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PREFACE 

 
 
 
The First Seminar on Homogenisation was organized ten years ago in 1996. The 

basic questions were the distribution of homogenisation methods and the overall use of 
homogenous (homogenised) time series in climate change studies in that time. 
Homogenisation was not widely accepted, and the generally recommended methods had 
very simple and poor mathematical basis. 
The general view has been changed since then. Homogenisation became a basic element of 
the data quality procedure, although many of the recommendations of the First Seminar are 
not fulfilled even today. The information on the applied homogenisation method is not 
always published along with the time series, however we have many good examples 
already. 
At the same time, research community requires more and more from the experts on 
homogenisation. Nowadays, one of the largest, still not fully solved problems is the 
homogenisation of daily time series. Many, very important indices are calculated from the 
daily data, and those indices are needed for climate change detection, changes of extreme 
values, etc. 
A new COST Action proposal has the basic task to compare, evaluate and develop 
homogenisation methods. COST (European Cooperation in the field of Scientific and 
Technical Research) is open for the appropriate institutions, but supports only the member 
states. We hope, that this new Action will give a push to the dissemination and 
development of homogenisation methods not only in Europe, but worldwide. 
This seminar is supported by WMO and OMSZ, and we hope that the series of 
Homogenisation Seminars can co-operate with different other initiative for development of 
data quality with special regards to homogenisation. 
 
 
 
 
 
 
 
 
 
        Sándor Szalai 
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AN OVERVIEW ON THE MAIN METHODOLOGICAL QUESTIONS 
OF HOMOGENIZATION 

Tamás Szentimrey 
 

Hungarian Meteorological Service 
szentimrey.t@met.hu 

 

1. INTRODUCTION 

Today the theme of homogenization can be divided into two subgroups, such as monthly 
and daily data series homogenization. These subjects are in strong connection of course, 
for example monthly results can be used for the homogenization of daily data. However 
while monthly series homogenization is relatively well elaborated, the problem of daily 
data is still in early stage. Owing to these respects we will consider first the main 
methodological questions of monthly series homogenization, namely the relative and 
absolute test methods. In connection with the relative methods, the following topics will be 
detailed: mathematical methodology for comparison of series, break point (changepoint) 
and outlier detection, correction of series, missing data complementing as well as the 
possibilities of verification for both methods and results. Concerning the homogenization 
of daily data series we will discuss the possibility to use the detected monthly 
inhomogeneities for daily data, furthermore the special importance of quality control and 
missing data completion. The key issue of exact mathematical methods is also emphasized, 
as there is no royal road to anything. 
The following methods will be referred as examples: SNHT (Standard Normal 
Homogeneity Test, Alexandersson, 1986), Caussinus-Mestre’s method (Mestre, 1999, 
2004) and MASH (Multiple Analysis of Series for Homogenization, Szentimrey, 1999, 
2004). 

2. HOMOGENIZATION OF MONTHLY DATA 

2.1 Absolute and relative methods 

In case of absolute methods we have only one candidate series without any other reference 
series. The additive model for the candidate monthly series is, 

)()()()( ttIHEttX εµ += ++                 ( ).,n,,t …= 21  , 
where )(tµ  is the unknown climate change signal, E  is the spatial expected value, )(tIH  
is the inhomogeneity signal and )(tε  is a normal white noise series. The main problem of 
the application of absolute methods is that the separation between the climate change 
signal and the inhomogeneity is essentially impossible. 

2.1.1. The additive model of relative methods 

Relative methods can be applied if there are more station monthly series given, which can 
be compared mutually. In case of relative methods the additive model for more monthly 
series belongs to the same month in a small climate region is as follows, 

)()()()( ttIHEttX jjjj εµ +++=      ( ).,n,, t,N ,,j …=…= 21;21  ,                (1) 
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where )(tµ  is the common and unknown climate change signal, jE  are the spatial 

expected values, )(tIH j  are the inhomogeneity signals and )(tε  are normal white noise 

series. As concerns the type of ( )tµ  there is no assumption about the shape of this signal. 

The type of inhomogeneity ( )tIH  is in general a ’step-like function’ with unknown break 

points T  and shifts ( ) ( ) 01 ≠+− TIHTIH , and ( ) 0=nIH  is assumed in general. The 
expected values  

( ) )()()(E tIHEttX jjj ++= µ      ( ).,n,, t,N ,,j …=…= 21;21  , 

are covered with the normal white noise series,  

( ) ( ) ( )[ ] ( )C0ε ,,....., T
1 Nttt N ∈= εε        ( )nt ,...,1=  , 

where the vector variables ( )tε ( )nt ,...,1=  are totally independent in time, and matrix C  is 
the spatial covariance matrix between the stations. This station covariance matrix C  may 
have a key role in methodology of comparison of series.  
The aim of the homogenization procedure is to detect the inhomogeneities and to correct 
the series. During the procedure the series can be compared mutually and the role of series 
– either the candidate or the reference ones – is changing in the course of procedure. The 
reference series are not assumed to be homogeneous in the correct examinations! The 
significance and the power of the procedures can be defined according to the probabilities 
of the type of errors. Type one error means the detection of false or superfluous 
inhomogeneity while type two error means neglecting some real inhomogeneity. 

2.2 Methodology for comparison of series 

The problem of comparison of series is related to the following questions: reference series 
creation, difference series constitution, multiple comparisons of series etc. This topic is 
very important for detection as well as for correction, because the efficient comparison of 
series can increase both the significance and the power. The development of efficient 
comparison methods can be based on the examination of the spatial covariance structure of 
data series.  
As we emphasized earlier all the examined series )(tX j ( )Nj ,...,1=  are taken as 

candidate and reference series alike, besides the reference series are not assumed to be 
homogeneous at the correct examinations! 
The main problem arises from the fact that the shape of climate change signal is unknown. 
Therefore so-called difference series are examined in order to filter out the climate change 
signal )(tµ . The simple difference series between pairs are ( ) ( ) ( )tXtXtZ ij −= . However 

the difference series constitution can be formulated in more general way as well. Assuming 
that ( )tX j  is the candidate series and the other ones are the reference series, the difference 

series belongs to the candidate series can be constituted as, 
( ) ( ) ( )tXtXtZ i

ji
jijj ∑

≠

−= λ ( ) ( ) ( )ttIHtIH
jZi

ji
jij ελ +−= ∑

≠

                                    (2) 

with condition of  1=∑
≠ ji

jiλ  for the weighting factors. As a result of the last condition, the 

unknown climate change signal )(tµ  has been filtered out. Consequently the 
inhomogeneities can be detected by the examination of the difference series defined 
according to formula (1). The interpolation series ( )tX i

ji
ji∑

≠

λ  can be taken as created 

reference series for candidate series )(tX j . 
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In addition if we want to increase the signal to noise ratio in order to increase the power of 
detection then we have to minimize the variance of noise term ( )t

jZε . 

The covariance matrix C  uniquely determines the optimum weighting factors that 
minimize the variance, and the optimal difference series created in this manner can be 
applied efficiently for the detection and correction procedures (MASH, Szentimrey, 1999). 
We mention that in case of using the generalized-least-squares estimation for the unknown 
climate change signal ( )tµ , also the optimal difference series is obtained with minimal 
variance. We have to examine more difference series in order to separate the appropriate 
detected inhomogeneities for the candidate series. More difference series created without 
common reference series and with minimal variances can be defined as optimal difference 
series system (MASH). 

2.3 Methodology for break point (changepoint) detection 

One of the basic tasks of the homogenization is the examination of (more) difference series 
in order to detect the break points and to separate them for the candidate series.   
Let )(tZ  be a difference series according to the formula (2), that is  

( ) ( )ttIHtZ ZZ ε+=)(       ( ).,n, t .1= ,                                                                   (3) 

where ( )tIHZ  is a mixed inhomogeneity of difference series )(tZ  with K  break points 

KTTT <<< .....21 .  In general the number K  and the position of the multiple break points 

KTTT <<< .....21  are unknown, furthermore the noise variables ( )tZε ( )2
ZZ ,EN σ∈  

( )nt ,...,1=  are totally independent in time. The basic types of the detection procedures are 
the stepwise and the multiple break points detection. Let us have the following notation of 
the estimates: KTTTK ˆ21

ˆ.....ˆˆ;ˆ <<<  

2.3.1 Stepwise break points detection procedures 

The algorithm of the stepwise decision procedure to detect the break points is as follows. 
Step 1: the ’most probable’ break point ( )1

1̂T .   

Step 2: the ’most probable’ second break point ( )2
2̂T , assuming that  ( )1

1̂T  is a real break 
point.  ………………………………….. 

Step K̂ : the ’most probable’ thK̂  break point ( )K
KT ˆ
ˆ

ˆ , assuming that ( )1
1̂T ,.., ( )1ˆ

1ˆ
ˆ −

−
K

KT  are real 

break points. 
The number K̂  is the estimation for the number of break points, which is determined also 
in the course of procedure.   
As regards the concept of ’most probable’, it depends on the aim, there is no absolute 
objective function. In general the maximum likelihood estimation is applied. 
The method SNHT (Standard Normal Homogeneity Test, Alexandersson, 1986) is an 
example for the application of this stepwise principle for break points detection. However 
the multiple break points detection procedures, when the break points are estimated jointly 
instead of step by step, are more exact and elegant than the stepwise ones in mathematical 
respect.  

2.3.2 Multiple break points detection procedures 

For joint estimation of the break points there are different possibilities, principles, which 
are classical ways in mathematical statistics. 
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2.3.2.1 Detection based on Bayesian Approach  

The methods based on Bayesian model selection are the penalized likelihood methods. 
These methods are different in the penalty terms or criterions e.g. Akaike criterion, 
Schwarz criterion, Caussinus-Lyazrhi criterion.   
The Caussinus-Mestre’s procedure (Mestre, 1999, 2004) based on the Caussinus-Lyazrhi 
criterion is an example for the penalized likelihood methods. 

2.3.2.2 Detection based on Test of Hypothesis 

Another possibility is to use hypothesis test methods for the detection of break points. At 
the MASH method (Szentimrey, 1999) a hypothesis test procedure has been developed, as 
we want to avoid the type one error that is the damage of data series. The essence of this 
multiple break points detection procedure based on test of hypothesis on a given 
significance level is as follows. 
If the detected break points of )(tZ  are KTTTK ˆ21

ˆ.....ˆˆ;ˆ <<< , 

then on the given significance level   p   (e.g.:  p=0.1): 

 i, )(tZ  is not homogeneous above the intervals ]ˆˆ( 11 +kk- T,T  because,  

    ( ) ptZT,T kk- =∃ + shomogeneou)(: thatabove]ˆˆ(P 11  

    Consequently the detected break points kT̂  are not superfluous. 

    This means there is no serious type one error. 
ii, )(tZ  can be accepted to be homogeneous above the intervals ]ˆˆ( 1 kk- T,T .  

    This means there is no serious type two error. 
Remark  
Confidence intervals are also given for the break points beside the point estimates at the 
method MASH (Szentimrey, 1999). 

2.3.3 Outlier detection (QC) 

In case of monthly series homogenization the outlier detection is the quality control (QC) 
procedure for the data. Furthermore the outlier detection can be considered as a special part 
of break points detection, because an outlier is equivalent with two special break points. 
The point outT  is an outlier point if and only if   

( ) ( ) ( ) ( ) 011 ≠+−=−− outoutoutout TIHTIHTIHTIH . 

Consequently 1−outT and outT are break points, where their shifts are the same in absolute 

value but with opposite sign. 
 
 

2.4 Methodology for correction of series 

Beside the detection, another basic task of the homogenization is the correction of series. 
Calculation of correction factors can be based on the examination of difference series for 
estimation of shifts  ( ) ( )1ˆˆ +− kk TIHTIH   ( )Kk ˆ,...,1=   at the detected break points. 

2.4.1 Correction methods 

Almost all the methods use point estimation for the correction factors at the detected break 
points. For example the Caussinus and Mestre’s method (Mestre, 2004) uses the standard 
least squares technique to estimate the correction factors.  
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The MASH procedure (Szentimrey, 1999) is an exception because the correction factors 
are estimated on the basis of confidence intervals.  

2.4.2 Missing data complementing 

In fact the missing data completion or filling the gaps is an interpolation problem. At the 
MASH method (Szentimrey, 1999) the applied spatial interpolation formula is in 
accordance with the series comparison formula (2), i.e. 

( ) ( )tXtX i
ji

jij ∑
≠

+= λλ0
ˆ                                                                                        (4) 

where ( )tX j
ˆ  is the interpolated candidate series and the series ( )tX i ( )ji ≠  are the 

reference ones, with condition of  1=∑
≠ ji

jiλ  for the weighting factors. The optimum 

interpolation parameters that minimize RMSE  error are uniquely determined by the 
covariance matrixC . 

2.5 The philosophy of MASH 

Careful break points detection and correction iteration procedures in order to decrease the 
probability of type one error. At the same time using optimal series comparison for 
decreasing the probability of type two error i.e to increase the power. 
The break points detection is based on hypothesis testing, point estimation and confidence 
intervals. 
The correction is also based on point estimation and confidence intervals. 
Series comparison uses optimal difference series constitution with optimal weighting 
factors.  
Missing values are completed by spatial interpolation with optimal weighting factors. 
In addition the software MASH is an iteration procedure (Szentimrey, 2006)! 

2.6 Possibilities of Verification  

The confidence in the homogenized series may be increased by the examination of both the 
methods and the results. 
Possibilities for the examination of methods: 

⇒ Theoretical overview and evaluation of the homogenization methods. 
⇒ Testing the methods on the basis of artificial, generated series. 

Possibilities for the examination of homogenization results: 
⇒ Comparing the detected inhomogeneities with the Meta Data. 
⇒ Mathematical verification procedures to evaluate the results. 

BASIC CONCEPTION OF VERIFICATION PROCEDURE BUILT IN  MASH 
(SZENTIMREY, 2004): 

The quality of the homogenized series can be evaluated by the joint comparative 
mathematical examination of the original and the homogenized series systems. 
Also Meta Data information can be used and tested during the procedure. 
Finally, as regards testing of methods we emphasize that,  
Homogenization≠ Break Points Detection!!! 
Homogenization is a much more complex problem:      
Homogenization =Comparison+ Detection+Correction+etc.  
If we want to test the methods, we must fully aware of the complexity! 
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3. HOMOGENIZATION OF DAILY DATA 

The main question is the relation of daily and monthly homogenization. 
The alternative possibilities are as follows: 
– To use the detected monthly inhomogeneities directly for daily data  
   homogenization. 
– Direct methods for daily data homogenization. 
The problems connected with the possibilities: 
– The direct use of the detected monthly inhomogeneities is probably not  
   sufficient.  
– Direct methods for daily data homogenization is probably not enough efficient  
   thinking of the larger variability (less signal to noise ratio).  
So we have the following question: 
How can we use the valuable information of detected monthly inhomogeneities  
for daily data homogenization?  
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ABSTRACT 
 
Undocumented changepoints (inhomogeneities) are ubiquitous features of climatic 
time series.  Level shifts in time series caused by changepoints confound many 
inference problems and are very important data features.  Tests for undocumented 
changepoints from models that have independent and identically distributed errors are 
by now well understood.  However, most climate series exhibit serial autocorrelation.  
Series recorded at monthly, daily, or hourly frequencies may also have periodic 
structures.  This article develops a formal statistical test for undocumented 
changepoints for periodic and autocorrelated time series.  Classical changepoint tests 
based on sum of squared errors are modified to take into account series 
autocorrelations and periodicities.  The methods are applied in the analyses of a 
monthly pressure and a monthly temperature series. 
 
 
1. INTRODUCTION 
 
A changepoint in a time series is a time at which the structural pattern of the series 
changes.  This shift is typically measured in terms of mean or average levels, but 
changepoints in variability, or more generally, in the marginal distributions of the 
series, could be studied.  The series under study may contain measurements scaled by 
a reference series or the raw observations themselves.  While such distinctions are not 
crucial for the moment, the reader is referred to Alexandersson (1986) for a 
discussion on comparisons made by forming differences and ratios of target and 
reference series. 
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Instrumentation/observer changes, station location changes, and changes in 
observation practices are frequent non-climatic (artificial) culprits behind 
changepoints.  In many cases, the changepoint time and cause are documented and it 
is reasonably straightforward to statistically adjust (homogenize) the series for the 
effects of the changepoint. Unfortunately, many changepoints are undocumented. 
 
While undocumented changepoints are sometimes evident in a plot of the series, 
debatable cases also abound.  Visual detection of a changepoint in a series with a 
prominent seasonal mean can be difficult (Section 5b gives an example).  Moreover, 
the statistical methods used to identify undocumented changepoints are known to be 
very important (see Lund and Reeves 2002, Reeves et al.~2006, and Wang 2006).  
Undocumented changepoint detection methods can greatly reduce the workload of 
metadata investigation by identifying times around which the investigation should 
focus.  Hence, the development of statistically sound tests for undocumented 
changepoints is desirable.  Undocumented changepoint detection in climate settings 
has been previously explored by Potter (1981), Thompson (1984), Alexandersson 
(1986), Solow (1987), Karl and Williams (1987), Gullet et al.~(1991), Rhoades and 
Salinger (1993), Easterling and Peterson (1995), Alexandersson and Moberg (1997), 
Vincent (1998), Lund and Reeves2002), Ducre-Robitaille et al.~(2003), Wang 
(2003), Wang and Feng (2004), Hanesiak and Wang (2005), and Wang (2006).  The 
statistical side of the subject is also vast, with Page (1955), Kander and Zacks (1966), 
Hinkley (1969 and 1971), Brown et al. (1975), Hawkins (1977), Chen and Gupta 
(2000), and Caussinus and Mestre (2004) being a prominent sample. Neither of these 
lists is complete.  Reeves et al.~(2006) review undocumented changepoint detection 
methods in climate settings for models with independent and identically distributed 
(IID) Gaussian errors. 
 
In this paper, we develop a method for undocumented changepoint detection for 
series with autocorrelated and periodic features.  The periodic and autocorrelation 
aspects are modeled in tandem rather than separately.  The results enable one to test 
for undocumented changepoints in a variety of realistic climate settings.  The 
methods work with or without a reference series and are specifically designed to 
handle correlated series. They greatly alleviate the heavy dependence of most existing 
methods (which assume IID Gaussian errors) on the availability and use of good 
homogeneous reference series to diminish the effects of periodicities and 
autocorrelations (and trends for models without a trend term, e.g., Alexandersson 
1986).  This paper is perhaps the first detailed investigation of changepoint detection 
in climate settings involving autocorrelation; periodicities and changepoint detection 
were previously considered in Gullett et al. (1991). 
 
The rest of this paper proceeds as follows.  Section 2 introduces a time series 
regression model with autocorrelated and periodic features.  A test statistic weighing 
a null hypothesis of overall series homogeneity against the alternative of an 
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undocumented changepoint is developed in Section 3. Section 4 shows why 
autocorrelation and periodicities are important in changepoint detection problems. 
Applications of the methods to monthly pressures and monthly temperatures are 
given in Section 5. 
 
 
2. THE MODEL 
 
In the time homogeneous (non-periodic) setting, a simple but useful model allowing 
for one changepoint in time series tX  is the following regression: 

NttX tctt ≤≤+∆++= > 1  ,1 ][ εβµ ,             (1) 
where c is the unknown time of change (the exposition focuses on detection of one 
changepoint but others could exist in practice), the magnitude of the changepoint 
effect (step-size) is ∆ ,  and tε  is a zero mean random variable that may be 
autocorrelated (a time series).  The factor β  allows for a simple linear trend in series 
values.  Following Wang (2003), the trend (slope) β  is constrained as equal before 
and after the changepoint at time c.  The simple linear structure in (1) may require 
modification in some settings; for example, Lund and Reeves (2002) analyze a 
carbon dioxide series where a quadratic trend is apparent, while the existence of a 
good reference series may render the inclusion of a trend component unnecessary. 
 
Equation (1) is a simple linear regression model with two phases; such models and 
their variants have been studied in Hinkley (1969), Solow (1987), Easterling and 
Peterson (1995), Vincent (1998), Lund and Reeves (2002), and Wang (2003).  A 
periodic variant of (1) merely allows the location parameter µ  to depend on time and 
vary periodically with period T, i.e., 

NvnTvnTX vnTcvnTvvnT ≤+≤+∆+++= +>++ 1  ,1)( ][ εβµ .    (2) 

In (2), vnTX +  refers to the series during the v season (or month or day…) of cycle n.   
The seasonal index v satisfies Tv ≤≤1  and the period T is assumed known.  Our 
bookkeeping assumes d complete cycles of data and labels these cycles as 0, …, d-1, 
respectively; this makes 1X  the observation for season 1 of cycle 0.  The total 
number of observations is dTN = .  Equation (2) assumes a time homogeneous (non-
periodic) linear trend and time homogeneous mean-shift; this is emphasized 
notationally by the fact that β  and ∆  do not carry subscripts of v.  Changepoints 
inducing different effects on different seasons could be modeled by allowing ∆  to 
depend on v, but we will not pursue such generality here. 
 
The mean series response at time ( vnT + ) in (2) is  

][1)()( cvnTvvnT vnTXE >++ ∆+++= βµ ; 
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hence, seasonality in the first moment is described by.  In addition to seasonality in 
mean, many climatic series also display seasonality in variance and autocorrelations.   
For examples, non-tropical temperature series show larger variabilities (lag zero 
autocovariances) during winter seasons and many Western United States precipitation 
series have minimal variability during late summer and early fall seasons.  
Changepoint times are slightly more difficult to detect at times of peak series 
variability (see Section 4).  To allow for autocorrelation and periodicities, the 
regression errors tε  are modeled as a periodically stationary time series (periodic 
series).  A general overview of periodic series and their applications in climate 
modeling is presented in Lund et al. (1995). 
 
For simplicity of computation, presentation, and flexibility, we will work with 
perhaps the simplest periodic time series model for tε :  a first order periodic 
autoregression, PAR(1).  Such an tε  is governed by the periodic difference equation: 

vnTvnTvvnT Z +−++ += 1εφε       (3) 
where vnTt ZZ +=  is mean zero periodic white noise; that is, tZ  and sZ  are 
uncorrelated when st ≠ , tZ  has zero mean for every t, and the variance of tZ  is 

periodic in that 2)( vvnTZVar σ=+ .  The model in (3) has 2T parameters --- this total 
may be large if the series is observed frequently.  For example, a daily PAR(1) 
( 365=T ) has 365 autoregressive parameters and $365$ white noise variance 
parameters.  Parsimony issues for periodic series are discussed in Lund et al. (2006). 
 
