently. As a result, many

values could be flagged in one or several or all of the five checks. However, not all
flagged values are erroneous data. For example, a value can be flagged because of an
error in the value recorded 1-3 hours earlier or later that cause the related pressure
change to exceed its limit. One needs to analyze adjacent flagged values and the
number of flags on each value, to find out the most suspicious one(s) for correction or
exclusion. Such an analysis also leads to the removal of flags on values that are
deemed correct. Thus, this decision making procedure is an important step in climate
data quality assurance. Since the QA system is only applied to two elements, the
decision making system is not very complicated. For example, a station pressure of
1006.4 hPa at 00:00 of 4 April 1954 was miscoded as 1016.4 hPa, which caused 11
flags as shown in Table 1. Usually a datum with the highest count of flags is most
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suspicious, and all flags on values adjacent to that datum can often be removed (e.g.,
the value 1016.4 is flagged in the final database and all other data in Table 1 are
cleared of flags). This is the base of our automatic decision making method (DMM).

Table 1. Station pressure (P,) and sea level pressure (P,) recorded at Nanaimo, BC from 21:00Z
of 3 April 1954 to 03:00Z of 4 April 1954, and the results of applying the five checks on these
data. The LC, PC, HC, TC, and IC stand for the limit check, the pressure change check, the
hydrostatic check, the temporal consistency check and the internal consistency check,
respectively.

P2/ Po LC flag PC flag HC flag TC flag IC flag Total flags
(hPa) ®z/p0 | @/p0) | @z/P0 | ®/P0) | ©2/P0) P2/ po)
21:00 1006.8/1010.6 0/0 1/0 0/0 0/0 0/0 1/0
22:00 1006.8/1010.6 0/0 1/0 0/0 0/0 0/0 1/0
23:00 1006.7/1010.5 0/0 1/0 0/0 0/0 0/0 1/0
0:00 1016.4/1010.2 0/0 1/0 1/1 0/0 1/1 3/2
1:00 1005.7/1009.5 0/0 1/0 0/0 0/0 0/0 1/0
2:00 1004.8/1008.6 0/0 1/0 0/0 0/0 0/0 1/0
3:00 1003.9/1007.7 0/0 1/0 0/0 0/0 0/0 1/0

Occasionally, the total counts of flags for the two elements (P, and P,) are the
same and we do not have enough information to judge which element is more
suspicious. For example, a valid P, of 1021.5 hPa is miscoded as 1025.1 hPa, which
is a mild error, not severe enough to raise the LC/PC/TC/IC flags, only enough to
raise the HC flags. In this case, we can not determine which element (P, or P)) is

erroneous; thus, both the P, and P, values are flagged and further inspected manually.

S. CORRECTION OF ERRORS

Errors in meteorological data are very complicated and not easy to correct.
Nevertheless, we should try our best not to reject, but to be able to correct erroneous
data, especially for data-sparse regions. An automatic error-correction system is
designed in the study.

It is highly desirable to know what caused the errors before we start to correct
them. Table 2 lists the four types of errors that are most often found in our digital
hourly pressure database, in addition to those that lead to a significant step-change in
the R, time series. The vast majority of errors are of Types 1 and 2 (see Table 2). The

Type 3 error is a profound problem in the Canadian hourly pressure data that were
digitized from paper archives. In Canada, hourly pressure values used to be recorded
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Table 2. Errors most often found in the Canadian digital pressure database.

Type Description

1 One digit is miscoded (e.g., 1 is mistaken for 0, 2 for 3, 1 for 7, etc.)

2 Digits are transposed (e.g., 1032.5 entered as 1035.2)

3 Wrong base number added (e.g., “73” is taken as 907.3 hPa when it should be 1007.3
hPa)

4 Station pressure and sea level pressure are transposed or have the same value when the
station elevation Z # 0.

1020

990 -

960 -

pressure(hPa)

930 -

900 -

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 23:00

Figure 6. An example of using a wrong base number when digitizing station pressure data
recorded at Red Deer Airport (Alberta) from 0:00 on April 20 to 23:00 on April 21 1953. The
dashed line shows the correct values, and green line shows the corresponding sea level pressure
values.

(manually on paper) in tenths of hPa and only the last three digits were recorded (e.g.,
“132” for a pressure of 10132, or “587” for 9587; unit: 0.1 hPa). The omitted base
number (10,000 or 9000, or even 8000) needs to be added back during the digitization
of our paper archives. Unfortunately, it is not always easy to determine which base
number should be added, and the algorithm used to do so makes mistakes. This is
why this type of errors occur and can be very hard (even impossible) to correct. This
type of errors sometimes persists for several hours or days, or even months (cf. Figure
6) and can be mistaken as systematic biases caused by station relocation or
instrument change, etc. Unfortunately, the same base number problem affects the
NCEP/NCAR reanalysis dataset for the period from 1948-67 (NCEP/NCAR, 2006).
Such errors will only be detected by the hydrostatic or internal consistency check
(usually they will not exceed the climatological limits); thus, it is sometimes
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impossible for us to determine whether P, or P, is in error. A visual inspection of

the time series segment often helps identify this type of errors, which we do in this
study.

a. Correction of systematic errors

As mentioned in section 3d, the hydrostatic check is useful in identifying and
correcting systematic errors that lead to a significant step-change in R, time series,
such as those caused by the “50 feet rule” problem, by a long run of obviously wrong