 
3. THE TEST STATISTIC 
 
An undocumented changepoint test statistic weighs the null hypothesis that 

0=∆ (termed a null or 0H  model) against the alternative that 0≠∆  (termed a full or 

AH  model).  The changepoint time c is an unknown parameter of the full model.  
The general form of the test statistic coincides with that in Lund and Reeves (2002) 
and Wang (2003): 

cNc FF <≤= 1max max                        (4) 
where cF  defined by 

)/()(
)(0

pNcSSE
cSSESSE

F
A

A
c −

−
=                  (5) 

is a regression F-type statistic measuring closeness of the null model and a full model 
with a single changepoint at time c.  In (5),  0SSE  and )(cSSEA  are null model sum 
of squared errors and full model sum of squared errors when a changepoint exists at 
time c, respectively.  Note that 0SSE  does not depend on the value of c but that 
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)(cSSEA  does. Here, p is the number of free parameters involved in the full model 
with a changepoint at time c; later, we present applications where 8=p . 
 
In classical regression settings with IID Gaussian tε , cF  has an F distribution 
(exactly) with 1 numerator degree of freedom and ( pN − ) denominator degrees of 
freedom.  The larger cF  is, the more evidence there is that an undocumented 
changepoint exists at time  
c.  Intuitively, the maxF  statistic selects the time of largest discrepancy in the two 
phases of the model, as measured by regression cF  statistics, as the estimator of c.  
The null hypothesis 0H  is accepted when maxF  is small enough to be explained by 
chance variation and rejected when maxF  is excessively large.  The null hypothesis 
percentiles of the maxF  distribution, assuming IID Gaussian errors (specifically time-
homogeneity and independence) and the regression form in (1) are tabulated in Wang 
(2003).  The reader is cautioned about historical mistakes in quantifying this 
distribution (see Lund and Reeves 2002 for discussion); the percentiles in Wang 
(2003) and Lund and Reeves (2002) are accurate. 
 
For IID tε , Alexandersson (1986) and Lund and Reeves (2002) connect the maxF  
statistic to Gaussian likelihood ratios and maxima of correlated t and F random 
variates. Since the cF 's are correlated in c, maxF  does not behave statistically as the 
maximum of independent F-statistics, with each F-statistic having 1 numerator and 
( pN − ) denominator degrees of freedom. 
 
The key methodological innovation put forth here involves modifying sums of 
squares in autocorrelated (and periodic) settings.  Here, we use weighted squared 
prediction errors: 

∑ ∑
= =

++ −
=

n

n

T

v v

vnTvnT XX
SSE

0 1
2

20

0
)ˆ(

 
σ

,                         (6) 

and 

∑ ∑
= =

++ −
=

n

n

T

v v

A
vnTvnT

A
cXX

cSSE
0 1

2

2)](ˆ[
 )(

σ
;               (7) 

moreover, the form of the predictions 0ˆ
vnTX +  and )(ˆ cX A

vnT+  now become best one-
step-ahead linear predictions: 

]1,,...,|[ˆ
110

0
−+++ = vnTvnTvnT XXXPX , ]1,,...,|[ˆ

11 −+++ = vnTvnTA
A

vnT XXXPX ,  (8) 
where ]1,|[ YXP  denotes the best (minimum mean square error) linear prediction of 
X from linear combinations of Y and a constant.  The subscript under P (or the 
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superscript on tX̂  indicates the model (null or full) under which the linear prediction 
is to be computed.  Brockwell and Davis (1991, Chapter 8) provide the theory for 
sum of squared errors in time series settings.  We comment that the PAR(1) structure 
gives 2]ˆ[ vvnTvnT XXVar σ=− ++ . 
 
The computation of maxF  requires 0SSE  and )(cSSEA  for each c.  We first tackle 

0SSE . For the null model, the PAR(1) structure gives 

])1(-[)(ˆ
11

0 −+−+++= −−++ vnTXvnTX vvnTvvvnT βµφβµ               (9) 

for NvnT ≤+≤2 , where the startup convention βµ += 1
0
1X̂  is made.  As the 

parameters β , vµ  and vφ ( Tv ≤≤1 ) are unknown, we estimate them by numerically 
minimizing the sum of squares over all feasible values.  Since it is statistically 
wasteful to expend T parameters each in modeling vµ  and vφ , we impose the first-
order Fourier parsimony constraints 

)
)(2

cos(10 T
v

AAv
τπ

µ
−

+= ,   )
)(2

cos(10 T
v

BBv
ηπ

φ
−

+= ,         (10) 

upon model parameters during minimization.  In these formulations, 0A  and 0B  are 
the mean periodic value of the parameter being modeled, with 1A  and 1B  
representing the maximum amplitude above or below the mean which could be 
achieved. The τ and  
η  are the times (phases) in the cycle at which the parameter being modeled achieves 
its maximum.  These phase parameters are unique only modulo T, but it is 
conventional to utilize values in the range [0, T].  Higher order Fourier series and/or 
wavelet based expansions could be considered if needed.  Lund et al. (2006) discuss 
periodic parsimonious time series modeling in general. Notice that the null model 
expends six free parameters in modeling vµ  and vφ . Adding the trend parameter β  

brings the free parameter count in the expression for 0ˆ
vnTX +  to seven. 

 
The parameters 2

vσ  are viewed here as nuisance parameters.  These parameters are 
least squares weights and become increasingly important to know accurately when 
the variance of the time series has a large seasonal cycle.  In practice, one needs only 
a rough idea of their values --- and this is easily accomplished by several methods, 
one of which is presented in the applications in the next section. 
 
To compute )(cSSEA  for a fixed c, we proceed as with the null model except that (9) 
is modified to account for the changepoint at time c: 
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]1)1(-[                

1)(ˆ

]1[11

][
0

cvnTvvnTv

cvnTvvnT

vnTX

vnTX

>−+−−+

>++

∆−−+−+

∆+++=

βµφ

βµ
        (11) 

for NvnT ≤+≤2 , where the startup convention βµ += 11
ˆ AX  is made.  The full 

model involves eight free parameters (add one for ∆ ) in describing A
vnTX +

ˆ  for each 
fixed c, one more than the null model's total. 
 
The maxF  statistic in (4) along with 0SSE  and )(cSSEA  defined in (6) and (7) has, 
approximately, the percentiles reported in Wang (2003) with ( pN − ) denominator 
degrees of freedom.  These percentiles are not exact as some of the parameters in the 
fitted time series model must be estimated; however, as the sample size N increases, 
the percentiles become increasingly accurate.  Overall, perturbations in Wang's 
(2003) percentiles induced by parameter estimation are relatively minor when 
compared to those reported in the next section when autocorrelation features of the 
series are ignored. 
 
 
4. THE IMPORTANCE OF AUTOCORRELATION AND PERIODICITIES 
 
This section shows how autocorrelations and periodicities influence changepoint 
detection procedures.  We will study how the 95th percentile of the maxF  distribution 
in (4) changes under correlation and periodic time series features.  Our intent here is 
to mimic what happens when one ignores the autocorrelations and/or periodicities in 
the series. 
 
We first investigate the effects of autocorrelation.  Table 1 displays the sample 95th 
percentile of the maxF  distribution under various levels of serial autocorrelation as 
governed by a first-order autoregression, AR(1).  To isolate the effects of 
autocorrelation only, we examine the time-homogeneous model in (1) with AR(1) tε  
satisfying 

ttt Z+= −1φεε ,                                   (12) 

where }{ tZ  is IID Gaussian noise with variance 2σ .  Equation (12) is merely a time 
homogeneous version of (3).  We consider series of length N = 100.  As the 
autoregressive coefficient φ  increases, the degree of serial autocorrelation in the 

model increases.  The white noise variance 2σ  is selected to make the variance of the 
error series tε  unity in all cases; this allows for meaningful comparisons across table 
entries.  The estimated 95th percentiles were aggregated from one hundred thousand 
independent simulations each; hence, they are reasonably accurate. 
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Table 1. The 95th percentiles of the maxF  statistic under autocorrelation φ . 

φ  -0.95 -0.75 -0.50 -0.25 0.00 0.15 0.25 0.50 0.75 0.95 

95.0max,F  4.531 4.211 5.323 7.460 11.054 14.350 17.250 29.547 64.185 176.753 

 
 
The results show that the 95th maxF  percentile generally increases with increasing φ , 
dramatically so for values of φ  slightly less than unity.  This agrees with the findings 
of Percival and Rothrock (2005) and is not surprising:  as 0>φ  becomes larger, the 
series makes longer sojourns above and below its mean response values, which 
effectively imitates the effects of a mean-shift due to a changepoint.  Hence, one 
should be cautious when declaring changepoints in positively correlated series.  
When 0<φ  (which is not usually realistic in climate modeling), consecutive 
observations tend to split the mean response level (one above and one below) and 
make changepoints easier to detect.  The case where 0=φ  corresponds to the case of 
independent errors and is considered in detail by Wang (2003). 
 
Next, we consider how periodicities in the white noise variances influence 
changepoint detection. Here, our model is (2) and { tε } is periodic Gaussian white 
noise. To isolate on the effects of variance-periodicities only, we take 0≡vµ , 

0≡vφ , and 0=β .  The white noise variance parameters were assumed sinusoidal: 

)
)(2

cos(10
2

T
v

CCv
ξπ

σ
−

+= .                     (13) 

Table 2 reports estimates of the 95th maxF  percentile for the regression model in 
Wang (2003), again computed for one hundred thousand simulations for each entry, 
for various values of 0C  and 1C  (and 0=ξ ).  If 01 =C , the error variances are 
nonseasonal and the setting reduces to that studied in Wang (2003).  In fact, when 

01 =C , the maxF  percentiles do not depend on the value of 0C . The larger 1C  is 
relative to 0C , the more seasonality there is in white noise variances (as measured 

across varying seasons v).  Of course, we take 01 CC <  or 2
vσ  could be negative.  

This table employs N = 120 (d = 10, T = 12), which corresponds to a decade of 
monthly data. 
 
The Table 2 results show that the null hypothesis maxF  percentiles increase slightly 

with increasing seasonal variability.  This is as expected:  when 2
vσ  varies greatly 

with the season v, there is a larger chance for an outlying tε  to pull the least squares 
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regression fit away from its true zero mean baseline, hence mimicking a changepoint 
mean-shift. Note, however, that the effects of variance-seasonality are nowhere near 
as drastic as those of autocorrelation.  Observe that the percentiles for the first three 
entries are approximately those for the second three entries. Those for the case 

01 =C  indeed coincide with those reported in Wang (2003) (up to simulation error). 
 
 

Table2. The 95th percentiles of the maxF  statistic under variance-seasonality. 

0C  1C  95.0max,F  

1.00 0.00 11.107 
1.00 0.50 11.926 
1.00 0.95 13.253 
10.0 0.00 11.093 
10.0 5.00 11.926 
10.0 9.50 13.254 

 
 
Finally, to obtain some feel for practical cases involving both periodic and 
autocorrelated features, we have simulated a case where the { tε } follow (3) and 

where the vφ  and 2
vσ  parameters are set to the values that are fitted in the 

temperatures series analyzed in Section 5b below.  Here, the series length is N = 600. 
A simulation of one hundred thousand runs gives an estimated 95th percentile of 
about 16.16, about 40% larger than that for IID errors (which is 11.55, as tabulated in 
Wang 2003).  Hence, even in practical cases, there is plenty of room to commit 
mistakes by ignoring autocorrelation and periodicities. 
  
 
5. EXAMPLES 
 
a. A monthly mean atmospheric pressure series 
 
The above methods were applied to a series of monthly mean atmospheric pressures 
recorded at Stephenville Airport (Newfoundland, Canada) for the period 1953-2002 
(50 years; N = 600), shown in Figure 1.  The mean pressure is lower in winter 
(December-March) and peaks in summer; winter pressure variabilities are also higher 
than those in summer, a property also shared by temperatures. 
 
To estimate 2

vσ , a null model and full models for each admissible changepoint time c 
were fitted to the data by numerically minimizing the sum of squared errors in (6) and 
(7), without the weights 2

vσ  in the denominator of these equations.  The numerical 
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minimization was a fairly stable endeavor and was accomplished with a gradient step 
and search algorithm. The fits suggest that c = 286 is the most likely time of a 

changepoint.  The parameters 2
vσ  are now simply estimated as the sample variance of 

the season v residuals )ˆ( A
vnTvnT XX ++ −  computed from a full model fit with c = 286: 

∑
−

=
++ −=

1

0

22 )ˆ(
1ˆ

d

n

A
vnTvnTv XX

d
σ . 

Figure 2 plots these estimates and confirms that winter months are the most variable.  
We may now compute cF  and maxF , accounting for the effects of autocorrelations 
and variance-periodicities. 
 
 

 
Figure 1. Monthly mean atmospheric pressures recorded at Stephenville Airport     
                (Newfoundland, Canada). The red curve is the fitted regression response, 
                 the blue line, the trend.              

 
 

Figure 3 plots values of cF  against a 95% confidence threshold constructed assuming 
a null hypothesis of no changepoint.  The largest cF  is 075.71max =F , which 
occurred at c = 286 (October 1976) and greatly exceeds the 95% threshold.  Hence, 
evidence suggests an extremely significant changepoint around October of 1976.  The 
mean-shift at the changepoint is estimated as 4.4ˆ −=∆  hPa by the full model and the 
trend estimate is 00324.0ˆ =β .  The other parameters in the full model fit for c = 286 

are 968.1011ˆ
0 =A , 404.1ˆ

1 =A , 005.8ˆ =τ , 0637.0ˆ
0 =B , 0422.0ˆ

1 =B , and 

926.8ˆ =η . 
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Figure 2. Sample prediction variances of the Stephenville pressure series. 
 
 

 

 
 

Figure 3. The cF  statistics of the Stephenville pressure series. 

 
 
Apparently, the changepoint was caused by neglecting the 25.6 m station elevation in 
the calculation of station pressures from barometer readings prior to 1977 (i.e., an 
elevation of 0 m was used instead of 25.6 m).  According to a physically based 
estimate using a hydrostatic model and hourly pressure and temperature data (see 
Wan et al. 2006), neglecting such an elevation causes a bias of 3.2 hPa on pressure 
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values. The estimated changepoint time is very close to its true value.  Additional 
changes that happened between December 1976 and January 1977, such as the use of 
computer-produced pressure reduction tables and the addition of a plateau correction, 
may have also contributed to the magnitude of the mean-shift. This is likely why the 
magnitude of ∆̂  exceeds 3.2 hPa. 
 
This was not a hard changepoint to identify.  In fact, the two-phase regression 
approach of Wang (2003) for time-homogeneous data also identifies a drop of 4.2 
hPa between September and October 1976 when it is applied to this series after it is 
standardized using the sample monthly means and variances for each of the 12 
calendar months.  Although Wang's (2003) method is not expected to perform well 
for all series with autocorrelated features, it worked well here anyway. This is 
attributed to an extremely significant mean-shift and minimal series autocorrelations. 
 
 

 
 

               Figure 4. Estimates of the (a) location and (b) autocorrelation parameters for     
                               for the Stephenville pressure series. The dashed curve in (a) shows 
                               the sample averages of pressures in each month after adjusting for  
                               trend and the mean-shift. 
 
 
To further illustrate the seasonality and autocorrelations in this series, Figure 4 plots 
estimates of vµ  and vφ  against the month v.  In the plot of vµ  in Figure 4a, sample 
averages of the month v pressures after adjusting for the trend and the changepoint 
mean-shift are also displayed (dashed curve).  These values agree, to a rough order, 
with the three parameter cosine wave fitted in (10).  One could explore adding a 
second order harmonic in this fit, but we will not do so here.  The mean response of 
the fitted model is plotted against the data in Figure 1 and seems very reasonable.  In 
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Figure 4b, it should be noted that the monthly autocorrelations range from 0.021 to 
0.106, with the minimum occurring during March and the maximum in September.  
This amount of autocorrelation is not very heavy. 
 
The methods have performed well for the Stephenville series, but, as mentioned, the 
changepoint was extremely obvious.  We now move to a more difficult case, and one 
that will illustrate the full power of the methods. 
 
 
b. A monthly temperature series 
 
 

 
 

Figure 5. The same as in Figure 1 but for monthly averages of daily maximum 
     temperatures recorded at Collegeville (Nova Scotia, Canada). 

 
 
Figure 5 displays the series of monthly averages of daily maximum temperatures 
recorded at Collegeville (Nova Scotia, Canada) from 1949-1998 (50 years; N = 600).  
The seasonal cycle in the data is clear, with winter temperatures being colder and 
more variable than summer temperatures.  With the seasonal structure of the time 
series viscerally dominating, it is hard to `eyeball' any changepoint here.  However, as 
we show below, there is indeed some evidence for a changepoint.  Versions of (6) 
and (7) were fitted to the series first without the scaling 2

vσ  factors in the 
denominator.  The cF -statistics for this procedure peak at c = 62. This value of c was 

used to develop estimates of 2
vσ , which are plotted in Figure 6. 
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Figure 6. Sample prediction variances of the Collegeville temperature series. 
 
 
 

 
 

Figure 7. The cF  statistics of the Collegeville temperature series. 
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Figure 7 plots the cF -statistics for this data weighting for the estimated values of 2
vσ .  

The largest cF  statistic is 988.18max =F  and again occurs at c = 62 (February 1954) 
and exceeds the 95 percent confidence threshold.  Hence, there is statistical evidence 
for a changepoint between February and March 1954. According to Vincent (1998), 
there was “a change in observer at the beginning of the 1950’s along with a site 
relocation of about 10 km north of the previous site” and “the inspector subsequently 
reported that the new data had little in common with data from the former sites.”  
However, the exact date of the 1950’s relocation and observer change is not 
documented. 
 
The other parameters of the full model fit with c = 62 are 16.1ˆ −=∆ ºC, 

000281.0ˆ =β ºC/month, 722.11ˆ
0 =A , 960.12ˆ

1 =A , 398.7ˆ =τ , 136.0ˆ
0 =B , 

128.0ˆ
1 =B , and 539.0ˆ =η . The mean function of this model is plotted in bold 

against the data in Figure 5 and fits the series very well.  Applying the multiple 
regression method to the same temperature series for 1916-95 with a reference series, 
Vincent (1998) also identified a changepoint between 1951 and 1952 (and another 
between 1935 and 1936), and hence added -1.6ºC to the annual means for 1936-51 
(i.e., a decreasing step of 1.6ºC between 1951 and 1952) to homogenize the series. 
However, Vincent's estimates of step-size are based on the annual series (i.e., one 
datum per year) of length N = 60 and hence are more prone to sampling variability 
(note that N = 600 in our analysis).  In addition, the model used to obtain the 
estimates does not include a linear trend component; ignoring a positive linear trend 
would lead to overestimation of the step-size. This is probably why Vincent's (1998) 
∆̂  exceeds ours in absolute terms; in addition, the different periods of data used could 
have alsocontributed to the difference in the step-size estimate, and so couldthe 
existence of the documented changepoints in the early decades:  
According to the station inspection reports, this station was relocated four times (in 
December 1926, August 1932, March 1936, and October 1948). Inclusion of these 
documented changepoints would complicate the analysis; this is why the period from 
1949-1998 was selected for our analysis here. The two-phase regression approach of 
Wang (2003) was also applied to the same time series but standardized using the 
sample monthly means andvariances. This procedure identifies a changepoint 
between January and February 1963 to be of about 5% significance ( 688.11max =F ); 
it did not find the changepoint in the beginning of 1950's.  
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Figure 8. The same as in Figure 4 but for the Collegeville temperature series. 
 
 
Figure 8 plots the model's estimated vµ  and vφ  for each month v.  Notice how well 
the fitted sinusoid agrees with the empirically averaged estimated location 
parameters.  One also sees substantially higher correlation levels in this series than 
for the Stephenville pressure series, with some of the vφ  exceeding 0.20, further 
underscoring the danger in using methods which assume IID error structure. 
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1. INTRODUCTION  

Homogenization has become one of the basic elements of climatological studies (e.g. 
Szalai, 2000). An investigation of climatic change must be based on a homogeneous 
climatological time series (e.g. Štepánek et al., 2000). A series is said to be homogeneous 
"if its variations are caused only by variations in weather and climate" (e.g. Conrad and 
Pollak, 1962).  

Inhomogeneities in climate time series arise from non-climatic factors like changes 
in station location, changes in methods to calculate means, changes in observation 
practices, changes in instruments and in station environment. Each of these changes may 
require a separate homogenization strategy. The changes may cause stepwise and/or 
gradual biases in the climatological time series, making these series unrepresentative of the 
climate of the concerning area (e.g. Brandsma, 2000). 

Beside the well-known use in the climate change studies, more and more users 
request long-term time series in homogenized form. The overall trend shows a decrease of 
human observations, and a growing rate of automatization. In consequence, we often do 
not measure the same meteorological parameter, as earlier, only something similar to that, 
certainly new methods of observation are used, which imply rather different data quality 
problems, etc. The merging of satellite and radar information into the classical database 
could effect large breaks as well (e.g. Szalai, 2000). 

The identification of local, regional and global climate change has become an 
important issue in climatology. Data homogeneity is strongly related to the climate change 
problem, which is at the centre of scientific and policy debates. It has been recognized and 
widely accepted that long and reliable observation series are required to address climate 
change issues and impact studies. Unfortunately, these high quality meteorological data 
series seldom exist, therefore it is imperative that homogenized data be used for theoretical 
and applied research (e.g. Mersich, 1999). As often clearly stated by the Intergovernmental 
Panel on Climate Change (IPCC), there is an urgent and continuing requirement for high 
quality and consistently collected observation and related homogeneous data sets to 
understand climate change, verify assessments and models use to generate future climate 
scenarios (e.g. Scholefield, 1999). 

It was already mentioned that the long-term climatological time series are often 
plagued with discontinuities caused by station relocation, installation of new instruments, 
etc. Several types of disturbances can distort or even hide the climatic signal. Therefore, it 
is quite natural that the data are tested in order to locate possible discontinuities. However, 
usually the detection of the homogeneity breaks is not enough. The breaks appear to be so 
common that rejection of inhomogeneous series simply leave too few and too short series 
for further analysis. The widely adopted practice is to make adjustments in the non-
homogeneous climatological time series (e.g. Tuomenvirta, 1999). 
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There are several direct and indirect methodologies for homogeneity testing. The 

direct methodologies include, for example, use of metadata, side by side comparisons of 
instruments, and statistical studies of instrument changes. The indirect methodologies 
consider use of single station data, development of reference time series, subjective and 
objective methods. The available objective methods include: Potter's method; Standard 
normal homogeneity test; two-phase regression; rank order change point test; Craddock 
test; Caussinus-Mestre technique; multiple analysis of series for homogenization (e.g. 
Alexandersson and Moberg, 1997; Peterson et al., 1998; Szentimrey, 1999).  

Since 1994, Météo-France has put significant efforts on search, data rescue and 
homogenization of long series of weather measurement. These efforts allowed to built-up a 
base of homogenized data (e.g. Moisselin and Mestre, 2002). In Meteo-France, Toulouse, 
November, 2002 the homogenization method developed by Caussinus and Mestre (e.g. 
Caussinus and Mestre, 1997; Mestre, 2000; Moisselin and Mestre, 2002) was applied on 
climate long-term series from Bulgaria including data of average air temperature and 
precipitation (Alexandrov et al., 2004). 

One of the major goals of the second study held in Meteo-France, Toulouse, from 
17 November to 19 December, 2003 was to apply the French homogenization method on 
long-term series of sunshine duration from Bulgaria. Specific objectives were: to control 
monthly data of sunshine duration from selected climatological stations in Bulgaria; to 
detect breaks and outliers within the collected and controlled time series; to correct the 
currently used climate long-term series according to the defined breaks and outliers in 
order to obtain homogenized climate series; to validate the respective breaks. 

 
 
 

2. LOCATION, EXPERIMENTAL MATERIAL AND METHODS 

2.1 Location 

 
Bulgaria (Fig.1) is located on the Balkan Peninsula in Southeastern Europe. The country 
includes 31% lowlands (0–200 m), 41% hills (200–600 m), 25% highlands (600–1600 m), 
and 3% mountains (> 1600 m). The Balkan Mountains split the country into Northern and 
Southern Bulgaria, and have a strong effect on the temperature regime. The country 
belongs to the temperate climate zone with a typical rotation of four seasons and variable 
weather throughout the whole year. Climate is continental to the north and close to 
Mediterranean to the south. The annual mean air temperatures in Bulgaria vary from –3.0 
to 14.0°C, depending on the location and elevation. Air temperature normally reaches a 
minimum in January, and a maximum in July. The monthly mean temperature varies from 
–0.9 to 3.2°C in January and from 5.0 to 25.0°C in July. Total precipitation depends on the 
circulation patterns, site elevation, and the specificity of local orographic features. Annual 
mean total precipitation is approximately 500–650 mm, with an annual variation ranging 
from 440 to 1020 mm. The annual values of sunshine duration in the country are between 
1800 and 2300 hours. 
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Fig.1. Climatological stations in Bulgaria with long-term records of sunshine 
duration, used in the study  

2.2 Experimental material 

Monthly data of sunshine duration from 22 Bulgarian climatological stations with long-
term series were collected for the study (Fig.1, Table 1). All sunshine duration data applied 
in this study were provided by the Meteorological Database of the National Institute of 
Meteorology and Hydrology in Sofia, Bulgaria. 

2.3 Methods 

2.3.1. Data homogenization  

The Caussinus-Mestre method, applied within this study, simultaneously accounts for the 
detection of unknown number of multiple breaks and generating reference series.  It is 
based on the premise that between two breaks, a time series is homogeneous and these 
homogeneous sections can be used as reference series. Each single series is compared with 
others with the same climatic area by making series of differences (e.g. for minimum and 
maximum air temperature) or ratios (e.g. for sunshine duration). These differences or ratios 
series are tested for discontinuities. When a detected break remains constant throughout the 
set of comparisons of a candidate station with its neighbours, the break is attributed to the 
candidate station time series (e.g. Caussinus and Mestre, 1997; Mestre, 1999, 2000; 
Peterson et al., 1998). 

Table 1. Climatological stations and series length of sunshine duration 

Stations 
 

Beginning year 
(2001 – end) 

Stations 
 

Beginning 
year 

(2001 – end) 
Chirpan 1929 Varna 1961 
Elhovo 1954 Kaliakra 1954 
Karnobat 1931 Rila 1926 
Kazanlak 1903 Cherni vrah 1936 
Kjustendil 1968 Djebel 1937 
Kneja 1942 Iskretz 1938 
Kurdjali 1930 Ivajlo 1961 
Lom 1954 Murgash 1954 
Obrazcov chiflik 1903 Petrohan 1954 
Pavlikeni 1933 Rezovo 1958 
Sandanski 1951 Sofia 1954 
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2.3.1.1. Detection of breaks and outliers  

For detection purposes, the formulation described by Caussinus and Lyazrhi (1997) is 
used. It allows the determination in a normal linear model of an unknown number of 
breaks and outliers. They formulated it is a problem of testing multiple hypotheses. Let us 
give now the formulation of this procedure in the case of a normal sample (e.g. Moisselin 
and Mestre, 2002). We consider n normal random variables Yi (i=1,...,n) and let Y denote 
the column vector of the Yi’s. We assume that the probability distribution of Y is n-
dimensional normal, with covariance matrix In (identity matrix of order n� n) up to the 
unknown variance σ2. 

Let k be the number of breaks and l – the number of outliers. Let 
k21

,...,, τττ  be the 

positions of the k breaks, and let 
l21

,...,, δδδ  be the positions of the l outliers. Let 

{ } { }( )l21k21 ,...,,,,...,,K δδδτττ=  be the set of breaks and outliers. To simplify the notation, 

we will set τo=0 and τk+1=n. Finally, let { }l21 ,...,, δδδ∆ =  and 

{ }[ ]∆τττττ ∩++−−= −−− j1j1j1jjj
,...,2,1Cardn , i.e. nj is equal to the length of the period [

j1j
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The penalized log-likelihood procedure proposed by Caussinus and Lyazrhi (1997) is: 
 
 
select HK* such that K*=ArgminK(CK(Y))                                                 (3) 
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 where the number and  positions of outliers and breaks are those given by (3). 
The procedure (3) has been proved to be asymptotically Bayes invariant optimal under a 
set of assumptions, which turn out to be realistic (e.g Mestre, 2000) in the problem we are 
dealing with. For the particular problem of breaks in a Gaussian sample, the chosen penalty 
term gives much better results than Akaike’s or Schwartz's criteria (e.g. Moisselin and 
Mestre, 2002). 

The natural way to compute the procedure is to calculate CK(Y) for every possible 
hypothesis HK (complete procedure). Nevertheless, this approach suffers from a major 
drawback: the number of hypotheses to examine rises very fast with n (length of the series) 
and k+l  the number of accidents to be detected. When detection is only performed for 
breaks, a dynamic programming algorithm (e.g. Hawkins, 2001; Lavielle, 1998) can be 
used. The computation time then becomes only linear in k, and quadratic in n. To enable 
the detection of outliers at a reasonable computing cost, a slightly different algorithm 
(Mestre, 2000) is used. 

At each step, one or two more breaks are added to the previous selected hypothesis. 
Analytical studies (e.g. Mestre, 1999) show that this double step procedure gives better 
detection results than the single step procedure for up-and-down breaks (and without 
significant improvement for staircase configuration). Furthermore, a triple step procedure, 
much more greedy in terms of computation time, leads to small improvements (e.g. 
Mestre, 1999, 2000). The Causinus-Mestre method, with a double step procedure, is now 
the standard detection part of the homogenization method used in Météo-France (e.g. 
Moisselin and Mestre, 2002; Moisselin et al., 2002). 
 
2.3.1.2. Correction of breaks and outliers  

The knowledge of break positions can be a very interesting aspect for some users. For 
many applications (such as climate change studies) it is the first half-part of the problem. 
The other one, described below, is the break correction. 

A two factors linear model is proposed for correction purposes (e.g. Mestre, 2000). 
The series within the same climatic area are considered to be affected by the same climatic 
signal factor at each time, while the station factor remains constant between two breaks. 
The model is applied after break detection. It provides the correction coefficient of a set of 
inhomogeneous series, through weighted least-squares estimation of the parameters. The 
weighted least squares allow correction of series with missing data. It also allows the data 
weighting, according to their supposed quality, which can be estimated, for example, with 
the correlation between the stations. 

The above formulation is equivalent to an exact modelling of the relative 
homogeneity principle. Given a set of inhomogeneous instrumental series, it allows 
unbiased estimations of the breaks affecting these series. This method does not require 
computation of regional reference series, and is currently the standard correction part of the 
homogenization method used at Météo-France (e.g. Moisselin and Mestre, 2002; Moisselin 
et al., 2002). 

3. RESULTS AND DISCUSSION 

3.1 Data homogenization – control, break detection and correction 

The homogenization process was performed on sets of 13 series of sunshine duration 
respectively, merged with geographical criteria. The first step was the performance of a 
quality control of the long-term series of the weather elements used in the study. The 
control procedure was executed several times till appropriate data sets were obtained. The 
anomalies of monthly sunshine duration for each year and station were compared and 
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analyzed in order to locate and remove possible data errors (Fig.2). The obvious crude 
errors as well as some suspicious values of sunshine duration were reported to the Division 
of Climatology and Weather Network as well as to the Meteorological Database 
Management Division. The updated data were again checked out by the controlling 
software. The remained errors and suspicious values this time were replaced by the 
respective value for missing data (i.e. –999.9). 

The second step in the homogenization procedure was to replace missing monthly 
values assuming that these values are very few and their replacement would not have any 
impact to the data series. The two factors linear model by means of the computed weighted 
least squares allows correction of series with missing data. For this purpose, the linear 
model was run with the option for correction of missing data. 

 
 

 

Fig. 2. Anomalies of annual sunshine duration sums for all climatological stations, 
used in the study 

The next step was to calculate the respective ratios for sunshine duration. These ratios were 
then tested to put into evidence breaks or outliers. The typical homogenization techniques 
are based on the assumption that climatic variations affect in the same way a homogeneous 
regional reference series, whose reliability cannot be proved. The different methods (e.g. 
Alexandersson, 1986; Førland and Hanssen-Bauer, 1994; Peterson and Easterling, 1994) 
for creating such series do not guarantee their perfect homogeneity. 

There is an easy way to get round the reference series. It is based on the simple 
statement that between two breaks a series is reliable (by definition), so these sections can 
be used as reference series (e.g. Mestre, 2000). Each single series is compared to others 
within the same climatic area by making a series of ratios. These series are then tested for 
discontinuities. 

At this stage, it is not known which individual series is the cause of a shift detected on a 
ratio or series. However, it was already mentioned that according to the Caussinus-Mestre 
method, if a detected break remains constant throughout the set of comparisons of a 



31 
 

candidate station in respect to its neighbours, it can be attributed to this candidate station. 
The detection of the outliers follows the same principle. 

 

   
 

  

Fig. 3. Homogenization  of sunshine duration data in 4 climatological stations:  

 – break; A – outlier; dash line – validated break and then corrected 

Ratio series were computed and constituted between all climatological stations, used in the 
study, and their respective neighbour climatological stations. The breaks and outliers were 
then put into evidence by the double-step procedure applied within the Caussinus-Mestre 
method. For example, some detected breaks and outliers of sunshine duration are shown in 
Fig.3. The black triangles indicate the position of the detected breaks in the ratio series of 
the presented climatological station versus the other climatological stations, while A points 
out the outliers. The climatological stations are ordered from the top to the bottom with 
respect to increasing values of the estimated standard deviation STD. Hence, in practice, 
the reliability of the comparisons slightly decreases from the bottom to the top. 

Several breaks during the 20th century can be detected easily in Fig.3, considering 
the relatively good alignment of breaks in sunshine duration. For example, in 
climatological stations Karnobat, Kazanlak and Kjustendil the breaks of sunshine duration 
data in 1970, 1985 (Karnobat), 1989 (Kazanlak) and 1971 (Kiustendil) respectively, are 
obvious. 

The knowledge of break positions for many applications including climate 
variability and change studies is the first important half of the final goal. The second part 
of the homogenization goal is the break correction. The two factors linear model was 
applied after break detection and validation. It was assumed that the series within the same 
climatic area are considered to be affected by the same climatic signal factor at each time, 
while the station factor remains constant between two breaks. The model computed the 
correction coefficients of a set of non-homogeneous series, through weighted least squares 
estimation of the parameters. 
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It was impossible to locate straightaway all possible breaks: the pronounced breaks 
hided smaller one's. Thus, the procedure of detection and correction of breaks and outliers 
was not automatic. It was iterative and the expert knowledge and strategy was very 
essential. Every time the expert team validated the breaks keeping in mind some statistical 
and climatological issues. The whole procedure of break detection and correction took time 
– it was near 15 times in order to locate, validate and correct all the breaks and outliers in 
the series of sunshine duration. The whole iteration of homogenization of sunshine 
duration ended when all or most break risk was gone (Fig.3). 

4. LIMITATION 

The major limitation was the lack of metadata at the time the study was implemented. 
Although the Meteorological Database Management Division at the National Institute of 
Meteorology and Hydrology in Sofia, Bulgaria has initiated a work on this problem 
digitized metadata are not fully available yet.  

It is clear that the Bulgarian weather data are influenced by a wide variety of 
parameters like the environment, the instrumentation, observing practices, data processing 
and others. This means that for each single data we should know where and how the 
measurement was made. For a historical long-term climate time series this knowledge 
would lead to a complete station history. Unfortunately, our knowledge of station history 
most likely will not be 100% complete, nevertheless greatest efforts should be undertaken 
to study metadata. Metadata should be treated with the same care as the data themselves 
(e.g. Auer, 2003). 

For all synoptic, climatological and precipitation stations, from the National 
hydrometeorological network on the territory of the country, there are paper records 
including description of the station and its environment as well as detailed information 
about station activities, since the beginning of the respective measurements till now. It 
turned out that there were some omissions in these documents. For this reason we work in 
two directions: (a) digitization of the available station documents in the Meteorological 
Database Management Division (Fig.4); (b) station documents update in the Regional 
Centres of the National Institute of Meteorology and Hydrolojy in Pleven, Varna, Plovdiv 
and Kjustendil. 

 
Fig. 4. The title page of a file from synoptic station Sandanski 
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5. CONCLUDING REMARKS 

The need for reliable data becomes more and more apparent, both in space and time, 
because too much is at stake to rely on inaccurate data. The very existence of our society is 
threatened. Therefore, it is important for all WMO members (including Bulgaria) to 
produce and make available homogeneous series of data and corresponding metadata. 

The results of this study show that homogenization is important for building of 
reliable meteorological database in Bulgaria. It is obvious that homogeneous weather series 
of data are essential for research. For producing high quality time series efficient measures 
for testing the homogeneity should be applied. The French homogenization procedure, 
which is applied in Météo-France, was proved in the study as an essential tool. By directly 
comparison of each climate long-term series to its neighbours, it was shown that problem 
with construction of homogeneous reference series does no longer exist. The applied 
methodology of homogenization is valuable for practical use such as on climate data in 
Bulgaria, even with missing metadata, and allows the detection of multiple breaks. Most 
homeogenization methods in Europe have been developed for the analysis of temperature 
and precipitation only. However, the Caussinus-Mestre method for the relative 
homogeneity testing of climatological series and the model performing correction of non-
homogeneous climate series were also successfully tested on long-term series of sunshine 
duration. In fact, the executed homogenization was very useful for better understanding of 
sunshine duration series in Bulgaria. 

One of the most important problems in the climate research is the quality of data. 
Long series of reliable climatological data are required in climatological studies on the 
natural climate variability and the effect of anthropogenic influences on recent climate. 
However, high quality climatological data seldom exist because in reality many types of 
disturbances can affect the respective climate series. Many efforts were put in this study 
for quality control on the Bulgarian series of sunshine duration. It should be stressed that 
the respective series were affected by different types of errors. Therefore, it is 
recommended that before any homogeneity testing of Bulgarian weather data to be applied, 
an extensive routine quality control has to be performed. 

Historical time series carry the information of natural and artificial variability. 
However, before climate variability can be studied all artificial biases have to be removed. 
This is a hard job but unavoidable. Although this problem could be treated by using one or 
several homogenization techniques, metadata will provide a better insight and explain the 
reasons of breaks and support the statistical test results. It is always advisable to compare 
what station history says and what data analysis identifies (e.g. Auer, 2003).  The 
importance of metadata was assumed by the WMO Commission for Climatology and the 
working group on Climate Change Detection (e.g. Niedzwiedz and Ustrnul, 2000). A 
proposal was given for Global Climate Observing System Surface Network Sites (e.g. 
WMO, 1999). Also WMO has stressed its strong interest in metadata recording for current 
measurements, but also in metadata recovery for historical time series. This interest is 
underlined by the establishment of a WMO Expert Team on Metadata for Climate 
Applications within the Commission for Climatology. The expert team members have been 
preparing guidelines on metadata and homogenization (e.g. Auer, 2003). These guidelines 
would be of help when respective metadata are gathered in Bulgaria. 
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ABSTRACT 

"Climatol" is a set of routines for climatological applications than run under the multi-
platform statistical package "R", freely available at "http://cran.r-project.org/". It is mainly 
devoted to the homogenization of monthly series, though may be applied to daily data as 
well. The homogenization method is based on comparing each test series with a reference 
series constructed for the same station through interpolation of ratios, differences or 
standardized values of the surrounding stations. This method avoids the use of regression 
techniques, with the advantage of been more robust and simple, and, most importantly, 
enabling the use of data from nearby stations when there is no common period of 
observation.  The comparison of the problem series with their estimated references allows 
the detection of point errors, shifts and trends through standard statistical tests, optionally 
showing graphical representations of the results. The computed reference values may be 
readily used to fill the missing data of the series.  The application of these methods to a 
dense thermo-pluviometric monthly database in the Balearic Islands showed a wide variety 
of situations, indicating the convenience of using an iterative strategy, thereby detecting 
and correcting only the coarser errors in the first place, and leaving the less prominent ones 
to the following iterations. 

1. INTRODUCTION 

The problem of coping with inhomogeneities of the climatological series is as old as the 
series themselves, and has been addressed by a multitude of investigators that have applied 
a variety of methods to detect point errors, sudden changes in the averages and anomalous 
trends (see Peterson et al., 1998, for a review). Yet no definite methodology has been 
already established, because some may be more appropriate than others depending on the 
climatological variable studied, the climatic regime and physiographic complexity of the 
area, the density of the observing networks, and even the final purpose of the data set. 

The detection of inhomogeneities relies on the comparison of the problem series 
with a reference one that should be homogeneous and well correlated with the former. The 
reference series may be that of the best (long and homogeneous) station of the same 
climatic area, but as it is quite difficult to find long series that have not suffered changes of 
location, instrumentation or local conditions, it is generally preferable to build the 
reference as a combination of series from several stations (Peterson and Easterling, 1994), 
using as weighting factor some function of their correlation, distance, or both. 

Once the reference series has been obtained, it can be used to determine which 
variations in the problem series are due to the climate variability and which are real 
inhomogeneities that should be corrected. The latter may be supported by the history of the 
station, through registered dates of any change that might have affected the observations 
(metadata), but these are often incomplete, and sometimes totally absent. 
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This work presents an implementation of a simple method for the detection of 
inhomogeneities in a climatological database, and discuses the first conclusions of their 
application to the homogenization of thermo-pluviometric monthly data from the Balearic 
Islands (Western Mediterranean). 

2. METHODOLOGY 

Climatic data bases are usually formed by a few long and complete series mixed with 
many short records with random beginning and end dates, and often with interspersed 
missing data spells. Regression techniques are extensively used for estimating these 
missing data from well correlated stations, but this prevents the use of nearby stations 
when there is not a common period of observations or it is too short to derive reliable 
regression equations. This is a frequent situation when an observatory changes its location 
(e.g., from near an airport terminal to a runway head): old and new stations are the best 
reference for each other, but no regression can be established. (Even when a common 
observing period of a couple of years is maintained, that supposes only two common terms 
in each monthly series).  On the other hand, to maximize the existence of common 
observational periods between stations, many homogeneity studies select only the longer 
series of a data base, thereby disregarding a lot of potentially valuable information from 
many shorter records.  
 
Here the priority has been focused on taking advantage of all the available climatic 
information. To achieve this goal regression techniques have been substituted by the 
simpler method of Paulhus and Kohler (1952) that applies a spatial interpolation of rates to 
the normals to fill daily precipitation data. This method was compared by Young (1992) 
with those of optimum interpolation (Gandin, 1963) and multiple discriminant analysis, 
and was the only that produced unbiased estimations while suffering the lowest reduction 
of variance. Their RMS errors were slightly higher than those of the multiple discriminant 
analysis, but lower than the optimum interpolation ones.  This are convenient properties, 
since unbiased estimations will produce the best normal values (e.g., for climatic maps), 
while the reduction of variance minimization is a necessity in studies of variability and 
extreme value probabilities. 
 
Proportions to the normals seem appropriate for precipitation or wind speed for instance, 
but for temperatures (among other variables) are better to use standardized values. This 
implies to know the averages and standard deviations of all series for a common and long 
period of observation, an incompatible constraint with our fragmented data set.  Therefore, 
averages (and standard deviations if needed) are computed firstly with the available data, 
and missing data are filled with the unstandardized reference series computed for each 
station.  This allows recalculating the means of all series for the complete period of study. 
As the new averages will differ from the previous, the reference series must be 
recomputed, and this process is repeated until the maximum difference of averages is lower 
than a prescribed threshold. 
 
As previously stated, a reference series is computed for each station. Paulhus and Kohler's 
original method used only the three nearest stations, and other authors also limit the 
number or reference stations or impose a maximum distance (e.g. Romero et al., 1998). 
Here all available data are used to compute each reference series, weighting them by a 
function of distance.  This way, the method is flexible enough to adapt to the varied 
distributions of neighbouring stations than may happen in a database in different periods. 
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The chosen weighting function was a/(a+d^2) or, dividing by 'a': 1/(1+d^2/a), where 'a' is a 
shape parameter controlling the relative weight of nearby stations with respect to the more 
distant ones (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1: Weighting factor (inverse to the square distance between stations) modulated 
by the shape parameter 'a'. 

 
When the iterative process of computing the reference series for each station is completed, 
the following step is to compare, for each station, the observed and computed series. This 
is done with the ratios to normals or full standardized series (differences from normals is 
another option offered to the investigator), and a new series is calculated subtracting the 
reference from the observed standardized series. Differences (used e.g. by Aguilar et al., 
1999) are preferred over quotients (as used by Alexandersson, 1986) because they can be 
applied to other variables than precipitation, and to rainfall in arid places, where monthly 
means near to zero cause problems in the computations of ratios (Almarza et al., 1994). 
 
Where both series are homogeneous, the series of differences should behave as a random 
variable (white noise). In practice, three main types of inhomogeneities may be present: 1) 
Point errors (coming from observation to transmission and mechanization processes); 2) 
Shifts in the mean (changes of location, instrumentation, observing practices or land use of 
the surroundings); and 3) Trends (sensor decalibration, urban growth). And all of them 
may be present in real records (Fig. 2). 
 

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon jelenik meg, törölje a képet, és szúrja be ismét.
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Fig. 2. Common inhomogeneities in the difference series: 1) Control, homogeneous 
(random noise). 2) Two point errors of +/- 3 s.d. (standard deviations); the first, at 
term 22, unnoticeable. 3) Two shifts in the mean of +2 and -3 s.d.  4) Trend of -1.5 to 
+1.5 s.d. 5) All previous inhomogeneities together. 