P, values (e.g., those shown in Fig. 3), and by station relocation without updating the

changed elevation. We found that all the systematic step-changes in R, time series
are associated with erroneous P, (but correct P,) values. Correction of this kind of
systematic errors is relatively straightforward. These systematic errors have one
common feature, that is, they are due to a change/error in elevation Z. Theoretically,
we can simply use the correct station elevation and Eq. (10b) to calculate the correct
P, values and use them to replace the corresponding erroneous P, values. However,
stations of these systematic errors could be in the elevated areas (except for those of
the “50 feet rule problems) and hence their R_ time series could have large periodic
variations such as those shown in Figure 4a (which are due to the elevated area
pressure reduction problem; see discussions in section 3d). Replacement of erroneous

P, values with the corresponding P, values calculated using the correct elevation
would completely remove the periodic feature of the R, time series (forcing zero R,
values throughout the period of correction), which is not desired here. In this case, the
desirable correction is the difference between the mean (over the period of wrong

elevation) of the calculated P, values (say }_’;) and that of the erroneous P, values

(say er ), that is, we just need to add A = FC —}_’: on the erroneous P, values to
obtain the corrected P, values. For example, for the Lytton case shown in Fig. 4, we
add A=3.4hPa to all the P, values before 1 July 1989. Such a correction only
corrects for the systematic error, without changing the peculiar feature of R, time
series (see Fig. 4a). Of course, random errors are still to be identified and corrected

for. Corrections of random errors are described below.
b. Correction of isolated simple errors
Errors of the Type 1 or 2 (see Table 2) are usually isolated cases (i.e., the values

before and after it are correct for both elements) that are easy to correct and hence
called simple errors. The algorithm we use to correct an isolated case of simple
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Consider using other NO
correction algorithms [ I this an isolated error?
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Use the hydrostatic model to estimate the
correct value

YES
Y
NO Compare this estimated value with the
Retain the original [« erroneous one, and its associated pressure
value and flags (no change pattern with that of the other element:
correction) Can the cause of error and hence the correct

value be determined?

A

Apply the correction and flag it as “corrected”.

Figure 7. An algorithm for correcting isolated simple errors.

error is outlined in Figure 7. First, we determine if the erroneous datum is an isolated
error. If yes, we use the hydrostatic model to estimate the correct value, that is,

~exp (g/R)XZ

my

P

o

X P,

(10a)

or

P = ot (10b)

exp (g/R)XZ

depending on which element is in error. We use the recorded station elevation here,
and a plateau correction was added in 7, if the error occurs after November 1976

(the time the plateau correction was introduced in Canada), using the plateau
correction parameters taken from the EC archive. Then, we compare this estimated
pressure value with the original (erroneous) one, and compare its associated pressure
change pattern with the corresponding pattern of the other element (the two elements
should have the same pattern of pressure change), to see if we can determine the
cause of error and hence the correct value. As shown in Tables 3 and 4, if
replacement of a digit or a transposition of two digits in the original data would make
it approximately equal to the estimated value and ensure a consistency of pressure
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change between the two elements, this is a simple error; we apply the correction and
flag it as “corrected”. If this is not a simple error and we are not able to determine the
cause or the correct value, or if this is not an isolated case of error, we consider using
other error-correction algorithms (see the next subsections).

Table 3. An example of the Type 1 error: “1029.1” was mis-keyed in as
€1024.1” (1953/01/16 at station 7016294).

20:00 21:00 22:00 model value correct value

P, 1027.3  1024.1 1029.9 1029.1 1029.1
P, 1017.6  1019.4 1020.2
Table 4. An example of the Type 2 error: “59.2” was mis-keyed in
as “52.9” (1965/11/25 at station 4019080).
06:00  07:00 08:00 model value  correct value
P, 959.5 9529 958.6 957.4 959.2
P 1024.7 1024.1 1023.5

c. Correction of isolated but non-simple errors

Sometimes, an isolated error is not a simple error (of the Type 1 or 2). For
example, the value 846.6 in Table 5 is completely wrong, inconsistent with either the

corresponding or neighboring hourly P, or P, values. The hydrostatic model

estimate of the correct value is 1023.8, which would ensure a consistent pressure
change pattern for both elements here and would pass the pressure limit check if it
were used to replace the erroneous value 846.6. In other words, it is reasonable to
replace 846.6 with 1023.8 in this case. Thus, we apply the correction and flag it as
“corrected”.

Table 5: An example of more than two digits in error (1976/02/04 at station 1018642).

08:00 09:00 10:00 model value  correction

P, 1023.5 846.6 1024.0 1023.8 1023.8

P 1027.4 1027.8 1027.9

o
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d. Human-machine interactive corrections

The existing QA methods are often not able to correct erroneous data
completely automatically. Human-machine interactive correction is usually applied
when the automatic decision making method can not determine which element is in
error. In this case, one needs to analyze manually the flag types and the original data
for both elements, to determine which element is in error, and to estimate the correct
value (s). In most cases, the correction is set to the value estimated using the
hydrostatic model. For example, our analysis of the data shown in Table 6 reveals
that the P, value of 1001.6 was mistaken as the F, value, whose reasonable estimate

15 996.7.

Table 6. An example of mistakenly reporting the same value for both sea level
pressure P and station pressure PZ (1954/10/28 at station 7113534).