 
Graphic representation of this series allows for visual inspection, and p-values of possible 
shifts and trends are computed from running t-tests (on 10 and 20 terms moving windows) 
and regression with time. 
 
This methodology has been implemented as a contributed package to the statistical system 
"R", which is free, multi-platform (there are versions for different computer architectures), 
and runs under different operating systems, thus allowing its use in a wide variety of 
working environments. Moreover, since beeing open software, investigators may modify 
its routines to adapt them to their particular needs and contribute to their improvement. 

3. APPLICATION TO A DENSE THERMO-PLUVIOMETRIC DATAB ASE 

The Balearic islands lie in the Western Mediterranean, at 100 km of mainland Spain. Their 
5000 km2 are distributed in four major islands and many smaller isles. They have a varied 
orography, with mountain ranges with summits up to 1440 m (in Majorca), plains, and 
undulated terrains. The climate is typically Mediterranean, with a dry summer and a 
temperate winter. The maximum monthly average precipitation occurs in October, with 
15% of annual precipitation, and the minimum corresponds to July, with means normally 
under 10 mm and medians of around 2 mm. 

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon jelenik meg, törölje a képet, és szúrja be ismét.
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As most of the precipitations are due to convective processes, they have a rather spotty 
distribution. To catch this spatial variability, the pluviometric network was increased in the 
sixties to around 170 rain gauges, based mainly on amateur cooperators (figures 3 and 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Number of 
rain gauges in the 
Balearic Islands 
along time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Observing network in the Balearic Islands. Black crosses measure only daily 
precipitation; the rest measure at least daily precipitation and temperature extremes. 
(Majorca, the major island, is about 100 km wide). 

For the application of the "climatol" methodology to the monthly series of this network, a 
selection was made of all series that had a minimum period of observation in the years 
1961-2005. This minimum was fixed to only 10 years in the case of precipitation and 5 

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon jelenik meg, törölje a képet, és szúrja be ismét.

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon jelenik meg, törölje a képet, és szúrja be ismét.
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years for maximum and minimum temperatures, in order to keep most of the information 
of the data base.  In this way, 265 pluviometric stations and 72 thermometric stations were 
selected. 

The first exploratory analysis showed many potential inhomogeneities in the three 
climatic variables studied, from point errors (fig. 5), shifts in the means (fig. 6) and trends, 
often in the same series. Many of these apparent inhomogeneities may be caused by errors 
in the neighbouring stations, and therefore the more convenient strategy is to proceed 
iteratively, detecting and correcting only the coarser errors in the first place, and leaving 
the less prominent ones to the subsequent analysis. 

For the first process, a big weighting parameter 'a' should be chosen (we may even 
set a=0 to give equal weight to all stations), to avoid an excessive influence of the nearest 
neighbouring station's errors on the reference series, and look for prominent point errors 
and shifts in the averages. Point observational errors may be easier to detect in daily data (a 
10°C error in a daily lecture will only yield a 0,3°C error in the monthly average), but for 
the other kind of inhomogeneities it is better to avoid the higher variability of daily data 
and work with monthly, seasonal or even annual series. 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Potential point errors (and a possible 
shift) at one station in the July precipitation 
series 

 
 
 
 
 
 
 
 

Fig. 6. Possible shifts in the mean of the 
monthly maximum temperatures at one 
station, producing also a positive trend test. 
Minimum p-values of the 10 (red) and 20 
(green) terms moving windows act as 
pointers to the possible years of the shifts. 

 
Careful attention must be paid to the peculiarities of the studied climatic variable when 
analysing daily data. Precipitations of convective origin will produce high spatial 
variability, and therefore greater differences may be acceptable between the observed and 
the reference series. On the other hand, maximum temperatures are easier to treat than 

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon jelenik meg, törölje a képet, és szúrja be ismét.

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon jelenik meg, törölje a képet, és szúrja be ismét.
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minimums, since nocturnal inversions may produce high variability as well. In this case it 
is advisable to avoid overweighting near stations and to enhance the vertical coordinate in 
the computation of distances between stations. This kind of considerations may be also of 
application when studying monthly values, as can be seen in fig. 7, where the scarcity of 
July precipitations appears as the cause of the many potential point errors shown in fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Observed and reference series of July precipitation. (Same station as in Fig. 5) 

 
Once the bigger errors have been corrected in the data base, the following analysis will 
allow us to better detect further point errors.  When all confirmed errors are corrected or 
deleted, the analysis may focus on shifts of the means, that may also require repeated 
processes.  If a shift is confirmed by the history of the station, sometimes these metadata 
provides us also with clues to choose which period of the series is the correct one. In this 
case, the other period(s) can be adjusted to remove the shift. In the contrary, it is a common 
practice to adjust the series to the more recent period, but unless we are quite sure of the 
current quality of the observations, it would be better to split the series in homogeneous 
intervals, and consider them as different samplings of the same location.  (Spatial analysis 
will determine afterwards which one is more representative and which may be faulty or 
affected by local scale factors).  
 
 
Trend analysis should be the last type of inhomogeneity to be treated, since shifts in the 
mean often produce positive trend tests. Afterwards, a final process may be needed if we 
want a data set where gaps of missing data are filled. In this last run of the program, a 
small value may be assigned to the weighting parameter, to enhance the information from 

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon jelenik meg, törölje a képet, és szúrja be ismét.
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the nearer stations. This must be given careful consideration depending on the spatial 
variability of the studied climatic variable, but it will have great importance when the data 
set is to be used for time variability studies, in order to avoid a high decreasing of the 
variance giving much weight to many neighboring stations. 
 
All these processes are still been carried out for the Balearic data set, since they involve a 
lot of work to investigate in the data archives for all possible inhomogeneities pointed by 
the program. When the climatologist do not have access to the original data or have no 
time to accomplish these tasks, corrections can only be made on probability bases. 
 

CONCLUSIONS 

The method presented maximizes the use of the information of a climatological data set, 
building reference series from neighbouring stations even if they do not have any common 
period of observation. But as homogeneity tests in each series may be affected by errors in 
other nearby stations, an iterative approach of detection-correction must be undertaken, 
beginning by the most prominent errors.  
 
In every of this stages, statistical tests can provide a collection of possible 
inhomogeneities, but they must be complemented with the visual inspection of the 
graphical representations of the series of anomalies.  The final decision on which 
inhomogeneities to correct must rely on expert judgements based on knowledge of the 
spatial variability of the involved climatic variable and, whenever possible, on records of 
the history of the observatories. 
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ABSTRACT 

We present a homogenization method for the available long-term monthly series of 
Spanish minimum and maximum temperatures from the late 19th century on, in order to 
obtain a high-quality data set.  

The first step is the organization of the data series (41 series) into climatically 
homogeneous regional groups, following a preliminary study and empirical knowledge. 
Then the whole set of temperature difference series is computed in each regional group, in 
order to perform multiple comparisons of these differences, to explore their stationarity 
characteristics and to detect discontinuous breaks and other inhomogeneous features. The 
method is based on relative homogeneity and treats absolute homogeneity only as a 
secondary concept, because it is generally not achievable. No reference series is used, since 
no reliable reference is readily available.  

In the statistical analysis, the difference series are scanned with moving t, 
Alexandersson, and Mann-Kendall tests, under consideration of the sensitivity of these 
tests to the autocorrelations and in carefully chosen test intervals. An inhomogeneity is 
detected when several (at least three) difference series confirm a highly significant 
inhomogeneity. The detected inhomogeneities are adjusted by weighted averages of the 
regional series; these weighting factors depend on the cross-correlations and on the 
common data coverage. 

The homogenization method is iterative and advances in steps of detection, 
adjustment and actualisation. Individual inhomogeneous data are discarded and gaps are 
filled by similar weighted means.  
For posterior analysis of the temperature evolution in the Iberian Peninsula, each region is 
finally represented by one local series and the regional average.  

Rigorous homogeneity can generally not be achieved, because the initial data 
quality is deficient in many cases and metadata are sparse. Nevertheless, the data 
homogeneity has been considerably enhanced: the total uncertainty margin in the series is 
of the order of 0.3ºC, under consideration of a worst-case error accumulation. On the other 
hand, many inhomogeneities are detected and their average amplitude is of the order of 
1ºC: this number reflects the much larger error margin in the raw data. This new 
homogenized dataset prepares an important basis for the subsequent detection of thermal 
changes in Spain in the last 130 years, on a clearly higher confidence level than before. 

1. INTRODUCTION 

Unfortunately, a vast majority of all climate records is adversely affected by non-climatic 
changes in the data, due to observatory or instrument relocations, variations in the 
environment or in reading procedures, human errors in data processing, among others. 
Hence, in many cases, a series may fail to represent the real climatic evolution and a 
reliable detection of climate change is hard or impossible. For example, Wijngaard et al. 
(2003) analysed the daily temperature and precipitation data of the European Climate 
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Assessment (ECA), and found that a vast majority of the series suffer severe homogeneity 
problems.  

There is a well-known variety of standard literature on homogenization and on the 
tests and methods (Goossens and Berger, 1985, Alexandersson, 1986, Karl and Williams, 
1987, Young, 1993, Rhoades and Salinger, 1993, Peterson and Easterling, 1994, Easterling 
and Peterson, 1995, Vincent, 1998, Vincent and Gullett, 1999 and Mestre, 1999, among 
others). The softwares AnClim (Stepanek, 2003) and MASH (Szentimrey, 2000) were 
developed for the homogenization of climate data and several recent studies like Slonosky 
et al. (1999) and González-Rouco et al. (2001) made attempts to homogenize European 
data.  

Nevertheless, there is still a lack of systematic homogenization treatment of long-
term monthly Spanish temperature data. The present study prepares these data series, 
improves the data quality and tries to set a solid base for subsequent analysis of thermal 
changes on a regional scale since the late 19th century. 

 

2. DATA 

The monthly Spanish temperature records by the National Meteorology Institute (INM) 
provide data from 41 observatories with a minimum coverage of 30 years, as illustrated in 
Figure 1 (about half of them include 19th century data, beginning between 1869 and 1880). 
The data quality is problematic or sometimes even poor, because of frequent site changes 
and data gaps, and metadata are scarce. Figure 1 shows the geographic distribution of the 
observatories. 
 
 
 

Definition of the regional groups of data series 

The Spanish monthly temperature series contain a high degree of common variability: the 
cross-correlation coefficients between the anomalies usually exceed 0.5. Nonetheless, in 
spite of this dominant common variability pattern (the “peninsular mode”), the temperature 
anomalies show certain regional distinctions. 

Based on a previous regional analysis, we organized the data series into the 
following climatically different groups: the central plains (14 series), the Mediterranean (6 
s.) and the Cantabrian (5 s.) coastal areas, Galicia (6 s., the northwest), western Andalusia 
(4 s., basically the Guadalquivir valley), Extremadura (2 s.) and the Ebro valley (4 s.). The 
aim was to preserve possible regional distinctions through a regional homogenization. 
In each of these climatic regions, all the series were homogenized, then the regional mean 
series (simple mean of the anomalies) were computed a-posteriori, to represent the region, 
together with one chosen individual series.  
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Fig. 1. The spatial coverage of the Spanish maximum and minimum temperature 
series, between 1860 and 1980 (about half of the series include 19th century data). The 
series are: 1. La Coruña, 2. Santiago, 3. Pontevedra, 4. Orense, 5. Vigo, 6. Finisterre, 7. San Sebastián, 8. 
Bilbao, 9. Santander, 10. Vitoria, 11. Pamplona, 12. Oviedo, 13. Zaragoza, 14. Huesca, 15. Logroño, 16. 
Teruel, 17. Lérida, 18. Gerona, 19. Barcelona, 20. Castellón, 21. Valencia, 22. Alicante, 23. Murcia, 24. 
Almería, 25. Burgos, 26. Valladolid, 27. Salamanca, 28. Soria, 29. León, 30. Palencia, 31. Zamora, 32. Ávila, 
33. Segovia, 34. Madrid, 35. Guadalajara, 36. Toledo, 37. Cuenca, 38. Albacete, 39. Ciudad Real, 40. 
Córdoba, 41. Seville, 42. Huelva, 43. Jerez, 44. Málaga, 45. Granada, 46. Jaén, 47. Badajoz, 48. Cáceres. The 
regional groups are: A Galicia, B Cantabria, C Ebro valley, D Mediterranean, E central plains, F western 
Andalusia and G Extremadura. 

3. OUTLINE OF THE HOMOGENIZATION METHOD 

A. Some statistical properties of monthly temperature data 

The statistical distribution of temperature data is normal as a good approximation and we 
can apply parametric statistics designed for Gaussian-distributed variables, as the t-test or 
the SNHT. The autocorrelations in these series are rather slight (coefficients between 0.1 
and 0.3), but several statistical tests require corrections (the reduced sample size for the t-
test and prewhitening of the series for the Mann-Kendall test), in order to achieve realistic 
confidence levels.  
 

B. The homogenization concept  

If a series is homogeneous in an absolute way, there is no variability, except for the real 
climatic evolution. However, this condition is almost never fulfilled (Easterling et al., 
1996, pointed out that “… the real homogeneity of climatic data is irretrievably lost”) and 
we generally cannot decide, through an analysis of just one series, at a good confidence 
level, whether or not a certain change is inhomogeneous.  

Therefore, we did not follow an absolute homogeneity method, but a relative 
homogeneity concept, based on difference series: the anomalies of highly correlated time 
series are essentially synchronous and its differences should be approximately random. A 
local inhomogeneity can be detected in these differences, but a real extreme anomaly tends 
to vanish. This detection method fails if several series suffer a simultaneous data problem 
(e.g. a common sudden jump). Comparing as many difference series as possible minimizes 
this risk.  
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Our homogenization method is based on multiple comparisons between the series 
within each predefined region. We do not work with regional reference series, because the 
rather low number of series with frequent inhomogeneities does not permit the creation of 
a reliable a priori reference. The whole set of difference series (differences of anomalies) 
is statistically tested for significant changes. Once identified, an inhomogeneity is adjusted 
by a weighted mean of the highest-correlated series. The weighting factors depend on the 
synchronicity (cross-correlation) and the number of common data.  

We have not avoided to reject and to delete clear outliers (see C.3), intervals 
(shorter than a decade, with more than one third of missing data and disconnected 
intervals, without any appropriate information to connect them to the rest of the series) or 
even whole series (with more than five clear inhomogeneities), when the homogeneity 
problems were too strong for an adjustment at an acceptable confidence level.   

 
 

C. The homogenization scheme  

1. We converted the raw-data series into anomalies (relative to a recent reference 
interval) and computed the whole set of anomaly difference series within each 
region. 

2. We marked the suspicious inhomogeneities (abrupt changes or breaks, outliers), 
with particular attention to the metadata. 

3. We discarded the largest and most obvious outliers that exceeded a certain level, 
based on the difference series (four standard deviations of a running 30 year-
interval). The severe criterion of this preliminary step removed only the very large 
inhomogeneous outliers. 

4. After recalculating of the set of difference series, we searched for abrupt 
inhomogeneities (breaks) and then defined individual appropriate “base intervals” 
for their statistical detection. Where it was possible, the length of a base interval 
was chosen as 20-30 years, around the possible break point1. We had to avoid 
strictly a temporal overlapping between inhomogeneities and their intervals, but 
tried to achieve a reasonable sample size (at least of the order of 100).  

5. The moving t and SNHT (Alexandersson) tests2 were applied to the whole set of 
difference series in the base intervals of point 4, scanning the intervals, to 
determine the probability of a break point, as a function of its time. We examined 
first the intervals around the incidents reported in metadata. An inhomogeneous 
break was detected when the significance level exceeded 99% in the t-test and was 
at least 50% above the 95%-level in the SNHT, recurrent in three difference series3. 
We checked the local anomalies and, in doubtful cases, ran also the sequential 
Mann-Kendall-test (with “prewhitened“ series). 

                                                 
1 We considered the so-called “station drift” since the differences between correlated temperature series show frequent 
trends of changing signs (even in absence of inhomogeneities, see Rhoades and Neill, 1995). Therefore, the stronger this 
drift is, the shorter the base intervals of the candidate series must be, , because earlier or later data are less valid for the 
adjustment at a certain time. 
2 We corrected the significance levels of the t-test for autocorrelations by the” reduced sample size”. 
3 The t-test generally confirmed the results of the SNHT; the latter has sharper peaks, due to its quadratic algorithm, see 
Figure 2. 



 

Fig. 2. A: a difference series of maximum temperatures; B: the coefficients of the t
test with a 20-yr running window (discontinuous line) and in the whole 40
interval (both left axis) and of the SNHT in the 40
axis).  

6. After the detection, we adjusted an inhomogeneous break with the highest
correlated simultaneous regional data (up to five series, see Figure 3). The 
candidate series’ after
average of the synchronous differences of the correction series. The weighting 
factors were given by the squared cross
of each series, relative to the candidate. In few particular and highly significant 
cases, we detected continuous inhomogeneities and adjusted them in a similar 
way4. We always adjusted the data before a break. 

To assure the non-interference between the adjustments, we performed the steps 4
iteratively: after adjusting all the disjointed inhomogeneitie
series and went on with the next iteration. In many cases, slighter inhomogeneities could 
be detected only after adjusting a large inhomogeneity. The iteration stopped when no 
more significant inhomogeneities were detected.
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. An illustration of the adjustment method. The thick line represents the 
anomalies of the candidate series with a detected break between the two marked 
adjustment intervals. 

                                                
4
 In some cases, when there is a sufficiently long overlapping interval between two candidate subseries, we verified their 

synchronicity and absence of inhomogenities and adjusted by the mean difference.
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more significant inhomogeneities were detected. 

3. An illustration of the adjustment method. The thick line represents the 
anomalies of the candidate series with a detected break between the two marked 

         
In some cases, when there is a sufficiently long overlapping interval between two candidate subseries, we verified their 

synchronicity and absence of inhomogenities and adjusted by the mean difference. 

time

 

2. A: a difference series of maximum temperatures; B: the coefficients of the t-
yr running window (discontinuous line) and in the whole 40-year 

year interval (thick line, right 

After the detection, we adjusted an inhomogeneous break with the highest-
correlated simultaneous regional data (up to five series, see Figure 3). The 

difference (offset) was replaced by a weighted 
e of the synchronous differences of the correction series. The weighting 

correlations and the common data fraction 
of each series, relative to the candidate. In few particular and highly significant 

d continuous inhomogeneities and adjusted them in a similar 

interference between the adjustments, we performed the steps 4-6 
s, we recalculated (updated) all 

series and went on with the next iteration. In many cases, slighter inhomogeneities could 
be detected only after adjusting a large inhomogeneity. The iteration stopped when no 

3. An illustration of the adjustment method. The thick line represents the 
anomalies of the candidate series with a detected break between the two marked 

In some cases, when there is a sufficiently long overlapping interval between two candidate subseries, we verified their 



50 
 

7. We searched for individual inhomogeneous data, by detecting extreme values of the 
difference series and verified these data in each local series (in analogy to point 5, 
we considered an outlier as inhomogeneous when its amplitude exceeded the 99.5% 
confidence level in at least three difference series, relative to a symmetrical running 
30-year-interval). The detected inhomogeneous data were removed. 

8. The missing data (or gaps due to removed inhomogeneous data) were filled by 
weighted means of the best-correlated synchronous data, based on standardized 
anomalies in adjacent years, assuming synchronicity between these series. The 
filling algorithm used up to five regional series and weighted the contribution of 
each time series, as in point 5, with the squared cross-correlations and a common 
data factor5. When the information of the surrounding series were insufficient, the 
gaps were filled by an ARIMA- interpolation (only intrinsic information of the 
candidate series). 

9. Finally, the dataset was prepared with two time series for each climatic region, 
expressed as anomalies, relative to the reference period 1961-1990: one local series 
and the regional average series (all the local series are also available, for further 
purposes).   

Seasonally or monthly varying adjustments? 

The adjustments were based on the monthly data, but generally did not vary with the 
month or the season (only a few seasonally distinct adjustments were applied, when the 
seasonal discrepancies were particularly large). In literature, we find different types of 
adjustments (see, for example, Peterson and Vose, 1998). Inhomogeneities in climate data 
often depend on the month or season, because of the seasonally diverging impacts of 
instrumental or environmental changes and under this viewpoint, a monthly or seasonally 
varying adjustment is theoretically better. However, it modifies the variability, the 
autocorrelation structure, and the annual cycles of the data, whereas the adjustments 
applied here consist of a simple additive term. Furthermore, a monthly varying adjustment 
must work with 12 times fewer data (for a given interval length) and the confidence 
margins are substantially wider. Hence such an adjustment becomes more attractive when 
the number of series is larger and when the initial data quality is higher than in the present 
study.  

4. RESULTS 

A. The homogenized dataset, adjustments and rejected data 

Among the 43 monthly maximum and minimum temperature series, we found widespread 
homogeneity problems: adjustments were necessary in almost all series, although the 
criteria for the detection of inhomogeneities were rather severe (high significance and 
redundancy levels). In some cases, long intervals or whole series were rejected, because of 
a lack of homogeneity. We adjusted a total number of 59 (85) inhomogeneities in 
maximum (minimum) temperatures (see Table 1), with a mean amplitude of 1.00ºC 
(1.05ºC), besides the rejected intervals and individual data. As an average, we applied one 
adjustment every 44.5 years (66 years).  

                                                 
5 The amplitude of the correction is reduced (filled value closer to the mean of the chosen interval), when the information 
of the nearby series drops below a certain threshold. 
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B. The error margins of raw and homogenized data 

The instrumental error in temperature measurement is of the order of 0.1ºC (Linacre, 1992) 
and increased to around 0.2ºC in differences between two series. A series of roughly one 
century required an average of two adjustments (see point A); therefore the mean margin 
of the total error (instrumental plus homogenization, under a worst-case error 
accumulation) increased to about 0.4ºC. 

On the other hand, the mean amplitude of the adjustments (around 1ºC) defined the 
uncertainty in the raw-data series (mean error due to the inhomogeneities), besides the 
instrumental error. A long series had between one and five inhomogeneous breaks, with an 
average of around two. Depending on the degree of cancellation of these errors, the total 
uncertainty in the raw series frequently exceeds 1ºC, and sometimes it could even be 
higher than 2ºC.  

C. A comparison of some results, based on raw and homogenized data 

 
We compared the temperature changes with raw and homogenized data, by applying a t-
test to the means of different intervals and regions. In some cases, an inconsistent result 
has been found between the raw local and mean series (only one of both series showed a 
highly significant change). After homogenization, this inconsistency between the highly 
correlated regional representative series disappeared, indicating a higher degree of 
redundancy between the series and therefore a better data quality. 
 