19:00 22:00 1:00 model value  correction
P 996.3 1001.6 998.2 996.7 996.7

Z

F, 1000.9 1001.6  1002.8

Actually, human-machine interaction was involved in the correction of those
systematic errors described in section 5a. The corresponding R time series is

visualized, along with both P, and P, time series to determine the error and its cause,

as shown earlier in Figure 3, because the automatic decision making system is not
able to determine which element (P, or P,) is in error in this case, although the

hydrostatic check is powerful in identifying and correcting this type of errors.

Finally, there exist a very small number of suspicious reports that even a
specialist was not be able to correct. This situation usually occurs when the
hydrostatic check can not be performed because of a missing element (e.g., dry bulb
temperature) that is needed as input to the hydrostatic model. In this case, we set the
data as missing if they do not pass the climatological limits check. Otherwise, we
accept them without any correction.

6. ANALYSIS OF THE CORRECTED DATA SERIES

The QA approach described above is applied to each station for both pressure
levels. Corrected data are stored with their corresponding flags. However, a second
iteration of QA was run with corrected data in order to detect any wrong correction or
erroneous data that went undetected at the first run.
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Figure 8 shows the rate of random errors identified for each station
(systematic errors that were corrected as described in section 5a were not counted
here). However, the error rates for most stations are under 1%o. Of more than 1.8 x
10® hourly pressure data (both level) processed, approximately 4.1 x 10° (or 2.3%)
data (including systematic errors) have been corrected. About 30% of those detected
errors can be automatically corrected, while human-machine interactive correction is
needed to correct the other 70%.

Figure 8. The rate of random errors identified/corrected for each station (unit: %o).
The symbols on stations are the same as in Figure 5.

As shown in Fig. 9, the standard deviation of the R, times series calculated

using corrected station and mean sea level pressure data are much smaller, showing a
better organized pattern. Large values are now seen only at the elevated stations.

The hydrostatic check plays an important role in the whole QA system. About
50% of errors were detected and corrected through this check. Also, our results show
that it is reasonable to assume the correctness of the hourly dry bulb temperature data
in the hydrostatic check. Actually, the hydrostatic method can also be helpful in
detecting inhomogeneities in atmospheric pressure data caused by station relocation,
observer change etc. as shown in Fig. 4.
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Figure 9. The same as in Fig. Sb but for those calculated from corrected pressure data.
The plus sign indicates that the station elevation is greater than 305m.

7. CONCLUDING REMARKS

Aiming to build a high quality dataset for both station and sea level pressure
in Canada, we have developed a comprehensive QA system for surface atmospheric
pressure at two levels (station- and sea-level), which was applied to pressure data
recorded in the last 50 years at 761 Canadian stations.

The results show that there exist serious systematic errors in the Canadian
historical atmospheric pressure data and that random error(s) can be found for almost
every station. The systematic errors are found to be caused either by the use of wrong
station elevation values in the reduction of barometer readings to station or sea level
pressure values (e.g., the “50 feet rule” or station relocation without updating the
station elevation), or by transposition/swapping of station and sea level pressure
values, or by mistakes made in the archive data ingestion or data
recording/digitization processes (e.g., use of a wrong base number). Fortunately, a
vast majority of these errors can be detected and corrected by the QA system with

either automatic or interactive correcting method. The corrected P, and P, data

should be much more reliable and better suited for various climate studies, including
its use in producing a 100-yr reanalysis (Compo et al., 2006).
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A recursive testing algorithm for detecting and adjusting for
multiple artificial changepoints in a time series

Xiaolan L. Wang
Climate Research Division, ASTD, STB, Environment Canada, Toronto, ON, Canada
Phone: +1-416-739-4115 Email:Xiaolan.Wang @ec.gc.ca

1. INTRODUCTION

This algorithm is based on one of the following “two-phase regression” (TPR)
approaches for detecting a changepoint at time ¢ in time series X, (t =1,2,..., N):
e TPR2is to test
Hy:X,=Wn+¢, (nullmodel) against
H,: X, =u+Al,+¢€, (fullmodel)
[note that TPR2 with an independent, identically distributed (IID) Gaussian

noise process is equivalent to the SNHT in Alexandersson (1986)]
e TPR3 is to test

Hy:X,=pn+Pr+¢, (null model) against

H,: X, =Ww+Al, . +Bt+e, (full model)
e TPR4 is to test

Hy:X,=u+Pr+¢, (null model) against

H,: X, =Ww+Al5 .+ B +8I. )t +¢, (full model)
e TPR3"is to test

Hy:X,=pn+Pt+¢, (null model)  against

H,: X, =u—=08cls.q+ (P +8Is.)t+e, (full model)

[this is a special case of TPR4, in which A = -3¢ (i.e., no mean-shift, only the
trend changes at time c); so the full model has only 3 free parameters]

I B 0 fort<c
[#>e] ™ 1 fort>c

where

and €, can be either an IID Gaussian noise process (Reeves et al. 2006, Wang 2003,

Lund and Reeves 2002) or a periodic Gaussian noise process (with periodic lag-1
autocorrelation and perhaps also periodic variance; see Lund et al. 2006 for details).
For an undocumented changepoint, the test statistic is
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Finax =MaX <<y Fe
where
_ (SSEy —SSE,)/(m, —my)
" SSEal(N-m,)
mg and m,, are the number of free parameters involved in the null model and the full

model, respectively, and SSE, and SSE, are the sum of squared errors (SSE) of the
null and full model fit (i.e., without and with a changepoint at time c), respectively. In
the case of autocorrelated and/or periodic Gaussian noise, both the null and full
model’s residuals are scaled by the variance of the full model’s residuals before being
used to calculate the SSE’s (see Lund er al. 2006 for details). The significance of an
undocumented changepoint is determined by comparing its F,,, value with the

corresponding 95™ percentiles F,05 (Reeves et al. 2006, Lund et al. 2006, Wang
2003, Lund and Reeves 2002). However, the significance of a documented
changepoint (say at a known time c;) is determined by comparing its F,, value with
the F-distribution with (m, —m;) numerator degrees of freedom and (N —m,)
denominator degrees of freedom (its significance level o is estimated).

2. THE RECURSIVE TESTING ALGORITHM

A recursive testing procedure is necessary, because of the possible existence of
multiple change-points in one single time series, and because most of the current
change-point detection methods are developed assuming a single change-point in the
time series. As a result, the first change-point identified might be false or inaccurate,
due to “contamination’ by other change-points in the time series.

This recursive testing algorithm (see also Figure 1) goes like this:
[1]1 Set I, =0 (indicating more changepoints can be added to the list), I, =0

(indicating this is not final assessment), and I, (k) =1 fork =12,..,N -1

(i.e., assume that all possible changepoints are documented in the screening
process prior to the final assessment; this will be verified later in [4]). As in
the conventional hierarchical (or step-wise) splitting algorithm, the first

check is done on the whole series, to find out the time ¢, that is associated
with F. = Fp,c =maxc.<y_| F.. Then, the time series being tested is
split into two segments,S; €[L2,...,c,] and S,el[c,+1lc,+2,..N],
regardless of the significance of the possible changepoint at time ¢, (the

significance is to be re-assessed later in [3]). Set N. =1, ¢; =c,, the list of
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(2]

(3]

changepoints C= {c;}, and [,; =0 (indicating not all the listed
changepoints are significant). Save SSE,(N,)= SSE of the full model
with a changepoint at time ¢; =c,.
For each possible value of ce R(R includes all integers in interval
[ILN—1] except the N, points already listed as changepoints), fit a
(N +2)-phase regression with the N,. changepoints plus a new candidate
at time ¢, and save the resulting SSE as SSE(c) (note that these are the full
model’s SSE). Then, find the new changepoint ¢, by searching for

SSE(c,) = min . SSE(c); F,  =F. = SSE,(N,)— SSE(c,)
* SSE(c,)/(N —m)

the number of free parameters involved in the full model with the
M. =(N_,+1) changepoints (e.g., m=(2+M ) for the [ID TPR3 model,
and m = (1+M ) for the IID SNHT model). If the changepoint c, is
significant in the presence of the other N, changepoints [i.e., it has
o <005 if I;(c,)=1 (documented) or F, =F,o0s if I,(c,)=0
(undocumented)], add it to the list of changepoints to form a new list
éz{cl <y <-<cy g}, set Mo =(N.+1), SSEa(M.)=SSE(c,),
and N.=M_;if I, =1 (i.e., all the listed changepoints are significant)

, where m is

go to repeat [2], otherwise go to [3]. If the changepoint ¢, is not
significant, set /, =1 (no more changepoint can be added to the list) and
M. =N,,then go to [3].

For each k (k=1,2,..,M ), fita M -phase regression to the data, omitting
changepoint ¢; while keeping all the other (M. —1) changepoints in the
list of é={c1 <cy <:-<cy }, and save the resulting SSE as SSE (k)
SSE (k) - SSEa(M )
SSEa(M .) /(N —m)
changepoint c;, by searching for F_, (k.)=min 1<k<mt, Frnax (k) -

and F__ (k)= Then, find the least significant

If ¢, is significant in the presence of the other (M, -1)
changepoints (it has o <0.05 if [;(c; )=1 or F, =2F,p if
I,(c;,)=0), all the M. changepoints are significant, set [, =1,
N.=M_;if I, =0 go torepeat [2], otherwise go to [4].

If ¢, is not significant in the presence of the other (M, -1)
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changepoints (it has o <0.05 if [;(c;.)=1 or F . 2=F,p if
1,;(ci.)=0), delete it from the list of changepoints and set M. =M . -1,
then set SSEa(M .) = SSE,(k+);if M. >0 go to repeat [3], otherwise go
to [4].

[4] Output the estimated parameters and statistics of the (M. +1)-phase
regression model fit. If M. >0 and I, =0, analyze these results along

with metadata (if available): For k=12,..M

found to have no metadata support (undocumented). Delete from the list the
changepoint of the smallest shift if it turns out to be an insignificant

undocumented changepoint, set M. =M, —1 and I, =1, and go to repeat

set Id(ck):() if Cr is

C?

[3]; otherwise, all changepoints in the list are significant; these results are
the final estimates, which include the final estimates of the position,
significance, and magnitude of all shifts identified [along with all other
non-changepoint  parameters (e.g., intercepts, slope(s)...]. Most
importantly, the position, significance, and magnitude of each artificial shift
are assessed in the presence of all other changepoints in the time series.

Note that during the recursive testing process before reaching step [4] for the first
time (when 7, =0), the significance level o is estimated for all changepoints as if
they were documented and all changepoints with o <0.05 are kept in the list of
changepoints for further analysis along with metadata (in step [4]). All changepoints
with o <0.05 but F,,, <F,,s that are found later to have no metadata support
(undocumented changepoints) are deleted from the list (one at a time) when we go to
repeat [3] from [4].
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[11Set [, =0, Iy =0,1,;(k)=1 fork=12,..,N—1.Check over all
possible changepoint positions ¢ € [1, N —1] to find out the time ¢, that is
associated with F. = Fy, =maxc.<y 1 F. . and split the time series being
tested into two segments, S7 € [1,2,...,c ] and S, € [c, +1,¢, +2,...N]. Set

N.=1, ¢ =c,, the list of changepoints C= {c;},and I, =0.