Table 1. Total data and number of adjustments and rejected data (individual data or 
intervals, y = years) in the Spanish maximum and minimum temperature series. 

 
Series No. data No. adj. rej. data No. data No. adj. rej. data 

 Maximum temperatures Minimum temperatures 

La Coruña 1460 1  1460 1  
Santiago 1066 1 4 1081 1 1 
Pontevedra 1064 1 15 866 2 236 
Orense 951 2 76 452 1 88 
Vigo 1002 2 72 876 2 146 
Finisterre 524 1 1 510 1 5 
San Sebastián 1485 1  1485 2  
Bilbao 768 2 82 963 1 1 
Santander 1076 2  1075 1  
Vitoria 979 1 1 980 3 2 
Pamplona 1370 2 29 1126 1 ≈ 34 y 
Zaragoza 1592 2  1592 3 4 
Huesca 1542 2 9 1525 2 4 
Logroño 958 2 1 969 3  
Lérida 607 2 160 699 2 50 
Valencia 1592 3 4 1592 3 ≈ 25 y 
Gerona 1072 2  1066 5 6 
Barcelona 1496 2 1 1095 3 ≈ 26 y 
Castellón 1049  1 1038 2 16 
Alicante - -  1157 2 ≈ 31 y 
Murcia 1592 2 1 1430 4 77 
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Madrid 1592 3 2 1592 2 5 
Ávila 929 2  1006 1 20 
Burgos 1556 2 3 1558 2 5 
León 432  ≈ 21 y 923 2  
Palencia 873 1  877  1 
Salamanca 1558 1  1459 6 8 
Segovia 1401 1  1399 4 3 
Soria 1535 2  1365 3 ≈ 6 y 
Zamora 790   1038 1 3 
Guadalaj. 893 2 1 313  ≈ 48 y 
Toledo 1101 1  1085 1 17 
Albacete 1366 1  1418 4 8 
Ciud. Real 1092  2 -- -- -- 
Cuenca 1074  1 692  174 
Seville 1220 3 2 1220 4 2 
Córdoba 1048  2 1050 2 3 
Huelva 1046 2 2 1005 2 171 
Jerez 754 1 ≈ 24 y 919 1 7 
Málaga 1114 2  1302 2  
Badajoz 1112 2 1 1112 3  
Cáceres 1122  7 1000  2 

5. CONCLUSIONS AND DISCUSSION 

Thermal changes are expected to be generally of the order of 1ºC or smaller; hence, the 
large error margin of the raw Spanish long-term data frequently does not allow a reliable 
detection of changes of this order. This situation is largely improved by the 
homogenization method: it applies severe conditions for inhomogeneity and may fail to 
detect small inhomogeneities, but the average total error of the series drops below half a 
centigrade and clearly enhances the data quality for subsequent analysis (and allows to a 
certain degree an analysis of the regional differences, besides the first-order trends in 
Spain). Furthermore, we confirmed an improvement of consistency between highly 
correlated series, due to homogenization. 

This homogenization method was developed for a rather small number of series of 
limited quality, where the level of data redundancy is sometimes low and the intervals free 
of inhomogeneities are frequently short (shorter than 20 years and often shorter than 10 
years). Under these circumstances, we applied multiple comparisons, instead of a method 
with reference series, and generally we did not perform monthly or seasonally varying 
adjustments. We consider this method a kind of “first order homogenization” (or a method 
for low data coverage): its results are significantly better than those of the “zeroth order” 
(the raw data), but the method may be refined, when the data coverage and/or the initial 
data quality is substantially higher.  
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ABSTRACT 

We developed quality control (anomalous data detection and homogeneity analysis) and 
reconstruction process of all monthly precipitation data for eastern Mediterranean area of 
Spain, stored at Nacional Meteorological Agency (Instituto Nacional de Meteorología). 
The original amount of observatories is 3891 and more than 106 monthly data represent the 
total precipitation dataset. Due to difficulties in creating suitable reference series, the ones 
covering less than 10 years were discarded. Data duplications in different series of the 
same location has been also checked and removed. In consequence of these two previous 
steps, 5.5% of original data was deleted and altogether 2669 series were analyzed 
(containing 964.173 monthly data). AnClim and ProClimDB Software were used in the 
analysis. 

For each monthly series (2669*12), we calculated an independent reference series 
using all close-by neighbours (less than 50 km apart) with a minimum overlap period of 10 
years; positively correlated and with a mean monthly correlation > 0.5. With these 
restrictions, reference series were calculated by weighted mean (1/distance)2 after mean 
standardization. 

Suspicious data were detected by comparing the ratio series (candidate / reference, 
and viceversa, because of minimum precipitation value is set to 0). This procedure was 
combined with inter quartile ranges. To avoid influence of suspicious data, we followed an 
iterative process (10 steps). Then, after removing the first set of suspicious data, a new 
reference series were calculated and all data were checked again. At the end, altogether 
7182 data (0.75 % of total data) has been removed . After that, we checked for 
homogeneity in all series by applying SNHT. To test the influence of anomalous data in 
homogenization process, we run SNHT test both using original data-set and data-set 
obtained after anomalous data elimination. Thus, in original database a total of 1966 non 
homogeneous series (75%) (containing 2984 inhomogeneities) were detected. However 
after applying SNHT on depurated data base, only 1125 series were detected as non 
homogeneous (43%), including 1795 inhomogeneities. 

The results indicate that detection and correction of suspicious data in huge databases 
appears to be necessary in order to avoid statistical inhomogeneities. In conclusion we 
present some initial results consisting of monthly precipitation trends during the winter 
months.  

1. INTRODUCTION 

In the last report of the IPCC, sub-regional analysis of the global change, precipitation 
analysis and need of articulating global, regional and local scale of climate were 
considered as reliable objectives (Houghton et al., 2001; Parry, 2001). These tasks suppose 
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that results of General Circulation Models (GCMs) and empirical data are linked. (Allen 
and Ingram, 2002), and, usually present two difficulties. First, the precision and reliability 
of GCMs decrease with the change of scales (Matyasovszky et al., 1999; Mcnamara, 
1999). By using 3º x 3º longitude/latitude resolution, validations are well accepted in 
extensive and homogenous areas. Nevertheless, until now, GCMs are not able to catch the 
spatial shades of regional and local scales (Zorita and González Rouco, 1999; 
Prudhoumme et al., 2002). The phenomenon is mainly observed in precipitation analyses 
(Allen and Ingram, 2002), especially in areas where the pluvial regime is characterized by 
shortage, seasonality and variability, as in areas of Mediterranean climate (Groisman and 
Legates, 1994; Balairón, 2000; Wilby and Wigley, 2000). In this context, predictions of 
GCMs represent a simplified vision of the reality not well fitted to the space details 
(Palutikof et al., 1996; Sulzman et al., 1995), and of increasing uncertainty in temporary 
scales (Mearns et al, 1995; Barrow et al., 1996), which needs to be confirmed by means of 
study of historical data. 

 
On the other hand, comparison of weather stations’ data with GCM results requires 

the availability of detailed spatial and temporal information. The situation particularly 
affects precipitation, being one of the most variable climate elements. In addition, this 
information is fundamental not only in evaluating GCMs, but also in comparing observed 
climate change to natural variability (Hulme et al., 1995; New et al., 2002). 
Concerning the first aspect, and to facilitate the comparisons, it has been suggested that the 
data analysis must be made on a minimum (about 30 years long) period of observations, 
which corresponds tothe normal periods of the World Meteorological Organization (Hulme 
et al., 1995; Moron et al., 1995). Although, other periods has been suggested as well, like 
1951-1980, which allows the analysis of the NAO index (Hurrel, 1995; Rodrigo et al., 
2000). The second question concerns the precipitation changes, which can only be detected 
when a dense network of observatories is used (Groisman and Legates, 1994; Hulme, 
1995; Vinnikov et al., 1990; Cosgrove and Garstang, 1995). 

 
The previous comment implies two conclusions: (i) We must be extremely careful 

in areas of climatic transition when analysis of climate change is required on sub-regional 
scales. (ii) In this case, we must avoid spatial and temporal generalizations, and for these 
reasons, the study of the observatories data becomes essential. 

 
The availability of dense and prolonged databases is very diverse, depending on the 

areas. In Europe the University of East Anglia made the biggest effort (among other 
institutions) (Hulme et al., 1995; Tank et al., 2002), while at sub-regional scale, disparity is 
great. In fact, in the Iberian Peninsula and Spain, several studies have used database 
gathered by observatories of greater quality and duration, and provided general view on the 
evolution of precipitation (Esteban-Parra et al., 1998; Rodriguez-Puebla et al., 1998; 
González-Rouco et al., 2001, among others), or its relation to tele-connection patterns 
(Martín Vide, 2001). At the same time they were not able to detect sub-regional scale 
characteristics, as suggested by the IPCC, because the spatial density of observations is 
very low (around 1 observatory in 5000 km2). Therefore, general models calibrated on 
these databases can also offer interesting results, although their resolutions are not good 
enough to investigate the effects of climate change. 
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Consequently, database construction and analysis of historical data appear to be a 
very promising way to make possible global change studies at different scales. In addition, 
it seems to be particularly adaptable in areas where climatic transition takes place, and 
probably, effects of the climate change will be well perceived. The Mediterranean climate 
areas belong to this universe, and the Iberian Peninsula is a good example. 

 

The Iberian Peninsula cover a total area of about 500000 km2 and it is located in the 
western part of the European continent, within the latitudinal strip of 36º-44º north. Its 
location is peculiar mainly due to its relief. In the Iberian Peninsula the main mountains are 
distributed in parallel strips W-E from north to south (Cantabrian, Pyrenees, Central 
System, Andalusian mountainous areas), which are blocked to east by the Iberian System 
in direction of NW-SE-S-SW (Figure 1). Therefore, latitudinal gradation of N-S takes 
place in the pluvial values, overlapping with another gradation of W-E. The Mediterranean 
areas, approximately 1/3 of the total area of Spain, are safe from the influence of the 
Atlantic, and  has their own personality in which rainiest places are detected (Mountain 
range of Grazalema, province of Cadiz), as well as a unique European desert (Cabo de 
Gata, province of Almeria). 

In this paper, we present the development of methodological approach proposed in the 
previous seminar celebrated in Budapest (González-Hidalgo et al., 2004), on techniques 
and control quality of climatic data. The study leads by the analysis of dense data base 
offered by the National Institute of Meteorology (INM) of Spain. Our purpose is to test 
different methods of analyses, and here we present some provisional results for 
precipitations trends.  

Fig. 1. Spatial distribution pattern of Spanish principal mountain chains 
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2. DATA BASE  

The database have been collected from the total records stored at the National Institute of 
Meteorology of Spain, and present all the available precipitation data recorded in the study 
area (3891 observatories including more than 106 monthly data). The series are highly 
variable in characteristics (gaps, length, etc) and several different series exist at the same 
location (from different observatories), or at sites located close to each other (< 5 km). 
Furthermore, spatial density of observatories is high, except for altitudes higher than 2000 
m o.s.l.  

This data base have been analyzed partially at global scale using the highest quality 
observations (González Rouco et al., 2001), or at sub-regional scale (e.j. Sumner et al., 
1993; Pérez-Cueva, 1994; Lana et al., 2004). Consequently, global study gives an 
opportunity to obtain hundreds of series, at least from the second half of the 20th century. 
We are consistent in pointing out the absence of other studies leading with quality control 
at the same scale as raised in this work.  
 

3. METHODS 

The quality control applied consists of four steps: identification of repeated data within the 
same series, identification of repeated series, detection of anomalous data and control of 
homogeneity. 
 

3.1. Identification of repeated data within the same series  

Different situations were detected in analyzed dataderiving from the same series. 
Consecutive repetition of identical monthly data, repetition of monthly data in consecutive 
years, and chains of zeros in four successive years. Table 1 shows some selected examples 
of the above situations. These data have been eliminated. 

Table 1. Selected examples of repeated data within the same series (in dec. mm) 

Code Yr J F M A M JN JL A S O N D 
0220 1968 1 0 0 0 0 0 0 0 0 0 0 0
0220 1969 0 0 0 0 0 0 0 0 0 0 0 0
0220 1970 0 0 0 0 0 0 0 0 0 0 0 0
0220 1971 0 0 0 0 0 0 0 0 0 0 0 0
0347c 198210961631 930 452 490 468 7202015 371 7531353 8
0347c 1983 0 374 100 452 495 468 7202015 371 7531353 8
0347E 198210961631 930 452 495 468 7202015 371 7531353 8
0347E 1983 0 374 100 452 495 468 7202015 371 7531353 8
8163 1962 230 32610151015101510151015101510151015569331
8200b 1975 0 230 5701020 280 340 530 400 280 700 0 0
8200b 1974 0 230 5701250 210 340 530 400 280 700 0 0

3.2. Identification of repeated series. 

For each series, a set of neighbours have been identified by distance calculations. Then, 
each one has been compared to the nearest to verify its own identity and to avoid duplicity. 
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The procedure involved detection of numerous situations in which, up to four series 
apparently independent, data are fully or partially repeated. In these cases, we preserved 
the longest series with the most recent data, and the missings of selected series were 
completed by calculating average of the neighbour’s data.  

Finally, all series of less than 10 years have been joined to their neighbours, by 
using the procedure described before. Table 2 shows an example of repeated series among 
8 years. 

Table 2. Selected examples of repeated series (in dec. mm) 

 Code   J F M A MY JN JL A S O N D 
0003 1951 810 78 1077 1138 1038 432 67 199 2405 2623 500 1295
0003 1952 255 120 559 630 960 503 50 85 430 586 70 197
0003 1953 0 0 1069 208 364 1272 240 0 580 1612 234 1076
0003 1954 130 650 965 311 796 740 250 83 329 52 260 750
0003 1955 1383 617 157 0 180 1593 224 490 874 1069 205 867
0003 1956 740 222 1890 463 1264 495 13 385 1060 425 605 50
0003 1957 16 50 0 710 2281 1696 0 131 260 1821 365 1695
0003 1958 665 0 313 250 0 110 0 120      
 Code   J F M A MY JN JL A S O N D 
0002I 1951 810 78 1077 1138 1038 396 67 199 2355 2621 500 1295
0002I 1952 255 120 559 630 960 503 50 85 430 586 70 197
0002I 1953  1063 208 364 1270 240 580 1612 234 1736
0002I 1954 130 650 965 311 798 740 250 83 329 52 260 750
0002I 1955 1383 617 157 180 1593 224 473 891 1002 272 868
0002I 1956 740 222 1875 468 1264 495 13 385 1060 425 605 50
0002I 1957 16 50 710 2471 1796  131 260 1825 365 1695
0002I 1958 765  313 250  110   120      

 
By applying such procedures of quality control, data base have been reduced to 2669 series 
and 964.173 monthly data, and metadata file have been created with repeated series and 
eventually possible combination of series. Depurated data represent 5% of the originally 
existed data base.  
 
In the following steps, detection of anomalous data and control of homogeneity were made 
by means of reference series calculation and iteration procedure. This process is really 
relevant and it is appropriate to make a detailed analysis of how the reference series were 
obtained. 

3.3. Reference series calculations 

Reference series is a combination of the neighbours better correlated with the series which 
has to be analyzed. Therefore, it becomes a sample to which our candidate may be 
compared. The selection of the neighbouring observatories is based on two criteria: the 
distance and the correlation coefficient.  

The neighborhood seems to be suitable criteria allowing for the unavailability of 
studies which specify maximum or minimum distances in the selection. The selected 
distance may depend on the topography and climatic behavior of the regions. On the other 
hand, absence of topographic barriers or elements that weaken the pluvial rates between 
the neighbouring observatories and the candidate is recommended (Vincent and Gullet, 
1999). 
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To avoid slants of national character (type of instrument or own technique of 
meteorological services), it has been suggested to include always some foreign 
observatories (Peterson and Easterling, 1994). 

Regarding correlation coefficient, positive thresholds interval from r = 0.7 to r = 0.8 
have been recommended (e.j. Vincent and Gullet, 1999). Nevertheless, in areas with 
Mediterranean climate, where the precipitation is extremely variable throughout years and 
is concentrated only on a few days, even adjacent observatories do not show highly 
correlated values (Rodriguez et al., 1999). In fact, it results from the local character of the 
phenomenon, induced by the high frequency of convective processes. On the other hand, 
due to the dichotomizing character of precipitation (if it rains or not), and to the absence of 
negative values, it has been proposed to select correlations by using the difference series 
(Peterson et al., 1990a), or transformed logarithm (Rhoades and Salinger, 1993). This 
process, in addition, would avoid the outliers effects as indicated by Lanzante (1996) and 
González-Rouco et al. (2001). Consequently, combination of both criteria could be much 
more effective in this kind of study.  

The second question needs to be determined for calculations of reference series is 
the number of selected neighbours. By Peterson and Easterling (1994) it was suggested to 
be around five but never lower than two. However, other studies indicated that even a 
single observatory might be suitable as reference one, whenever its quality is well verified 
(Keiser and Griffiths, 1997).  
Finally, procedures for the calculation of any reference series were object of great attention 
in many researches (Jones and Conway, 1997; Jones and Hulme, 1996). In all cases, the 
weighed values of neighbouring data are often considered. 

According to the above considerations, reference series were made after the process 
of neighbours’ selection within the range of 50 km, with a minimum overlapping of 10 
years, and with all positive monthly correlations with an average monthly correlations 
higher than 0.5.  

As different neighbouring series could show different overlap periods with the 
candidate one, in the presence of missing data and different averages of the neighbours, 
some standardization process is needed in order to avoid introducing uncontrolled slants 
during the creation of reference series. Thus, in each case, average standardizations has 
been applied to all neighbour series by using common overlap period with the candidate 
one.  

Thereafter, the calculation of each reference series was carried out by means of 
weighed average of (1/d)2, where d is distance in km. The selection of the distance as 
weighted factor is required in case of precipitation, owing to the spatial character of this 
element. The distance of chosen selection (50 km) is well adapted to our purposes, as 
different tests, performed on neighbours within 10 km and 75 km, have proved. 

3.4. DETECTION OF ANOMALOUS DATA 

Once reference series have been calculated, the detection of suspicious data was made by 
means of an iterative process of detection-elimination where, the reference series was 
calculated again in each step. At the detection of suspicious data we considered that the 
precipitation appears as a series of data limited by its base (minimum value equal to zero). 
Thus, to avoid this effect, we analyzed series of direct ratios (C/R) and inverse ones (R/C). 
In the first case, series of ratios was used to identify possible anomalous data by excess in 
the candidate series front of its reference while in the second one, we detected possible 
anomalous data by default. 
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The detection of suspicious data, in each case, was made by combining two criteria, 
in which thresholds of both ratios and the inter-quartile distances have been combined, by 
using the expression of Q75 + (Q75 - Q25) * 3, where Q is the corresponding quartile and 
3 is a coefficient.  

To avoid dificulties of ratio calculations for zero values, all data base and reference 
series were increased by 1. Furthermore, in order to avoid the slant that lowest values 
could induce in the smaller ones (e.g. ratio of 10/1 = 10, ratio of 1000/100 = 10), all data 
were also increased by a constant of 29 mm. We used this final threshold value (29+1), 
since months with 30 mm of monthly precipitation can be considered as dry month in the 
climatic tradition (see Köppen classification). Finally, the threshold values of ratios and 
inter-quartile distances were applied strictly in case of zero values (Table 3). 
 

Table 3. Threshold value for ratio and inter-quartile distance. 

Normal data 
Threshold  

Cero data 
Threshold 

Ratio Quartile   Ratio Quartile 
>4.5 All  >4.0 All 
> 4.0 > 2.5  > 3.5 > 2.5 
> 3.5 > 5.0  > 3.0 > 5.0 
> 3.0 > 7.5  > 2.5 > 7.5 
> 2.5 > 10.0   > 2.0 > 10.0 

 
The procedure was repeated successively, removing in each iteration the suspicious data 
from the original database and proceeding again to calculate new reference series. The 
final step consisted of removing all suspicious data from the initial data base, hence 
calculating the most depurated reference series.  

These last reference series, obtained after 10 iterations, were finally contrasted with 
the original series in order to perform the final detection of all the doubtful data. Thus, 
finally a total of 7182 monthly data were eliminated, which is less than 1% of the original 
data base. In Table 4 and 5 we show some cases of detected and eliminated data that 
appeared to be suspicious. In Table 4, examples can be seen of data of candidate series 
with values superior to those of reference ones, in Table 5 inversely. The Candidate series 
C has been compared to the Reference one R, in the first case, by means of a direct ratio 
C/R (Table 4), adding to each value the constant of 300. In table 5, we present the 
contrasted values of series of ratio R/C. IDQ means the inter-quartile distance value for 
both ratios series, respectively. 

 

Table 4. Selected anomalous data for C > R 

Code Year Nº neighb. Month 
C 

(1/10 mm)
R 

(1/10 mm) 
C+300 R+300 Ratio IQD 

0313 1918 5-9 st. 12 2605 19 2905 319 9.1 31.8 
6119E 1988 48-66 st. 12 2808 30 3108 330 9.4 47.3 

7247 1938 1-10 st. 8 2650 50 2950 350 8.4 73.8 
8274U 1974 45-51 st. 12 3730 0 4030 300 13.4 143.7 
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Table 5. Selected anomalous data for C > R 

Code Year Nº neighb. Month 
C 

(1/10 mm)
R 

(1/10 mm) 
C+300 R+300 Ratio IQD 

0358 1930 15-19 st. 1 98 3092 398 3392 8.5 20.5
6049 1984 23-26 st. 11 0 3678 300 3978 13.3 40.7
8501 1969 27-30 st. 10 0 3309 300 3609 12.0 77.1

9195U 1986 34-38 st. 1 80 8164 380 8464 22.3 4.4
9815E 1979 74-81 st. 1 0 3530 300 3830 12.8 5.5

3.5. Homogeneity control procedure. 

In order to detect inhomogeneities in the series, many statistical tests have been developed, 
reviewed in Szalai et al., (1999), Peterson et al., (1998) and Lanzante (1996). We can point 
out some of them such as Rhoades and Salinger (1993, test CUSUM), Rodriguez et al., 
(1999, test of von Neuman), Tayanç et al.., (1998, test of Kruskal-Wallis), Easterling and 
Peterson (1995, likelihood ratio), Gan (1995, test of Kendall), Lanzante (1996, test of 
Wilkoxon-Mann-Withney), Tarhule and Woo (1998, tests of Pettit, Man Withney and Man 
Kendall), and of course SNHT test of Alexanderson (Alexanderson, 1986; an excellent 
overview of SNHT can be found in Keiser and Griffits, 1997).  
 