A 4

\ 4

[2] Is another significant changepoint found in the presence of the /N, changepoints?

If no, set /, =1 (indicating no
more changepoints can be added),

If yes, set M,.=N,+1 and add the new
changepoint to the list to form a new list:

and M, =N, . C:{c1<c2<~--<cMC}.
ISIall :1{7
X Nov Yes >

[3] Re-assess the significance of the smallest
shift in the presence of other larger shifts:

Is it significant (i.e., o0 £0.05 if documented,
or F 2> I, 05 if undocumented)?

A

A

y

max —
If yes, all the If no, delete it
M . changepoints are frgm the list; set
significant. Set M. =M_-1.
Iall:]"NC:MC' ISML>O{’
IsI, =17
No Yes No Yes R

A

regression fit.

estimates.

[4] Output the estimated parameters and statistics of the (M . +1)-phase

If M, >0 and [ f= 0, analyze these results along with metadata (if available).
Delete from the list the changepoint of the smallest shift if it is an insignificant

undocumented one, set M, =(M_ —1), I F= 1, and repeat [3}-
Otherwise, all changepoints in the list are significant; these results are the final

Y

Figure 1. A recursive testing algorithm for detecting multiple artificial changepoints

in a time series.
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3. REMARKS ON MODEL SELECTION

The open source software package RHTest (Wang and Feng 2004), which is available
free of charge at http://cccma.seos.uvic.ca/ETCCDMI/software.html (see also Wang
2006), has been modified to implement this recursive testing algorithm for detecting
and adjusting for multiple artificial changepoints in a time series. Users of this
software can choose an appropriate model (e.g., TPR2 or TPR3 or TPR4, with IID or
periodic Gaussian noise) according to the characteristics of the time series to be
tested.

Generally, TPR2 should be the best in cases of an available reference series that is
good enough to completely remove the climate signal (trends and periodic
fluctuations) from the target series (i.e., the target-minus-reference series has zero
trend and no periodic fluctuations). TPR3 should be the best in cases of a systematic
difference in trend between the reference and the target series. TPR3" should be used
when only a gradual shift (no sudden change) is suspected in the target series (but not
in the reference series if used). TPR4 is not recommended in most cases when a
reference series is available and used, because TPR4 tends to overfit the series
(Reeves et al. 2006) and, in particular, it is usually not realistic for the difference in
trend between the reference and the target series to change often over time (in that
case, the reference series is of little sense).

It should be stressed that the use of good reference series can not diminish the
autocorrelation in the target series if exists. Thus, the TPR approaches with an
autocorrelated noise process should be more appropriate than their I[ID counterparts
in most climate applications. In particular, when a reasonably good reference series is
not available, it is necessary to use a TPR approach that takes into account
changepoints, autocorrelation, and periodicities (including seasonality) in tandem (see
Lund et al. 2006). In this case, TPR2, with white or periodic noise, is often not
suitable in climate applications because of the presence of climate signal in the target
series; TPR3 with periodic mean response and periodic noise should be suitable for
most applications, especially those with focus on identification of mean-shifts.

Also, it should be pointed out that homogeneity of reference series can not be
assumed without some sort of investigation, and that relative homogeneity tests may
let network-wide artificial shifts go undetected. Although large shifts can be seen
through visual inspection of time series, it should be more objective to apply to the
reference series a TPR approach that takes into account changepoints,
autocorrelation, and periodicities in tandem, to obtain preliminary information about
its homogeneity, to help determine if a changepoint in the target-minus-reference
series comes from the target or from the reference series and if there is any network-
wide artificial shift present in the observing network being analyzed.
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Gonzalez-Hidalgo, J.C., De Luis Arrirraga, M., S&teek, P., Lanjeri, S. (ES, C2):
Quality Control of monthly precipitation series findViediterranean areas of Spain

Toreti, A. and Desiato, F. (IT): Homogenization aradidity controls for temperature
trend estimates over ltaly

Kejna, M. (PL): Homogenisation of air temperatueees from Antarctic

Petrovt, P. (SCG): Detection Of Inhomogeneities In Winddotion And Speed Data

Lunch break
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Kveton, V. and Zak, M. (CZ): Urban effects on thenperature time series of Prague

Aguilar, E., Brunet, M., Saladié, O., Sigro, J. JHSomogenization of the Spanish
Daily Temperature Series. A step forward.

Stspanek, P.Rezntkova, L., Brazdil, R. and Pitava, Z. (CZ): Homogenization of
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on non-parametric kernel regression
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Domonkos, P. (HU): Testing of homogenisation methq@airposes, tools and problems
of implementation
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Boroneant, C., Baciu, M. and Orzan, A. (RO): Ongtadistical parameters calculated
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Cheval, S., Baciu, M., Copaciu, V., Breza, T. aeddaru, V. (RO): Intercomparison
between the hourly meteorological parameters peavlay the automatic and
classical stations in Romania
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Vizi, Zs. and Przybylak, R. (PL): Estimation of taecuracy of methods used for the
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Stepanek, P. and Mihulova, K. (CZ,SK): Homogenatf air temperature and

relative humidity monthly means for individual obgtion hours in the area of the
Czech and Slovak Republik

Van Hauteghem, H. (BE): Quality Control Frameworkhe Royal Meteorological
Institute of Belgium

Chen, Y. and Churkina, G. (DE): A comparison ofmdie variables between various
data source as the climate forcing to ecosystenettiogl
Heino, R. (FI): CCl perspectives on climate data

18:00 Seminar banquet

Friday, 02 June (only morning session)

9:00-13:00

Discussion:
- COST action plan
- Further cooperation and plans
- recommendations

Additionally:
PC experience, Presentation of softwares
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WCDP-1 WMO REGION IlIl/IV TRAINING SEMINAR ON CLIMATE DATA MANAGEMENT AND
USER SERVICES, Barbados, 22-26 September 1986 and Panama, 29 September 3
October 1986 (available in English and Spanish) - (WMO-TD No. 227)

WCDP-2 REPORT OF THE INTERNATIONAL PLANNING MEETING ON CLIMATE SYSTEM
MONITORING, Washington DC, USA, 14-18 December 1987 - (WMO-TD No. 246)

WCDP-3 GUIDELINES ON THE QUALITY CONTROL OF DATA FROM THE WORLD
RADIOMETRIC NETWORK, Leningrad 1987 (prepared by the World Radiation Data
Centre, Voeikov Main Geophysical Observatory) - (WMO-TD No. 258)

WCDP-4 INPUT FORMAT GUIDELINES FOR WORLD RADIOMETRIC NETWORK DATA,
Leningrad 1987 (prepared by the World Radiation Data Centre, Voeikov Main Geophysical
Observatory) - (WMO-TD No. 253. p. 35)

WCDP-5 INFOCLIMA CATALOGUE OF CLIMATE SYSTEM DATA SETS, 1989 edition (WMO-TD
No. 293)

WCDP-6 CLICOM PROJECT (Climate Data Management System), April 1989 (updated issue of
WCP-| 1 9) - (WMO-TD No. 299)

WCDP-7 STATISTICS ON REGIONAL NETWORKS OF CLIMATOLOGICAL STATIONS (based on
the INFOCLIMA World Inventory). VOLUME II: WMO REGION | - AFRICA (WMO-TD No.
305)

WCDP-8 INFOCLIMA CATALOGUE OF CLIMATE SYSTEM DATA SETS - HYDROLOGICAL DATA

EXTRACT, April 1989 - (WMO-TD No. 343)

WCDP-9 REPORT OF MEETING OF CLICOM EXPERTS, Paris, 11-15 September 1989 (available
in English and French) - (WMO-TD No. 342)

WCDP-10 CALCULATION OF MONTHLY AND ANNUAL 30-YEAR STANDARD NORMALS, March
1989 (prepared by a meeting of experts, Washington DC, USA) - (WMO-TD No. 341)

WCDP-11 REPORT OF THE EXPERT GROUP ON GLOBAL BASELINE DATASETS, Asheville,
USA, 22-26 January 1990 - (WMO-TD No. 359)

WCDP-12 REPORT OF THE MEETING ON HISTORICAL ARCHIVAL SURVEY FOR CLIMATE
HISTORY, Paris, 21-22 February 1990 - (WMO-TD No. 372)

WCDP-13 REPORT OF THE MEETING OF EXPERTS ON CLIMATE CHANGE DETECTION
PROJECT, Niagara-on-the-Lake, Canada, 26-30 November 1990 - (WMO-TD No. 418)

Note: Following the change of the name of the World Climate Data Programme (WCDP) to
World Climate Data and Monitoring Programme (WCDMP) by the Eleventh WMO
Congress (May 1991), the subsequent reports in this series will be published as
WCDMP reports, the numbering being continued from No. 13 (the last 'WCDP"
report).

WCDMP-14 REPORT OF THE CClI WORKING GROUP ON CLIMATE CHANGE DETECTION,
Geneva, 21-25 October 1991
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REPORT OF THE CClI EXPERTS MEETING ON CLIMATE CODE ADAPTATION,
Geneva, 5-6 November 1991 - (WMO-TD No. 468)

REPORT OF THE CCl EXPERTS MEETING ON TRACKING AND TRANSMISSION OF
CLIMATE SYSTEM MONITORING INFORMATION, Geneva, 7-8 November 1991 -
(WMO-TD No. 465)

REPORT OF THE FIRST SESSION OF THE ADVISORY COMMITTEE ON CLIMATE
APPLICATIONS AND DATA (ACCAD), Geneva, 19-20 November 1991 (also appears as
WCASP-18) - (WMO-TD No. 475)

CCl WORKING GROUP ON CLIMATE DATA, Geneva, 11-15 November 1991 (WMO-TD
No. 488)

REPORT OF THE SECOND CLICOM EXPERTS MEETING, Washington DC, 18-22 May
1992 - (WMO-TD No. 511)

REPORT ON THE INFORMAL PLANNING MEETING ON STATISTICAL PROCEDURES
FOR CLIMATE CHANGE DETECTION, Toronto, 25 June, 1992 (WMO-TD No. 498)

FINAL REPORT OF THE CClI WORKING GROUP ON CLIMATE DATA AND ITS
RAPPORTEURS, November 1992 - (WMO-TD No. 523)

REPORT OF THE SECOND SESSION OF THE ADVISORY COMMITTEE ON CLIMATE
APPLICATIONS AND DATA (ACCAD), Geneva, 16-17 November 1992 (also appears as
WCASP-22) - (WMO-TD No. 529)