On the other hand, many meteorological services developed their own methods (see 
specific cases, Vincent and Gullet, 1999; Tuomenvirta, 2001; Peterson et al., 1998), whose 
software is often not available to the public. However, the slant of using suitable test 
depends on the software availability as well as on the contacts with the developers. 
In our case, the control of homogeneity in the depurated data base has been developed by 
SNHT (Alexanderson, 1986), both for monthly and seasonally scale. The softwares used in 
this analysis are AnClim and ProClimDB (Štepánek, 2005a, 2005b). 
 

In order to select the statistical inhomogeneities that had to be corrected, we used 
temporary windows, supported by metadata obtained during the detection process of the 
series with repeated data. In any case, when inhomogeneities have been detected, those 
were corrected in complete years. We didn’t accept inhomogeneities neither in the initial 
nor in the final part of the series (10 years). Also we only accept and correct detected 
inhomogeneities affecting at least at 3 independent months in the same period (using a 
window of 5 years). After carrying out the corrections, we proceeded to calculate new 
reference series and applied again the SNHT test. Total of considered inhomogeneous 
series was of 202 in both applied runs. 

Finally, to verify the effect of depuration process on the homogeneity tests, we also 
applied SNHT test on the original data and the first reference series (obtained before the 
first step of anomalous data detection). 

 
 

3.6. The reconstruction processes.  

The final step consisted of making reconstruction of all depurated and homogenous series 
by means of new reference series. 

For each observatory, two reference series were calculated by using the same 
procedure described before, in this case, with maximum distances of 10km and 25km 
(Reference series Nº 12 and 13) between neighbours. The series were previously 
manipulated in order to make it possible to join two closed series with successive period of 
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time. Otherwise, we were not able to obtain prolonged series by combining series of 
successive period of time. This fact affected particularly all denominated secular or 
historical series begins before 1900. 

The final filling up of gaps was directly made with data of the reference series 
obtained at 10 km and 25 km.  

 
 

4. RESULTS  

The total number of considered anomalous data finally discarded was 7182 (approximately 
0.75 %), whose monthly distribution is shown in Figure 2. The data are classified as  
positive anomaly (i.e. C>R), negative (C<R) and zero anomalous. Zeros don’t show 
monthly pattern, while high and low suspicious data occures mainly in winter (Figure 2). 
 

These data are temporally accumulated in two periods: around 1925 and 1960. The 
smallest amount of data can be found around the period of civil war and the final decade 
(Figure 3). However, as the number of operative observatories and those of registered data 
are very variable in time, these values must be weighted.  

 
In Figure 4, we show the evolution of the number of anomalous data in proportion 

to data registered in each year. We clearly appreciate that the density of anomalous data is 
located in the first half of the 20th century and decreased considerably from 1950, even 
though it is the period of greater number of operating observatories and registered data. 
The data correspond only to the period of 1901-2000, for it was not possible to contrast 
with reference series of time period previous to 1900, although the total contrasted data 
with its respective reference ascend to 99 %. 

 

Fig. 2. Monthly distribution of anomalous data. (C candidate, R Reference) 
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In the original series, without depurating process, 2984 statistical inhomogeneities were 
detected, and they affected 1966 series of precipitation, which suppose to be 75% of the  
 

total series. Nevertheless, in the depurated data, only 1125 inhomogenous series were 
detected (43%), including 1795 statistical inhomogeneities. The results of this analysis are 
shown in Figure 5, where it is compared with the evolution of the total observatories 
operating in each year. In the first graph (upper), we show the total number of 
inhomogeneities, with and without depuration, detected in each year. In the second one 
(low), we show the annual index of inhomogeneity to avoid the effect of the number of 
observatories. By analyzing both graphs, we can see that no depurated series presents 
greater number of inhomogeneities over time, and they decrease from the second half of 
the 20th century. Finally the total of considered inhomogenous series was of 202. 

 

 

Fig. 4. Annual index of anomalous data. (C candidate, R Reference) 
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Fig. 3. Annual evolution of anomalous data. (C candidate, R Reference) 
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The obtained data base, regarding its special density, begins practically in 1915 and 
the number of observatories increases until the Spanish Civil War period (1936-1939). 
During that time, a drop shows up, but since then, the number of observatories increases 
again until the 70’s, when it reaches its maximum number. Then, it descends until now in 
many places, may be in consequence of the rural exodus (Figure 6). 

This data base is considered as a result of the reconstruction of the total analyzed 
and homogenized series (2669), therefore, we must be careful when trying to use it. In fact, 
combining criteria of minimum length of original data, few numbers of gaps, etc, for the 
second half of the 20th century, we considered about 1113 observatories which fulfill all 
the previous criteria. Thus, they can be used to analyze the evolution of precipitation in the 
Eastern part of the Iberian Peninsula. In Figure 7, we show the spatial distribution of the 
data base, although there are areas with low density. 

Fig. 5. The effect of anomalous data detection on inhomogeneity analysis. 
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Problem of areas over 1500 m o.s.l. persists, about which the information is still lacking. 

5. SOME INITIAL RESULTS. 

The descriptive analysis of precipitation trend during winter months (December-March) 
from 1951-2000 is shown in a collection of maps (Figures 8-9-10-11). All of them show 
significant (positive (+) blue, negative (-) red) and not significant trends (n.s. dot). 

Trends were calculated at p 0.1 level, after low pass filter (9 laps) by using 
Spearman rank order correlation. The results show a very clear spatial pattern from 
coastland-inland and North-South along winter months, and are very promising for future 
analysis. 

 

Fig. 6. Number of observatories and Minimum mean distance in km 
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Fig. 7. Spatial distribution of data base. 
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Fig. 8. December precipitation trend (1951-2000) 
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Fig. 9. January precipitation trend (1951-2000) 
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Fig. 10. February precipitation trend (1951-2000) 
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Fig. 11. March precipitation trend (1951-2000) 
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CONCLUSIONS 

Our analysis shows that detection and correction of suspicious data in a precipitation 
database seems to be preliminary and necessary task to avoid many statistical 
inhomogeneities. 

Following this procedure we have built up a dense data base which covers more 
than 1/3 of the Iberian Peninsula with spatial density circa (?) 1 observatory / 150 km2.  
The high density of our data base enables us to do in the future spatial analysis of sub-
regional models and their empirical validation with in situ measurements. The provisional 
result of monthly trends shows a very coherent spatial pattern and involves that not great 
mistake or bias calculations have been produced. 

There is a lack of data in areas >1500 m o.s.l. It would be interesting to seek for suitable 
methodologies, with the aim of making it possible to fill data up spatially, in order to be 
able to use them for regional climate models. 
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HOMOGENIZATION AND VALIDITY CONTROLS FOR 
TEMPERATURE TREND ESTIMATES OVER ITALY 
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APAT, Via Vitaliano Brancati 48, 00144 Rome – Italy 
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andrea.toreti@apat.it, franco.desiato@apat.it 

INTRODUCTION 

In order to give an answer to the needs of harmonisation and standardisation of climate 
indicators calculation, and of a fast and reliable update and access to the data, a system 
denominated SCIA (Sistema nazionale per la raccolta, elaborazione e diffusione di dati 
climatologici di interesse ambientale) was realised by the Italian environmental protection 
agency (APAT), in collaboration with the main national and regional meteorological 
institutions. In this framework, the processing of meteorological data coming from the 
synoptic network of the Italian Air Force weather service is included. Data recorded from 
49 synoptic stations, characterized by completeness, continuity and good geographical 
distribution (fig.1), were selected for time series homogenization and testing of 
homogenization procedures. We started up this activity by considering the mean monthly 
temperature time series, derived from daily mean temperature, calculated as the arithmetic 
average of maximum and minimum daily temperature reported in SYREP messages.  

Our aim is to obtain a reliable estimation of the temperature behaviour over Italy in 
the last decades, filtering the non-climatic factors like relocation and instrument changes. 
 

 

Fig. 1 Geographical distribution of the 49 stations. 

METHODOLOGY 

Input data can be affected by errors for several, different reasons. In order to filter 
evidently wrong data at the origin, we firstly apply a so-called weak climatological control 
to maximum and minimum daily temperatures included in SYREP message: their values 
must fall within a range of physically admitted values. This control allows to identify (and 
reject) gross mistakes, such as typing errors.  Data validated through this first quality 
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control, contribute to the calculation of monthly mean values. A second quality control is 
performed to identify outliers of monthly means. Following the idea of Eisched et al. 
(1995), the data are clustered as a function of season, and the latitude and altitude of the 
station, hence outliers dropping outside a range of values which is a function of the 
interquartile range of each cluster, are found (Baffo et al. 2005). Outliers are then checked 
through the analysis of input data in terms of time continuity and space correlation with 
data of nearby stations. If it is confirmed that a data is wrong and cannot be corrected, it is 
rejected. If the number of missing or non-valid data in a month exceeds a threshold of 
25%, the monthly value is eliminated from the series. Finally we have a validated monthly 
series to test and eventually homogenize. 

After an analysis of the available statistical procedures for homogenization (Aguilar 
et al., 2003; Peterson et al., 1998), we chose a parametric one, i.e. the Standard Normal 
Homogeneity Test - SNHT developed by Alexandersson (Alexandersson, 1986; 
Alexandersson and Moberg, 1997). It is important to mention some choices we made in the 
test application. First of all we decided to use the single shift version of the test; then we 
have calculated correlation coefficients (between the so-called candidate station and the 
others) using the transformed first difference series, as highlighted by Peterson and 
Easterling (1994). The best correlation criterion, with some geographical limitations, 
indicates that five stations (the recommendation is at least three) applicable for the creation 
of the reference series; we want to emphasize the importance of this step, because the 
reference series should reveal the climatic behaviour and strongly influences the following 
results.  
The practical application of SNHT involves a first test of the entire series; if a shift is 
detected the series is divided into two periods that are tested separately; if one more shift is 
detected, this procedure is repeated, until a homogenous or a too short period is found. The 
correction of inhomogeneous time series has been done following the philosophy of 
‘reproducing current measure conditions’; therefore the oldest periods have been ‘adapted’ 
to the most recent. In the case there is more than one shift. We corrected the series from the 
most recent shift forward (until 2004), reapplied the test to the entire series and corrected 
the oldest shift. 

RESULTS 

In this section we show the results of the test-homogenization session. Two practical 
examples are used to better understand the principal features of the statistical tool and the 
differences between annual mean temperature anomalies over Italy calculated before and 
after homogenization. 

Among the 49 selected monthly time series, we found 6 homogeneous series, 43 
series with at least one inhomogeneity and 28 series with more than two inhomogeneities. 
The initial year of the final series (homogenized and homogeneous) is determined by two 
factors: the first year of station recording and the availability of three stations for the 
reference series (fig.2). 1951 and 1961 are the years with the largest number of time series 
starts.  
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Fig. 2. Number of stations in function of the starting year. 

 
There are many stations with more than one inhomogeneity, and the most common number 
is three (Fig.3). 
 

 

Fig. 3. Number of stations in function of the number of shifts. 

 
The analysis of the number of shifts as function of the year of occurrence shows that there 
is not a change that involves the entire network in a specific year (fig.4). 
There are only four years with no supposed changes (1952, 1980, 1996, 1997), since the 
last and the first year cannot be considered.  
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Fig. 4. Number of shifts in function of the year. 

 

Finally, the shifts are not concentrated in specific months, having all months at least five 
shifts, with the largest occurrence in March and September (Fig.5). 
 

 

Fig. 5. Number of shifts in function of month 

 

The first practical example, that we want to show, is the homogenization test of the Rome 
Ciampino station (WMO code: 16239). The reference series has been constructed with five 
stations (16234, 16244, 16224, 16243, and 16245) that have a correlation coefficient 
greater than 0.985; we have found three shifts in the following month/year: February/1964; 
March/1973; August/1977. The corrections were applied and the original and homogenized 
monthly series are presented in fig.6. The differences between the two monthly series are 
hidden by the seasonal cycle, while they are evident in the annual series (Fig.7).  
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Fig. 6. Monthly series of Rome/Ciampino, homogenized (blue) and original (red). 

 

 

 

 

Fig. 7. Annual series of Rome/Ciampino, homogenized (blue) and original (red). 

 

Another station (16206), besides the five chosen for the reference series, has a high 
correlation coefficient, but presents some problems in terms of homogeneity. Then, we 
tested the sensitivity of the homogenization procedure with respect to the composition of 
the group of stations used to calculate the reference series. Four tests were carried out: two 
with five stations and two with three stations; in both cases the station 16206 is firstly 
included and then excluded from the group. Available metadata document indicates a 
relocation of the Rome Ciampino station in 1977; so we decided to begin the analysis after 
the shift of 1964 and to test the ability of the SNHT to detect the shift occurred in 1977. 
The t statistic of the ‘five stations test’ gives good results both with and without station 
16206 (fig.8), i.e. the 1977 shift is well identified; the ‘three stations test’ shows a different 
behaviour of t in the two cases (fig.9). When the 16206 station is excluded the statistic is 
still able to detect the 1977 shift, and the entire behaviour of the function is similar to that 
of the ‘five stations test’; the introduction of 16206, which is inhomogeneous itself,  
compromises the t series.  
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Fig. 8. T statistic with five stations. Without (blue) and with (red) station 16206. 

 

 

Fig. 9. T statistic with three stations. With  (red) and without (blue) 16206. 

 
This test makes it appearthat the number of stations and a careful selection of the stations 
to be used for the calculation of the reference series, may be very important, and that a 
wrong choice may lead to unrealistic results. 
The second example involves the station Foggia/Amendola (WMO code 16261), with the 
reference series obtained using five stations (16312, 16232, 16320, 16332, 16360). This 
series has only one shift in April 1965, so the correction procedure is fast and easy; fig.10 
compares the annual homogenized series to the original one, while fig.11 shows the 
statistic before and after the homogenization. 
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Fig. 10. Annual series of station 16261, homogenized (blue) and original (red). 

 

 

Fig. 11. T statistic of 16261, original (red) and homogenized (blue). 

 
Finally, the comparison of the annual mean temperature anomaly over Italy from 1961 
until 2004 (obtained by averaging the anomaly values over all 49 stations), calculated 
before and after homogenization, is presented. Fig.12 shows the values of differences, 
ranging form –0.06 to 0.07 °C. This relatively small effect of homogenization on the mean 
anomaly series may be due to several reasons: the different number, sign, amount and year 
of occurrence of the inhomogeneities; the fact that the network has to respect WMO 
technical specifications, that limit the possible changes of stations characteristics; the fact 
that these stations are mainly located in airport areas, where altering factors such as 
growing heat island or large relocations are reduced or improbable.  
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Fig. 12. Difference series between the homogenized annual mean temperature 
anomaly and the original series. 

CONCLUSIONS 

In the context of SCIA project 49 monthly time series coming from the network of the 
Italian Air Force Weather Service have been tested and homogenized, in order to obtain a 
reliable estimation of annual mean temperature anomaly over Italy. Six series came out to 
be homogeneous, while twenty-eight have more than two inhomogeneities. The shifts do 
not occur in a specific month/year or period, and also the sign and the amount of the shifts 
are very different among the series. Two examples of homogenization test were presented. 
The first gave us the possibility to show the sensitivity of SNHT with respect to the 
number and the choice of the stations used to calculate the reference series. The results 
indicate that the use of five series is advisable. Finally, the differences between annual 
mean temperature anomaly coming from the homogenized set and the original one have 
been shown.  

REFERENCES 

Aguilar, E, I. Auer, M. Brunet, T.C. Peterson, J. Wieringa, 2003: Guidelines on climate 
metadata and homogenization. WMO/TD No.1186, WCDMP 53. 

Alexandersson, H, 1986: A homogeneity test applied to precipitation data. J. of Climatol., 
6, 661-675. 

Alexandersson, H, A. Moberg, 1997: Homogenization of Swedish temperature data. Part I: 
Homogeneity test for linear trends. Int. J. of Climatol., 17, 25-34.   

Baffo, F, B. Suatoni, F. Desiato, 2005: Indicatori climatici: i controlli di validità e la 
ricerca dei valori errati. Bollettino Geofisico, 1-2, 31-43. 

Eisched, JK, C. Bruce Baker, T.R. Karl, H.F. Diaz, 1995: The quality control of long-term 
climatological data using objective data analysis. J. of Applied Meteorol., 34, 2787-
2795. 

Peterson, TC, D.R. Easterling, 1994: Creation of homogeneous composite climatological 
reference series. Int. J. of Climatol., 14, 671-679.  

Peterson, TC, D.R. Easterling, T.R. Karl, P. Groisman, N. Nicholls, N. Plummer, S. Torok, 
I. Auer, R. Böhm, D. Gullett, L. Vincent, R. Heino, H. Tuomenvirta,O. Mestre, T. 
Szentimrey, J. Salinger, E.J. Førland, I. Hanssen-Bauer, H. Alexandersson, P. Jones, 
D. Parker, 1998 : Homogeneity adjustments of in situ atmospheric climate data: a 
review. Int. J. of Climatol., 18, 1493-1517. 

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

year

°C



83 
 

DETECTION OF INHOMOGENEITIES IN WIND DIRECTION AND 
SPEED DATA 
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Republic Hydrometeorological Institute of Serbia, Kneza Višeslava 66, Belgrade, Serbia & 

Montenegro, tel. +381/11/3537-804 
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1. PROBLEMS OF PROCESSING WIND (DIRECTION) DATA 

Unlike other weather elements, which might be treated as scalars (and thus as a single 
value), wind data are generally coupled into a pair of values, independent one from 
another. Therefore, dealing with wind direction and speed data homogeneity is a bit more 
complicated. In addition, wind direction is usually given as azimouth, an element with 
limited range of values that reset to minimum of 0 degrees when maximum of 360 degrees 
is reached (and reversly). Such element disables common mathematical tools for wind 
direction data processing (Fig. 1). 
 

 

Fig. 1. Annual mean moving values of wind vector azimouth and intensity, Novi Sad - 
Rimski Šančevi, 1967-1984 

Another way to have wind data as scalar value is to convert them into two components. 
Still, a pair of series with questionable correlation and great fluctuations is not convenient 
for applying any homogeneity test. Besides, variations in series are of magnitudes that 
overwhelm possible inhomogeneities (i.e. climate signals, changes in observations / 
instruments). Thus, splitting of wind vector onto northern and eastern component does not 
appear to be a good solution of this problem (Fig. 2). 
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Fig. 2. Annual mean moving values of wind vector north and east component, Novi 
Sad - Rimski Šančevi, 1967-1984 

However, wind direction data in climatology are shown as "wind roses", dealing with 
distribution of frequences of every distinguished wind direction. Also, some wind speed 
data processing might include distribution of frequencies of wind speed intervals. Since 
both direction and speed data might deal with distribution of their values, the 
ReDistribution Method (Petrović, 2003) might be successfully used for detection of 
inhomogeneities in these data series. 

2. DESCRIPTION OF THE REDISTRIBUTION METHOD 

The ReDistribution Method is based on variations in consecutive distributions of 
frequencies of defined data value classes. In case of wind direction, data value classes are 
represented by distinguishable wind directions (8, 16, 32 or 36 directions plus calms). The 
wind speed classes might be wind speed intervals of at least 1 m/s up to Beaufort scale. 
Since the processed data window subsets are recommended to be climatologically 
representative, the length of window subsets that obtain such samples should cover the 
whole member of years (at least one) and to feature both daytime and nighttime 
observations (at least two observations per day). In general, using smaller data window 
subsets might lead to less reliable results that cannot be easily accepted. 
The main value is the number of redistributed frequencies between two compared 
consecutive distributions 
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where di is the difference value between two compared frequencies of the same i-th data 
class (distinguishable wind direction or wind speed interval in this case). Thus, the number 
of redistributed frequencies is half of the sum of all n absolute differencies d. The 
ReDistribution Index (RDI) is simply the redistributed part of the whole data window 
subset of N processed data. 
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Theoretically, RDI returns zero where the compared distributions are identical, while RDI 
eqauls 1 where the compared distributions are entirely different (i.e. from the wind rose 
that has no south winds to the case of south winds only). In practice, RDI values are 
always greater than zero because of natural wind fluctuations. Noise level of RDI values 
depend on climate conditions and the length of data window subset, but it is generally 
below 0.2. On the other side, RDI value of 1 might be met only in places with seasonal 
wind roses (i.e. suptropical trade winds) and length of data window that does not cover 
such seasonal variations). 
 

3. DETECTING BREAK POINTS IN TIME SERIES 

Inhomogeneity of data series often includes significant redistribution of values by data 
classes. The greatest number of redistributed values is reached at the point of the complete 
change. Further, redistributed values are less featured and returned to the noise level when 
the new distribution is established. Following this logical principle, peaks in RDI series of 
wind direction / speed indicate break points in wind data series. 

The example of Novi Sad - Rimski Šančevi (Fig. 3) shows a major inhomogeneity 
break point. Since the RDI peak lies at the beginning of 1982 for the 4-year moving values, 
homogeneity break dates back to 1978. This peak is featured both in wind direction and 
wind speed data. This inhomogeneity is confirmed in station metadata. Since this station 
began to work as a synoptic station, an old wind vane is replaced by anemograph in order 
to obtain more accurate and precise data for synoptic observations. Another point with 
suspected inhomogeneity appears in 1985 (dating back in 1981), but only in RDI series for 
wind direction. 

In order to confirm detected break points, it is highly recommended to run the 
ReDistribution Test with different data window size. Confirmed break point should appear 
at more than one data window sizes with variations of one to two weeks with delay of up to 
two months. For example, such multiple runs of RDI values confirm detected break point 
in homogeneity dating in 1978 (Fig. 4). All RDI passes indicate the same point of 
inhomogeneity. Also, suspected break point for wind direction dating in 1981 is now 
confirmed. Series in Fig. 4 are shifted back to the 1-year moving values in order to 
illustrate this multiple pass indication. 
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Fig. 3. ReDistribution Index (RDI) series for wind direction and speed, moving 4-year 
window period, Novi Sad - Rimski Šančevi, 1967-2005 

 

Fig. 4. Multiple passes of ReDistribution Index (RDI) series for wind direction and 
speed, moving 1, 2, 3 and 4-year window periods, Novi Sad - Rimski Šančevi, 1967-
2005 
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Further data analysis might show the type of problem regarding wind data. Such 
analysis include displaying of wind direction frequencies ("wind roses"), or wind speed 
frequencies (by defined intervals - data classes), calculation of mean wind vector (or its 
components) for two consequential window periods. These types of information might be 
of great help in determing causes of inhomogeneity as well as in selecting ways for 
homogenisation of series. 