REPORT OF THE EXPERTS MEETING ON REFERENCE CLIMATOLOGICAL
STATIONS (RCS) AND NATIONAL CLIMATE DATA CATALOGUES (NCC), Offenbach
am Main, Germany, 25-27 August 1992 - (WMO-TD No. 535)

REPORT OF THE TENTH SESSION OF THE ADVISORY WORKING GROUP OF THE
COMMISSION FOR CLIMATOLOGY, Geneva, 20-22 September 1995 (also appears as
WCASP-34) - (WMO-TD No. 711)

REPORT OF THE FIFTH SESSION OF THE ADVISORY COMMITTEE ON CLIMATE
APPLICATIONS AND DATA (ACCAD), Geneva, 26 September 1995 (also appears as
WCASP-35) - (WMO-TD No. 712)

REPORT ON THE STATUS OF THE ARCHIVAL CLIMATE HISTORY SURVEY
(ARCHISS) PROJECT, October 1996 (prepared by Mr M. Baker) - (WMO-TD No. 776)

SUMMARY REPORT OF THE MEETING OF THE THIRD SESSION OF THE CCI
WORKING GROUP ON CLIMATE CHANGE DETECTION, Geneva, 26 February - 1
March 1996 - (WMO-TD No. 818)

SUMMARY NOTES AND RECOMMENDATIONS FOR CCI-XIl FROM MEETINGS
CONVENED TO PREPARE FOR PUBLISHING THE FIFTH AND SIXTH GLOBAL
CLIMATE SYSTEM REVIEWS AND FOR A PUBLICATION ON THE CLIMATE OF THE
20TH CENTURY, July 1997 - (WMO-TD No. 830)

CLIMATE CHANGE DETECTION REPORT - REPORTS FOR CCI-Xll FROM
RAPPORTEURS THAT RELATE TO CLIMATE CHANGE DETECTION, July 1997 (WMO-
TD No. 831)

SUMMARY NOTES AND RECOMMENDATIONS ASSEMBLED FOR CCI-XIl FROM
RECENT ACTIVITIES CONCERNING CLIMATE DATA MANAGEMENT, July 1997
(WMO-TD No. 832)

REPORTS FOR CCI-XIl FROM RAPPORTEURS THAT RELATE TO CLIMATE DATA
MANAGEMENT, July 1997 - (WMO-TD No. 833)
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PROGRESS REPORTS TO CCI ON STATISTICAL METHODS, July 1997 (prepared by
Mr Christian-Dietrich Schénwiese) (WMO-TD No 834)

MEETING OF THE CCl WORKING GROUP ON CLIMATE DATA, Geneva, 30 January - 3
February 1995 - (WMO-TD No. 841)

EXPERT MEETING TO REVIEW AND ASSESS THE ORACLE-BASED PROTOTYPE
FOR FUTURE CLIMATE DATABASE MANAGEMENT SYSTEM (CDBMS), Toulouse,
France, 12-16 May 1997 - (WMO-TD No. 902)

REPORT OF THE ELEVENTH SESSION OF THE ADVISORY WORKING GROUP OF
THE COMMISSION FOR CLIMATOLOGY, Mauritius, 9-14 February 1998 (also appears
as WCASP-47) - (WMO-TD No. 895)

REPORT OF THE MEETING OF THE CCl| TASK TEAM ON CLIMATE ASPECTS OF
RESOLUTION 40, Geneva, Switzerland, 10-1 1 June 1998 - (WMO-TD No. 925)

REPORT OF THE MEETING OF THE JOINT CCI/CLIVAR TASK GROUP ON CLIMATE
INDICES, Bracknell, UK, 2-4 September 1998 - (WMO-TD No. 930)

REPORT OF THE MEETING OF THE WMO COMMISSION FOR CLIMATOLOGY (CCI)
TASK GROUP ON A FUTURE WMO CLIMATE DATABASE MANAGEMENT SYSTEM
(CDMS), Ostrava, Czech Republic, 10-13 November 1998 and FOLLOW-UP WORKSHOP
TO THE WMO CCI TASK GROUP MEETING ON A FUTURE WMO CDMS, Toulouse,
France, 30 March-1 April 1999 - (WMO-TD No. 932)

REPORT OF THE MEETING OF THE CCl WORKING GROUP ON CLIMATE DATA,
Geneva, Switzerland, 30 November-4 December 1998 - (WMO-TD No. 970)

REPORT OF THE MEETING ON CLIMATE STATISTICS, PRODUCT DEVELOPMENT
AND DATA EXCHANGE FOCUSING ON CLICOM 3.1, Geneva, 25-29 January 1999 -
(WMO-TD No. 971)

PROCEEDINGS OF THE SECOND SEMINAR FOR HOMOGENIZATION OF SURFACE
CLIMATOLOGICAL DATA, Budapest, Hungary, 9-13 November 1998 (WMO-TD No. 962)

REPORT OF THE MEETING OF EXPERTS ON THE CLIMATE OF THE 20TH
CENTURY, Geneva, 26-30 April 1999 - (WMO-TD No. 972)

REPORT OF THE TRAINING SEMINAR ON CLIMATE DATA MANAGEMENT
FOCUSING ON CLICOM/CLIPS DEVELOPMENT AND EVALUATION, Niamey, Niger, 03
May-10 July 1999, (WMO-TD No. 973)

REPRESENTATIVENESS, DATA GAPS AND UNCERTAINTIES IN CLIMATE
OBSERVATIONS, Invited Scientific Lecture given by Chris Folland to the WMO Thirteenth
Congress, Geneva, 21 May 1999 - (WMO-TD No. 977)

WORLD CLIMATE PROGRAMME - WATER, DETECTING TREND AND OTHER
CHANGES IN HYDROLOGICAL DATA, Zbigniew W. Kundzewicz and Alice Robson
(Editors) - (WMO-TD No. 1013)

MEETING OF THE WMO CCI TASK GROUP ON FUTURE WMO CLIMATE DATABASE
MANAGEMENT SYSTEMS (CDMSs), Geneva, 3-5 May 2000 (WMO-TD No. 1025)

REPORT ON THE ACTIVITIES OF THE WORKING GROUP ON CLIMATE CHANGE
DETECTION AND RELATED RAPPORTEURS, 1998-2001 (May 2001, updated from
March 2001) (WMO-TD No. 1071)

REPORT OF THE FIRST SESSION OF THE MANAGEMENT GROUP OF THE
COMMISSION FOR CLIMATOLOGY (Berlin, Germany, 5-8 March 2002) (also appears as
WCASP-55) (WMO-TD No. 1110)
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1. REPORT ON THE CLICOM-DARE WORKSHOP (San José, Costa Rica, 17-28 July
2000); 2. REPORT OF THE INTERNATIONAL DATA RESCUE MEETING (Geneva, 11-13
September 2001) (WMO-TD No. 1128)

REPORT OF THE CLIMATE DATABASE MANAGEMENT SYSTEMS EVALUATION
WORKSHOP (Geneva, 11-13 September 2001) (WMO-TD No. 1130)

SUMMARY REPORT OF THE EXPERT MEETING FOR THE PREPARATION OF THE
SEVENTH GLOBAL CLIMATE SYSTEM REVIEW (7GCSR) (Geneva, 16-19 September
2002) (WMO-TD No. 1131)

GUIDELINES ON CLIMATE OBSERVATION NETWORKS AND SYSTEMS (WMO-TD No.
1185)

GUIDELINES ON CLIMATE METADATA AND HOMOGENIZATION (WMO-TD No. 1186)
REPORT OF THE CCI/CLIVAR EXPERT TEAM ON CLIMATE CHANGE DETECTION,
MONITORING AND INDICES (ETCCDMI) (Norwich, UK, 24-26 November 2003) (WMO-TD
No. 1205)

GUIDELINES ON CLIMATE DATA RESCUE (WMO-TD No. 1210)

FOURTH SEMINAR FOR HOMOGENIZATION AND QUALITY CONTROL IN
CLIMATOLOGICAL DATABASES (Budapest, Hungary, 6-10 October 2003) (WMO-TD No.
1236)

REPORT OF THE RA V DATA MANAGEMENT WORKSHOP (Melbourne, Australia,
28 November-3 December 2004) (WMO-TD No. 1263)

GUIDELINES ON CLIMATE WATCHES (WMO-TD No. 1269)

REPORT OF THE MEETING OF THE RA | WORKING GROUP ON CLIMATE MATTERS
(Dakar, Senegal, 22 — 24 February 2006) (WMO-TD No. 1351)

GUIDELINES ON CLIMATE DATA MANAGEMENT (WMO-TD No. 1376)

THE ROLE OF CLIMATOLOGICAL NORMALS IN A CHANGING CLIMATE (WMO-TD No.
1377)

GUIDELINES FOR MANAGING CHANGES IN CLIMATE OBSERVATION PROGRAMMES
(WMO-TD No. 1378)

RA VI TRAINING SEMINAR ON CAPACITY BUILDING IN CLIMATE-RELATED MATTERS
(Yerevan, Armenia, 2 — 5 October 2006) (WMO-TD No. 1386)

JOINT CCL/CLIVAR/JCOMM EXPERT TEAM ON CLIMATE CHANGE DETECTION AND
INDICES (Niagara-on-the-Lake, Canada, 14 - 16 November 2006) (WMO-TD No. 1402)

EXPERT TEAM ON OBSERVING REQUIREMENTS AND STANDARDS FOR CLIMATE
(Geneva, 28 - 30 March 2007) (WMO-TD No. 1403)

A CASE-STUDY/GUIDANCE ON THE DEVELOPMENT OF LONG-TERM DAILY
ADJUSTED TEMPERATURE DATASETS (WMO-TD-1425)

PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON RESCUE AND
DIGITIZATION OF CLIMATE RECORDS IN THE MEDITERRANEAN BASIN (Tarragona,
Spain, 28-30 November 2007) (WMO-TD-1432)

CLIMATE DATA MANAGEMENT GUIDELINES
REPORT OF THE MEETING OF THE CCL EXPERT TEAM ON THE RESCUE,

PRESERVATION AND DIGITIZATION OF CLIMATE RECORDS (Bamako, Mali, 13-15 May
2008) (WMO-TD-1480)



WCDMP-70  GUIDELINES FOR PLANT PHENOLOGICAL OBSERVATIONS (WMO-TD No. 1484)

WCDMP-71  PROCEEDINGS OF THE FIFTH SEMINAR FOR HOMOGENIZATION AND QUALITY
CONTROL IN CLIMATOLOGICAL DATABASES (Budapest, Hungary, 29 May-2 June 2006)
(WMO-TD-1493)
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