4. TYPES OF INHOMOGENEITIES  

According to occurences of ReDistribution Index (RDI) peaks in direction and / or speed 
series, there are three basic types of inhomogeneities of wind data. 
Type 1. RDI values of both series have peaks at the same time. This practically means that 
both direction and speed data have simultaneous homogeneity breaks. 
Possible causes for this type of inhomogeneity are: 

Change of instrument. Such change might consider a change of instrument type (as 
in the given example), where major instrument properties (precision, sensitivity etc.) might 
be completely different. This also might be an indication of replacement of an instrument. 
Such information is usually included with the metadata. 

Change of location / surroundings. This includes both relocation of instrument 
(position and / or height) and changes of surrounding objects (i.e. tree growth or cut, 
buildings or other objects arised or lowered down). Metadata might be incomplete 
regarding this problem, especially in changes of surroundings. 

Change of observer. This might occur in observations that are not taken from the 
wind recording devices. Objectivity of the observer might be questioned in such cases, 
because at least one observer (before or after the detected break point) had no correct 
measurements. Still, it is almost impossible to prove the correctness of the data. 
Homogenisation of the series is a set of various mathematical corrections. Since the source 
values from the instruments might be derived from almost entirely new conditions 
(instrument technical properties, position, different obstacles in surroundings), estimated 
correction value / function (if any) should incorporate a lot of calculations, where 
uncertainties might overwhelm the correction value itself. Therefore, homogenisation of 
such series is not recommended. 
Type 2. Only RDI values of wind direction  series have peak (not joined by the other RDI 
peak). 
Possible causes for this type of inhomogeneity are: 

Change of instrument orientation. This is usually case when an instrument 
orientation is corrected to geographical coordinates (or if it is, in seldom cases, 
miscorrected from geographical coordinates). Misorientation of instrument might happen 
at incorrect installation of instruments (i.e. when magnetic north is used as a reference 
direction), but it might also happen when the instrument is not properly maintained. 

Change of measurement precision. Various instrument types have different number 
of distinguishable wind directions (there might be 8, 16, 32 or 36 directions plus calms). 
Such changes are seen as distortions of "wind roses". The "wind roses" with fewer 
numbers of directions look more "starry" when introducing those with more directions 
(Petrović, 2000). Thus, "starry" roses are not always showing the true distribution of wind 
direction frequencies. 
Homogenisation of the series is possible only in some selected cases. For example, case of 
instrument orientation ("rotation" of the wind rose) should have a correction of azimouth 
value for a certain angle (Fig. 5 and 6). Detection of angle might be more accurate when 
the resulting wind vector is calculated before and after the break point. On the other hand, 
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such accuracy is not quite practical for application, since there is a limitation of precision 
in detecting wind direction. Distortion of "wind roses" might be homogenised, but only if 
the result is the wind rose with fewer directions. In such case, precise wind data 
information is lost, and there is no point in homogenisation. 

 

Fig. 5. "Wind roses" between two consequential moving years (1981-1982), original 
values, Novi Sad - Rimski Šančevi 

 

Fig. 6. "Wind rose" between two consequential moving years (1981-1982), corrected 
values, Novi Sad - Rimski Šančevi 

Type 3. Only RDI values of wind speed series have peak (not joined by the other RDI 
peak). This practically means that the wind speed instrument is changed, while wind vane 
was replaced correctly or even remained intact. 
Possible causes for this type of inhomogeneity are: 

Change of instrument calibration.  Like any other instrument, wind speed sensor 
must be calibrated for the correct values. In time, due to changes in friction of mechanical 
parts of the instrument, the values are smaller than true values. Therefore, the instrument 
must be calibrated again or replaced. Changes of instrumentation are usually featured in 
the metadata, but the genesis of the problem is almost never actually recorded. 

Change of instrument sensitivity.  Due to the same reasons, instrument sensitivity to 
low wind speed might change, so the threshold value for initialisation of wind speed 
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instrument might increase. However, recorded high wind speed values might remain 
unchanged. As in previous case, some information might be available in the metadata, but 
not the genesis of the problem with instrument. 
Homogenisation of the series is possible only in some selected cases. For example, in case 
of instrument calibration, homogenisation should be performed the same way like any 
other scalar value. On the other side, changes of instrument sensitivity usually have an 
unknown number of cases with low wind speeds replaced with zero values (and reversly). 
As a result, such case brings an unknown correction value and homogenisation is not 
recommended. 

5. USE OF METADATA 

True detection of inhomogeneities must include the use of metadata. Detected break point 
should be verified by a search through metadata for the true cause of inhomogeneity 
(Aguilar et al., 2003). 

However, metadata might be incomplete in most cases. Old metadata often have an 
incomplete information about instruments, especially their technical features. Detailed 
descriptions of locations, surroundings, observers and sometimes even station locations are 
questionable because of the possible losses of metadata (i.e. damaged, destroyed or "lost" 
in some other country). In many cases there was no practice of recording changes of 
surroundings of the observation site. 

Even with presumption of having the complete technical coverage in metadata, it is 
almost impossible to find all detailed descriptions of the station surroundings. While some 
of such descriptions might be discovered with buildings, tree growth or cut is practically 
impossible for detection. Moreover, it is still difficult to estimate direct influences of 
surroundings on the instrumentation. 

Despite the development of homogenisation techniques, there is still a significant 
number of detected break points that are not verified in metadata, hence the cause of the 
detected inhomogeneities remains unknown (Auer et al., 2003, Müller-Westermeier, 2003). 
Some metadata might be partly recovered by using other techniques that attribute data 
quality, such as the Real Precision Method (Petrović, 1998). These techniques might 
discover a "hidden" information on the observers and reliability of observations. Therefore, 
discovering new facts is quite useful for completion of metadata. 

6. FURTHER ACTIONS 

Since some causes of inhomogeneities have influence on more than one weather element, 
detection of inhomogeneities should be performed on as more elements as possible. 
Matching break points clearly indicate major changes at an observation site (i.e. station 
relocations) and determine their influences on observation records. 

The ReDistribution Method offers many possibilities for detection of various 
changes in observations. Any series that might have an empirical distribution of its values 
might be processed in order to detect new inhomogeneities (like any other homogenisation 
test) or to obtain more information for completion of metadata. This also might include 
elements whose "homogeneity" makes no scientific sense (i.e. visibility, start / end time of 
observing weather phenomenae). Some preliminary results are encouraging for evaluation 
this method with such series, but only as a tool for detection and hence estimation of 
missing metadata. Discoveries and assumptions of new facts about a weather station are 
always of great help in searching for new inhomogeneities. 
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1. INTRODUCTION 

An urban heat island is a metropolitan area which is significantly warmer than its 
surroundings. As population centres grow in size from village to town to city, they tend to 
have a corresponding increase in average temperature, which is more often welcome in 
winter months than in summertime. This phenomenon is called the "urban heat island 
effect." It is caused by larger absorption of shortwave solar radiation due to greater 
absorbing capacity of buildings, roads etc. This radiation is then stored in these materials 
and later, mainly during night, it is irradiated in the form of long-wave radiation and 
therefore it is warmer in the inner cities than in their surroundings. If we study an urban 
heat island, we usually try to determine the intensity of urban heat island. Intensity of 
urban heat island appeares in the difference in temperature of the city and outside, of the 
rural areas. 

2. DATA USED FOR ANALYSIS 

Data for time period of 1961-2005 have been used for analysis. Prague temperature time 
series at following stations were used: Klementinum, Karlov, Ruzyně, Kbely, Libuš and 
Uhříněves. For assessing of urban heat island intensity, following rural stations have been 
used: Doksany and Ondřejov. The position of these all used stations can be seen on the Fig. 
1.  
For the analysis, we have used following temperature characteristics: annual average of 
daily maximum, annual average of daily minimum and average air temperature. Further, 
annual number of the so called „characteristic“ days have been used. As “characteristic” 
day we mean day with temperature above given threshold. We have used the following 
characteristic days: 

- Tropical days that are days with maximum air temperature 30°C and more; 
- Summer days that are days with maximum air temperature 25°C and more; 
- Frost day that are days with minimum air temperature below 0°C; 
- Ice day that are days with maximum air temperature below 0°C. 
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Fig. 1: Map of used station, black line is border of Prague 

3. HOMOGENIZATION OF DATA 

Of course, all data we have used had to be homogenized. For this purpose we have used 
MASH method (see e.g. [1]) to detect main break points and/or shifts and their 
approximate size. Then we have used auxiliary graphs of cumulative sums of relative 
differences of annual temperatures from average 1961-2005 according to followed 
formula:  
 
  ∑ ( (ai-a)/a – (bi-b)/b)),  where i = 1, …,45, 
 
ai, bi are annual temperatures in  i-th year, a, b are average temperatures for the period 
1961-2005 on the tested station and  the regional station REF respectively. A letter a is 
related to the tested station, a letter b to the station REF of given station group. An 
example of such graph for average air temperature can be seen on Fig. 2 for original data 
and on Fig. 3 after homogenization. As we can see, these sums are 5 to 10 times smaller 
after homogenization. 
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Fig. 2: Auxiliary graph of cumulative sums of relative differences of annual air 
temperatures – before homogenization 

 

Fig. 3: Auxiliary graph of cumulative sums of relative differences of annual air 
temperatures – after homogenization 
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4. RESULTS 

For exploring the intensity of urban heat island, we used graphs showing variations of 
differences in temperatures for years 1961-2005. The situation for average temperature can  
be seen on Figs. 4 and 5 for two examples, first for differences between Prague station 
Klementinum and rural station Doksany (that are almost in the same altitude), and the 
second one shows the differences between Prague periphery station Ruzyne and rural 
station Ondrejov (where Ondrejov lies some 100 m higher then Ruzyne). From both graphs 
it can be seen that the influence of urban heat island has intensified during last 45 years, 
this intensification is smaller when compared Klementinum in the centre of Prague with 
rural station Doksany (intensification of about 0.06°C/10 years) then in the periphery (Fig. 
5, intensification of about 0.3°C/10 years).  

 

Fig.4: Variation of differences in average temperature for stations Klementinum and 
Doksany 

 
 
Focusing now on the minimum temperature, situation for the same pairs of stations can be 
seen on Figs. 6 and 7. As for the historical centre of Prague, there is relatively large 
intensification of urban heat island (about 0.18°C/10 years), but no changes can be seen for 
Ruzyne-Ondrejov graph (Fig. 7). As for maximum temperatures, the situations are shown 
on Figs. 8 and 9, the influence of the urban heat island intensity is only very small for the 
historical centre and no evidence of it can be detected on periphery of the city.  
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Fig. 5: Variation of differences in average temperature for stations Ruzyne and 
Ondrejov 

 

Fig. 6: Variation of differences in minimum temperature for stations Klementinum 
and Doksany 
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Fig. 7: Variation of differences in minimum temperature for stations Ruzyne and 
Ondrejov 

 

Fig. 8: Variation of differences in maximum temperature for stations Klementinum 
and Doksany 
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Fig. 9: Variation of differences in maximum temperature for stations Ruzyne and 
Ondrejov 

 

Fig. 10: Variation of differences in number of frost days for stations Klementinum 
and Doksany 
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Fig. 11: Variation of differences in number of frost days for stations Ruzyne and 
Ondrejov 

 
Finally, graphs on Figs. 10 and 11 present variations of differences in number of frost days. 
We can see that also here the differences are significant only for the city centre. But now 
the situation is somewhat different. The number of frost days generally decreased during 
the last 40 years, so the increasing differences between Klementinum and Doksany mean 
that the number of frost days in the inner city decreases more slowly then outside of the 
city. 
The above mentioned results can be well demonstrated and summarized on the graphs 
showing the differences of trends of temperatures between Klementinum and other 
stations. The columns in these graphs are ordered according to increasing distance from the 
city centre (Klementinum - 0 km). These graphs are presented on Fig. 12 for temperatures 
(average, minimum and maximum) and for number of characteristic days (tropical, 
summer, frost and ice). We would expect that the influence of the urban heat island 
decreases with increasing distance from the city centre. It means that we would also expect 
to increase these differences in trends with distance. As we can see for temperatures it does 
so, but with some exceptions. These exceptions are caused by generally inhomogeneity of 
the urban heat island in various directions. Finally, for characteristic days (Fig. 13), the 
situation is not as clear or easy as in the case of temperature itself. Generally the number of 
characteristic days decreases and this decrease is growing considerable with the increasing 
distance from the city centre.  
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Fig. 12: Trends of temperature, differences of Klementinum and other stations, 
period 1961-2005 

 

 
Fig. 13: Trend of temperature, differences of Klementinum and other stations, period 
1961-2005 
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5. SUMMARY OF RESULTS FOR 1961-2005 

We have found relatively large intensification for minimum temperatures (0.13-0.15°C/10 
years) caused by urban heat island, as well as for average air temperatures (0.06°C/10 
years), but only small intensification in maximum temperatures (0.02-0.03°C/10 years). 
The changes in number of characteristic days are not very helpful in the sense of urban 
heat island intensity changes. Number of summer days in rural station Doksany is similar 
to the station Prague Klementinum. This could be due to special location of Doksany 
station that expresses by above-average temperature under warm weather conditions. We 
could detect increase of tropical days (1 day/10 years).  Number of ice and frost days 
decreases in the periphery and outside of the city faster than in the inner city. This could be 
caused by the influence of building heating, better ventilation, etc.  

Finally, let’s mention some more general remarks about Prague heat island by other 
authors. Huth and Beranova [2] studied Prague heat island under different synoptic 
conditions. They found that maximum urban heat island occurs in summer, whereas 
minimum occurs in winter. The highest frequency of urban heat island occurs under windy 
weather conditions with north-northeastern components. The highest intensity of Prague 
heat island (about 2.58°C) can be observed under anticyclonic  weather conditions and 
when north-northeastern winds are prevailing. Besides, they have found that long-term 
trend of increasing intensity of heat island is about 1.2°C/100 years, when the highest trend 
can be detected under north-northeastern and south-southwestern wind weather conditions 
(2.2°C) and no trend can be detected under east-southeastern and west-northwestend wind 
weather conditions.  
Brazdil and Budikova [3] have studied period of 1921-1995 and they have found positive 
and statistically significant trends documenting additional warming of the Klementinum 
station with the most conspicuous and significant warming in winter and spring (0.06°C/10 
years). It is similar to what we have found for average air temperature. This warming is 
well correlated with growth of the population (from 150 thousands in 1850 to 1.2 millions 
in 2000), consumption of energy and expansion of the built-up area in Prague 

6. CONCLUSIONS 

We have found well pronounced urban effects on the temperature time series in Prague, 
mainly in the inner city. But we have also found some problems that could be caused by 
influence of local conditions on measurements (representativeness of location, e.g. 
thermometer in Klementinum is situated 6 m above ground, closed space of the courtyard). 
Another question is the eventual insufficiency of homogeneity of temperature time series, 
mainly in number of characteristic days. Therefore more detailed study should be made to 
solve these problems and answer these questions. 
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ABSTRACT 

During the last decade, the Climate Change Research Group (CCRG) has devoted its 
efforts to the compilation of different temperature datasets for Spain. Following the trends 
in global research, our focus has changed from monthly to daily data. The recent release of 
the Spanish Daily Adjusted Temperature Series (SDATS, Brunet et al., in press) constitutes 
a great advance for the analysis of climate change in the Iberian Peninsula during the 
instrumental era, including 22 long-term stations, suitable for climate change and 
variability analysis. 
Our homogenization methodology combines several techniques for an optimum adjustment 
of monthly and daily temperatures. For the adjustment of monthly data, our scheme relies 
on the application of direct and relative homogenization techniques. Direct 
homogenization is applied to the late 19th century and early 20th century data, where 
almost all the network was impacted by the change from open stands (basically 
Montsouris) to the Stevenson Screen. In these conditions, relative homogenization proves 
to be inefficient, so two replicas of the ancient stands were constructed and placed in 
Murcia & La Coruña, next to the official Stevenson Screens of the Instituto Nacional de 
Meteorologia.  The paired observations recorded during almost three years, were used to 
obtain correction factors for the so-called "screen-bias", previously to the application of the 
Standard Normal Homogeneity Test Daily data is adjusted by linear interpolation of the 
monthly factors. 

1. INTRODUCTION 

One of the principal needs for climate analysis is the availability of high quality and 
homogeneous data series. The observed fraction of the climate data does not only allow us 
to describe the last couple of centuries of the globe’s climate, but also plays a crucial role 
in the calibration of proxy records and models. For these reasons the reconstruction, 
quality control and homogenization of climate time series constitutes an important effort to 
be overtaken by the climate community.  
Many methods have been successfully applied by different groups of scientists to 
homogenize annual to monthly values. Translating monthly homogenization factors to 
daily adjustments is a difficult task (Aguilar et al., 2003), although great improvements 
have been made recently (for example, Della Marta et al., 2006). The CCRG current 
approach consists of the interpolation of the monthly factors into daily values using the 
effective approach described by Vincent et al. (2002), which efficiently accounts for the 
annual cycle between months and allows obtaining reasonably homogeneous series for 
most proposes.  
The rest of this paper is structured in 4 additional sections. Section 2, describes the Spanish 
Daily Temperature Series (Brunet et al., in press) and the quality control procedures 
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applied; section 3 deals with homogenization procedures; section 4 discusses our 
procedures and makes conclusions;  section 5 lists the quoted references.  

2. DATA AND QUALITY CONTROL  

The Spanish Temperature Series is composed by the 22 most reliable long-term stations 
(see table 1) of daily maximum and minimum temperature. The longer series start back in 
1850, although a few of them do not have data until the first decade of the 20th century. 
Data is kept up to date with new incoming values and the stations’ distribution permits a 
good coverage for the analysis of multidecadal temperature variability and change in Spain 
(see figure 1). 
Although most of the data was kindly facilitated by the Spanish Instituto Nacional de 
Meteorología, the CCRG did an important effort on data archaeology and digitization, 
recovering important sections of the series, that were lost for the climate community until 
that time (see Brunet et al., in press). The total amount of data now available ads up to 
around 2 million maximum and minimum temperature values.  
All the ingested data, with independence of its procedence, was quality controlled with the 
application of the following tests: 

⇒ Comparison of original source monthly mean and dataset monthly 
mean 

⇒ Values out of [-50,50]ºC interval 
⇒ Tmax < Tmin 
⇒ Number of days per year, month 
⇒ Duplicates 
⇒ Excedence of 4SD 
⇒ Interdiurnal differences > 25ºC 
⇒ 4 or more consecutive identical values 
⇒ Excedence of 4SD of difference between candidate and reference series 
⇒ Visual comparisons among neighbours 

Only a small fraction of data where flagged (0.58%), although they resulted in a 
considerable number of individual checks (roughly 12,000). After consulting the original 
sources, some 8,000 values were recovered and corrected, the rest remaining unrecoverable 
and lost to the series.  
  

Table 1: Spanish Daily Temperature Series, SDATS. List of Stations. 

Location Longitude (º) Latitude (º) Elevation (m) Period 
ALBACETE 01º°51’47’’ -W 38º°57’08’’ -N 698.56 1893–2003 
ALICANTE 00º°29’40’’ -W 38º°22’00’’ -N 81.5 1893–2003 
BADAJOZ 06º°49’45’’ -W 38º°53’00’’ -N 185 1864–2003 

BARCELONA 02º°10’36’’ -E 41º°25’05’’ -N 420.1 1885–2003 
BURGOS 03º°36’57’’ -W 42º°21’22’’ -N 881 1870–2003 
CADIZ 06º°12’37’’ -W 36º°27’55’’ -N 30 1850–2003 

CIUDAD REAL 03º°55’11’’ -W 38º°59’22’’ -N 627 1893–2003 
GRANADA 03º°37’52’’ -W 37º°08’10’’ -N 685 1893–2003 
HUELVA 06º°54’35’’ -W 37º°16’48’’ -N 19 1903–2003 
HUESCA 00º°19’35’’ -W 42º°05’00’’ -N 541 1861–2003 

LA CORUñA 08º°25’10’’ -W 43º°22’02’’ -N 67 1882–2003 
MADRID 03º°40’41’’ -W 40º°24’40’’ -N 678.9 1853–2003 
MALAGA 04º°28’57’’ -W 36º°39’57’’ -N 6.54 1893–2003 
MURCIA 01º°07’14’’ -W 37º°58’59’’ -N 57 1863–2003 

PAMPLONA 01º°38’21’’ -W 42º°46’06’’ -N 452 1880–2003 
SALAMANCA 05º°29’41’’ -W 40º°56’50’’ -N 789.8 1893–2003 
S. SEBASTIAN 02º°02’22’’ -W 43º°18’24’’ -N 251.6 1893–2003 
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SEVILLA 05º°53’47’’ -W 37º°25’15’’ -N 31 1893–2003 
SORIA 02º°29’01’’ -W 41º°46’29’’ -N 1083 1893–2003 

VALENCIA 00º°22’52’’ -W 39º°28’48’’ -N 11.4 1864–2003 
VALLADOLID 04º °44’35’’ -W 41º°38’40’’ -N 691.4 1893–2003 
ZARAGOZA 01º°00’29’’ -W 41º°39’43’’ -N 245 1887–2003 

 

3. HOMOGENIZATION PROCEDURES 

The CCRG’s homogenization methodology (see figure 1) relies on the combination of 
three different techniques. Direct homogenization is needed to solve a network-wide 
problem, the change from ancient screens (mostly Montsouris Screens) to the standard 
Stevenson Screen. This is indispensable to avoid the underestimation of trends in daily 
maximum temperatures, as open stands are highly impacted by direct solar radiation. 

 

 

 

Figure 1: Homogenization procedures of the CCRG. 

 
 
To remove the screen bias, the CCRG has built two Montsouris-replicas in the 
northwestern (La Coruña) and northeastern (Murcia) corners of the country, which were 
installed in 2003 nearby the Stevenson Screen in use of the official meteorological station 
(Brunet et al., 2004). After having an almost 3 years long dataset, correction factors are 
derived by regressing Montsouris data to Stevenson data (see figure 2).  
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Figure 2: Empirical evaluation of the screen bias in Murcia. 

After the screen bias minimization, the relative Standard Normal Homogeneity Test is 
applied to the series following the procedure described by Alexandersson and Moberg 
(1997), modified by Aguilar et al. (2002). For this propose, a blind run of the test is done 
for the whole dataset over the time series of annual averages of daily maximum 
temperature, daily minimum temperature, daily mean temperature and diurnal temperature 
range, obtaining a number of possible breakpoints. These potential inhomogeneities are 
checked against the available metadata and graphically analyzed by the inspection of the 
data and the z series (standardized difference of candidate-reference series). Breakpoints 
are then validated or rejected and a preliminary correction pattern is drawn. The 
homogeneous sections between accepted breakpoints are tested for artificial trends by 
evaluating the slope of the candidate-reference series. The definitive correction pattern is 
applied to the monthly averages of daily maximum and minimum temperatures. Diurnal 
temperature range and monthly means are derived from the homogeneous maximum and 
minimum series.  
A third step is to translate the monthly factors into daily factors. This is achieved by the 
application of the interpolation described by Vincent et al. (2002), which avoids unnatural 
discontinuities at the end of the month and preserves the monthly averages. The monthly 
factor is assigned to the 15th day, and the factors for the rest of the month are lineally 
interpolated.  As corrections for daily maximum and daily minimum temperatures are 
independent, a reduced number of daily maximum values are minor or equal to the 
corresponding daily minimum temperature. To correct this situation, they are forced to 
preserve the ration of change of the DTR from the original monthly series to the 
homogenized monthly series 

4. DISCUSSION & CONCLUSSIONS 

The CCRG’s procedure for homogenization is a step forward to achieve reasonably 
homogeneous values of daily temperatures, suitable for most climate analysis. Although 
we acknowledge that our approach does not include any correction dependent on the 
particular weather of the day (i.e. different corrections should be applied to a sunny and a 
cloudy day) we do account for the annual cycle without compromising the monthly 
average, which is derived from a solid and well tested homogenization procedure of annual 
to monthly time series.  
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Despite of this, our approach allows the use of the SDATS in the calculation of extreme 
indices (see Brunet et al., 2006; Moberg et al., accepted) and its application to other 
datasets may improve data availability, and, of course, the analysis. Figure 3 shows an 
example of homogeneous indices calculated after the application of the CCRG 
methodology.  

 

Figure 3: Annual Index TX90p (% of excedence of the 90th percentile of the 1961-
1990 reference period).Dashed line: inhomogeneous index calculated over the original 
data.; solid line: homogeneous índex after the removal of the screen bias (1908) and 
the inhomogeneity produced by the relocation in 1954. 

 
In conclusion, the SDATS represents a new tool for climate variability and change analysis 
in Spain, containing extended, quality controlled and homogenized daily records for the 22 
stations having the longest series available.  
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ABSTRACT 

Homogenization of daily meteorological series is a difficult task. Several kinds of problem 
have to be taken into consideration in the course of homogenization: selection of a proper 
homogenization method with regard to the data used, creation of reference series, 
completion of missing values, annual course of adjustments, and others. This paper 
presents an attempt to create a homogeneous series of daily air pressure and temperature 
readings in the city of Brno (Czech Republic). Two basic approaches were adopted: (i) 
homogenization of monthly series and projection of estimated smoothed monthly 
adjustments in annual variation of daily adjustments and (ii) homogenization of daily 
values in individual months and direct estimation of daily adjustments, again smoothed by 
low-pass filter. Differences in the results obtained from these two approaches are further 
discussed.  

INTRODUCTION 

In the recent years considerably more attention has been devoted to the analysis of the 
daily data widely recorded and stored in databases. Prior to analysis, the need to 
homogenize the data and check their quality arises. There is no widely accepted 
homogenization approach that could be generalized and applied to various meteorological 
elements, different climatic patterns, etc., and this will probably never be possible. This is, 
for example, due to the fact that the statistical properties of daily data and regional 
differences between them make general homogenization of daily values difficult, as well as 
involving more demanding data handling. During data processing, several kinds of 
problem have to be taken into consideration. These involve selection of a proper method 
for homogenization with regard to the data used, i.e. fulfilling all the conditions necessary 
to applying selected tests of relative homogeneity (e.g. normal distribution), creation of 
reference series (defining selection criteria), completion of missing values, annual course 
of adjustments, and others.  

Only a few studies, in comparison with monthly or annual data series, have been 
devoted to techniques addressing daily values. For example, Brandsma (2000) compared 
monthly adjustments, daily adjustments derived from monthly adjustments (using iterative 
cubic spline interpolation to preserve monthly adjustments) and daily adjustments derived 
from weather types. Wijngaard et al. (2003) did not use measured values, but their 
characteristics, such as diurnal temperature range and its annual mean, as well as the 
annual mean of the absolute day-to-day differences for temperature, and the annual number 
of wet days for precipitation. Following various homogeneity tests, these series were 
labelled as recommendations for further analysis.  
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Mekis and Vincent (2004) derived daily adjustments from monthly adjustments. These 
were obtained using linear interpolation between mid-month “target” values objectively 
chosen so that the average of the daily adjustments over a given month is equal to the 
monthly adjustment. This approach does not require the creation of a daily reference series 
or the identification of inhomogeneities in daily temperatures. Moreover, finally 
homogenized series of daily temperatures are compatible with homogenized monthly data-
sets.  

The present paper is dedicated to the search for a proper methodology for daily data-set 
handling and its subsequent application to daily air pressure and temperature series for 
Brno in the period 1848–2005, with the aim of creating a homogeneous series for Brno 
with regard to both elements. Although there are, in general, no gaps in the Brno 
measurements, data are unfortunately not available from a single site, so it becomes 
necessary to combine different series to get one Brno series suitable for further analysis. 
The basic Brno stations were tested separately for relative homogeneity and, after 
homogenization, they were combined using overlap periods. All calculation was performed 
using AnClim and ProClimDB softwares (Štěpánek, 2006a, 2006b). 

1. A BRIEF HISTORY OF METEOROLOGICAL OBSERVATIONS I N BRNO 

Meteorological observations in Brno began in 1799, the work of Captain Emeritus 
Ferdinand Knittelmayer, but his observations for the period 1799–1812 are preserved only 
in the daily averages. For the subsequent years 1813–1819, the observations exist only in 
the form of monthly averages. On the basis of several daily readings, meteorological 
observations were published in the daily newspaper “Mährisch-Ständische Brünner 
Zeitung” from January 1820 to December 1847. In some years, parallel observations from 
two places in Brno were also made. Although monthly value series for air pressure, air 
temperature and precipitation totals have been homogenised and analysed (Brázdil et al., 
2005), work with daily readings or daily averages requires further research. For this reason, 
the analysis provided in this paper works only with data from 1848 onwards. 

Meteorological observations after 1848 come from Dr. Paul Olexik (1800–1878), a 
physician from St. Anne’s hospital (Fig. 1). He was probably making observations from as 
early as the end of 1845, but it was only from 1848 that his measurements started to be 
published regularly in the Austrian Meteorological Yearbooks, i.e. when his station 
became part of the network of the Central Meteorological Institute in Vienna. He observed 
at 0600, 1400 and 2200 hours. On 3 December 1853 he moved the point of his 
meteorological observations from the hospital (204 m.a.s.l.) a short distance, to his new flat 
at Pekařská Street 100 (219 m.a.s.l.). Meteorological observations at this new site 
continued until 30 June 1878. By this time, Gregor Johan Mendel (1822–1884), abbot of 
the Augustinian Monastery and a pioneer geneticist, was helping to complement Olexik’s 
measurements, something he continued alone from 1 July 1878 in the monastery garden 
(204 m a.s.l.) until 30 November 1883. He began with standard readings at 0700, 1400 and 
2100 hours. Alfred Lorenz (1825–1890), a professor at the I. R. Technical University, 
continued meteorological observations in Brno from the university building (225 m a.s.l.), 
located close to the city centre, from 1 January 1884 until his death in June 1890. Upon his 
death, air temperature and pressure measurements definitely stopped and no new place for 
observation was to be found (Brázdil, 1979). 



 

 

Fig. 1. Location of meteorological stations in Brno: 1 
Pekařská Street 100; 3 – 
Pisárky, waterworks; 6 – 

However, from 1 June 1890 a meteorological station at the city waterworks in Pisárky 
(204 m a.s.l.) (further as Brno
programme up to 1937 and with air temperatu
Further meteorological stations in different parts of Brno were established later, of which 
only the two used in this paper are mentioned. The first of them was located close to the 
previous station on Květná Street (
agricultural institute (223 m.a.s.l.), with observations from 1 August 1922 to 31 December 
1970. The second station (Brno
city of Brno (238 m.a.s.l.), i.e. opposite to all the previously mentioned stations, which are 
concentrated in its western part. Observations started there on 14 April 1958. For this 
reason, compilation of the Brno daily temperature and pressure series is made with respect 
to this station. 

 
In summary, addressing knowledge of the history of temperature and pressure 

measurements in Brno from 1848 onwards, with respect to homogenization, it should be 
stressed that measurements

- were provided from different parts of Brno, at differ
- were provided by different types of instruments
- were provided in different observation terms before and after 1878
- are limited by lack of available overlap for observations predating 1890.
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Fig. 1. Location of meteorological stations in Brno: 1 – St. Anne’s hospital; 2 
 Augustinian monastery; 4 – I. R. Technical University; 5 
 Květná Street; 7 – Tuřany Airport 

However, from 1 June 1890 a meteorological station at the city waterworks in Pisárky 
(204 m a.s.l.) (further as Brno-Pisárky) began operations, with a full observation 
programme up to 1937 and with air temperature measurements continuing up to 1962. 
Further meteorological stations in different parts of Brno were established later, of which 
only the two used in this paper are mentioned. The first of them was located close to the 

ětná Street (further as Brno-Květná), in the garden of the research 
agricultural institute (223 m.a.s.l.), with observations from 1 August 1922 to 31 December 
1970. The second station (Brno-Tuřany) is located at the Brno airport, south

.s.l.), i.e. opposite to all the previously mentioned stations, which are 
concentrated in its western part. Observations started there on 14 April 1958. For this 
reason, compilation of the Brno daily temperature and pressure series is made with respect 

In summary, addressing knowledge of the history of temperature and pressure 
measurements in Brno from 1848 onwards, with respect to homogenization, it should be 
stressed that measurements 

were provided from different parts of Brno, at different altitudes 
were provided by different types of instruments 
were provided in different observation terms before and after 1878
are limited by lack of available overlap for observations predating 1890.
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2. DATA USED 

For outlier identification as well as fo
long-term series in the broad surroundings of Brno were also used (Fig. 2). A list of them, 
with basic characteristics, is given in Table 1. We have used all the measurements, i.e. not 
only daily averages but also separate series from individual observation hours. As has 
already been mentioned, as well as standard observations times at 0700, 1400 and 2100 
hours local mean time, observations were also carried out at 0600, 1300 and 2200 hours. 
Finally it was decided, that all the terms should further be treated as if they were 0700, 
1400 and 2100 hours in the hope of disclosing possible inhomogeneities arising out of 
various observing times during homogeneity testing. The original observing hours were 
taken into consideration during decision
found. 

 

Fig. 2. Geographical distribution of stations used for homogenization of the Brno 
series (T – air temperature, P 

 

Table 1. Basic information about sta
(station coordinates are given for their last or recent locations) 

Air temperature 

Station name Latitude 

  (N) 

Brno (various places) 49º12´ 
Brno-Pisárky 49°12´ 

Brno-Květná 49°12´ 

Brno-Tuřany 49°09´ 

Bystřice pod Hostýnem 49°24´ 
Český Těšín 49°44´ 

Holešov 49°19´ 

Jihlava 49°23´ 

Olomouc 49°36´ 
Prague-Klementinum 50°05´ 

Přerov 49°25´ 

Vienna-Hohe Warte 48°13´ 

110 

For outlier identification as well as for relative homogeneity testing, other stations with 
term series in the broad surroundings of Brno were also used (Fig. 2). A list of them, 

with basic characteristics, is given in Table 1. We have used all the measurements, i.e. not 
but also separate series from individual observation hours. As has 

already been mentioned, as well as standard observations times at 0700, 1400 and 2100 
hours local mean time, observations were also carried out at 0600, 1300 and 2200 hours. 

decided, that all the terms should further be treated as if they were 0700, 
1400 and 2100 hours in the hope of disclosing possible inhomogeneities arising out of 
various observing times during homogeneity testing. The original observing hours were 

nto consideration during decision-making about adjustments of inhomogeneities 

 

Fig. 2. Geographical distribution of stations used for homogenization of the Brno 
air temperature, P – air pressure)  

Table 1. Basic information about stations used for homogenization of the Brno series 
(station coordinates are given for their last or recent locations)  

Longitude Altitude Beginning End Observing hours

(E) (m.a.s.l.)       

16º37´ 225 1 Jan. 1848 31 Dec. 1889 07 (06), 14 (13), 21 (22)
16°34´ 203 1 June 1890 31 May 1962 07, 14, 21 

16°34´ 223 1 Aug. 1922 31 Mar. 1970 07, 14, 21

16°ˇ42´ 241 14 Apr. 1958 31 Dec. 2005 07, 14, 21

17°40´ 315 1 Sep. 1865 31 Dec. 2005 07 (06), 14, 21 (22)
18°37´ 280 1 Jan. 1885 31 Oct. 1938 07, 14, 21

17°34´ 224 1 July 1895 31 Dec. 2005 07, 14, 21 (22)

15°32´ 560 27 July 1873 31 Dec. 1934 07 (08), 14, 21 (22)

17°15´ 215 1 Jan. 1876 31 Dec. 1960 07 (08), 14, 21 (20)
14°25´ 191 1 Jan. 1775 31 Dec. 2005 07, 14, 21

17°24´ 203 1 Apr. 1874 31 Dec. 1979 07, 14, 21

16°21´ 199 1 Jan. 1872 31 Dec. 2005 07, 14, 19

r relative homogeneity testing, other stations with 
term series in the broad surroundings of Brno were also used (Fig. 2). A list of them, 

with basic characteristics, is given in Table 1. We have used all the measurements, i.e. not 
but also separate series from individual observation hours. As has 

already been mentioned, as well as standard observations times at 0700, 1400 and 2100 
hours local mean time, observations were also carried out at 0600, 1300 and 2200 hours. 

decided, that all the terms should further be treated as if they were 0700, 
1400 and 2100 hours in the hope of disclosing possible inhomogeneities arising out of 
various observing times during homogeneity testing. The original observing hours were 

making about adjustments of inhomogeneities 

 

Fig. 2. Geographical distribution of stations used for homogenization of the Brno 

tions used for homogenization of the Brno series 

Observing hours 

07 (06), 14 (13), 21 (22) 
07, 14, 21  

07, 14, 21 

07, 14, 21 

07 (06), 14, 21 (22) 
07, 14, 21 

07, 14, 21 (22) 

07 (08), 14, 21 (22) 

07 (08), 14, 21 (20) 
07, 14, 21 

07, 14, 21 

07, 14, 19 



 

Air pressure 

Station name Latitude

  (N)

Brno (various places) 49º12´

Brno-Pisárky 49°12´

Brno-Květná 49°12´

Brno-Tuřany 49°09´
Holešov 49°19´

Prague-Klementinum 50°05´

Vienna-Hohe Warte 48°13´

 
The correlation coefficients for both elements analyzed are high enough for all stations 
involved (Fig. 3). Their values were calculated from original data (not from series of first 
differences), so they are biased by inhomogeneities in a shift (the values would otherwise 
be higher) and also by trends (the values would be lower if the trend were removed from 
the series). Correlations of monthly averages are higher than those of daily averages during 
the winter months, while the opposite holds in summer, i.e. the correlations o
averages drop below the values of daily data. From this it follows that both monthly and 
daily data should be used for data homogenization; daily data are more sensitive to 
inhomogeneity detection, especially during the summer months.
 

Fig. 3. Medians of correlation coefficients for all pairs of stations, for daily and 
monthly air temperature (50 values) and air pressure (6 values 
Klementinum at 1400 hours)

3. HOMOGENIZATION  

Homogenization includes the following steps: dete
correction of outliers (extreme values), creation of reference series, homogeneity testing 
(various homogeneity tests), determination of inhomogeneities in the light of test results 
and metadata, adjustment of inhomogeneiti

0.70

0.75

0.80

0.85

0.90

0.95

1.00

J F M A M J J

Air pressure, daily

0.70

0.75

0.80

0.85

0.90

0.95

1.00

J F M A M J J

Air pressure, monthly

111 

Latitude Longitude Altitude Beginning End 

(N) (E) (m.a.s.l.)       

49º12 ́ 16º37´ 225 1 Jan. 1848 31 Dec. 1889 07 (06), 14 (13), 21 (22)

49°12 ́ 16°34´ 203 1 June 1890 31 Dec. 1937 07, 14, 21

49°12 ́ 16°34´  223 1 Aug. 1922 31 Dec. 1962 07, 14, 21

49°09 ́ 16°42´ 241 14 Apr. 1958 31 Dec. 2005 07, 14, 21
49°19 ́ 17°34´ 224 1 Jan. 1961 31 Dec. 2005 07, 14, 21

50°05 ́ 14°25´ 191 1 Aug. 1787 31 Jan. 2002 14 

48°13 ́ 16°21´ 199 1 Jan. 1872 31 Dec. 2005 07, 14, 19

ficients for both elements analyzed are high enough for all stations 
involved (Fig. 3). Their values were calculated from original data (not from series of first 
differences), so they are biased by inhomogeneities in a shift (the values would otherwise 

higher) and also by trends (the values would be lower if the trend were removed from 
the series). Correlations of monthly averages are higher than those of daily averages during 
the winter months, while the opposite holds in summer, i.e. the correlations o
averages drop below the values of daily data. From this it follows that both monthly and 
daily data should be used for data homogenization; daily data are more sensitive to 
inhomogeneity detection, especially during the summer months. 

. 3. Medians of correlation coefficients for all pairs of stations, for daily and 
monthly air temperature (50 values) and air pressure (6 values –
Klementinum at 1400 hours) 

 

Homogenization includes the following steps: detection, verification and possible 
correction of outliers (extreme values), creation of reference series, homogeneity testing 
(various homogeneity tests), determination of inhomogeneities in the light of test results 
and metadata, adjustment of inhomogeneities and filling in missing values (Fig. 4).
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Fig. 4. Plan of the homogenization process

3.1 Outlier identification 

Data quality control was carried out in two ways in this study: (i) by applying limits 
derived from interquartile ranges (either to individu
difference series between candidate and reference series, i.e. relatively), (ii) by comparing 
candidate station values to values from neighbour stations. 

In comparisons with neighbour stations, the five best corre
(correlations calculated from series of first differences 
values of correlation coefficients being at least 0.50; no limit for distance or altitude 
difference has been applied. Only series with the
For the evaluation of outliers, various characteristics were considered. A count of 
statistically significant different neighbours (compared to candidate station) exceeding the 
confidence limit (0.95) was evaluated by
candidate station), for each month individually. Cases in which more than 75% of 
neighbours differed significantly from the base station values were checked visually. To 
help in establishing the nature of the ou
with respect to candidate station average and standard deviation and a new (theoretical) 
value for the candidate station was also calculated 
standardized values of the neig
q25) above q75 (or below q25) were evaluated (calculated from the standardized neighbour 
values), and applied to candidate station value. The reason for this was to assess similarity 
of neighbour values used with regard to test value: the more values of neighbours are 
similar, the higher is the value of the coefficient.

The final decision on removing outliers was based on the percentage of the count of 
significantly different neighbours, differen
interquartile range, and finally by visual (subjective) comparison of the standardized values 

112 

of the homogenization process 

Data quality control was carried out in two ways in this study: (i) by applying limits 
derived from interquartile ranges (either to individual series, i.e. absolutely or, better, to 
difference series between candidate and reference series, i.e. relatively), (ii) by comparing 
candidate station values to values from neighbour stations.  

In comparisons with neighbour stations, the five best correlated series were selected 
(correlations calculated from series of first differences – see e.g. Peterson, 1998), the 
values of correlation coefficients being at least 0.50; no limit for distance or altitude 
difference has been applied. Only series with the same observation hours were selected. 
For the evaluation of outliers, various characteristics were considered. A count of 
statistically significant different neighbours (compared to candidate station) exceeding the 
confidence limit (0.95) was evaluated by means of difference series (neighbour minus 
candidate station), for each month individually. Cases in which more than 75% of 
neighbours differed significantly from the base station values were checked visually. To 
help in establishing the nature of the outliers, the values of neighbours were standardized 
with respect to candidate station average and standard deviation and a new (theoretical) 
value for the candidate station was also calculated – as a weighted average from the 
standardized values of the neighbours. Further, the coefficient of interquartile ranges (q75
q25) above q75 (or below q25) were evaluated (calculated from the standardized neighbour 
values), and applied to candidate station value. The reason for this was to assess similarity 

r values used with regard to test value: the more values of neighbours are 
similar, the higher is the value of the coefficient. 

The final decision on removing outliers was based on the percentage of the count of 
significantly different neighbours, difference from “expected value”, coefficient of 
interquartile range, and finally by visual (subjective) comparison of the standardized values 
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of neighbours with the candidate station values. Fig. 5 shows an example of the output for 
decision-making about outliers

Fig. 5. Example of output with auxiliary characteristics for quality control evaluation

In some cases, in which at least two neighbours were not available, interquartile 
ranges for each individual month of the candidate series were applied (i.e. absolu
the errors emerging were checked. This method has considerably inferior results in 
comparison with the relative method, but no other possibility existed for cases in the 
distant past.  

3.2 Homogeneity test 

As well as monthly, seasonal and annual 
this case we used all days of a particular month and further an aggregation of “seasons and 
year” calculated from the first days of all months, the second days, etc. (see Fig. 6). 
Although such “aggregate” series cannot be used for common time series analysis because 
the time is “cracked”, it can be very useful for the purposes of finding discontinuity 
(seasonal to annual resolution), while original daily values, even when used only within 
particular months, can suffer from annual course (this is the case for air temperature rather 
than air pressure, mainly in winter) and normality is sometimes on the border of the 0.05 
significance level. Using the aggregates over seasons and year leads to series for which
normality is fulfilled without problems, and thanks to lower signal
approach is better for detecting real inhomogeneities in the series. Significant 
autocorrelations within a number of first lags (days) appear to present a larger probl
have to be further investigated. Series are more persistent in winter with stronger 
circulation effects, rather than in summer with its prevailing radiation factors. 
 

Fig. 6. An example of using daily data for homogeneity testing

Several relative homogeneity tests (significance level 0.05) were used: the 
Alexandersson Standard Normal Homogeneity Test SNHT (Alexandersson, 1986, 1995), 
the Maronna and Yohai bivariate test (Potter, 1981), the Pettit test (Pettit, 1979), the t
(Mitchell et al., 1966) and the Easterling and Peterson test (Easterling, Peterson, 1995). 
Tests were applied to 40-year sections of the series tested for monthly averages and 30
years series of daily data because the alternative hypothesis of the Alexandersson and 
bivariate tests assumes the presence of only one inhomogeneity in a series (we applied 
SNHT for a single shift). Series longer than 40 years were divided into several parts with 
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of neighbours with the candidate station values. Fig. 5 shows an example of the output for 
making about outliers. 

Fig. 5. Example of output with auxiliary characteristics for quality control evaluation

In some cases, in which at least two neighbours were not available, interquartile 
ranges for each individual month of the candidate series were applied (i.e. absolu
the errors emerging were checked. This method has considerably inferior results in 
comparison with the relative method, but no other possibility existed for cases in the 

As well as monthly, seasonal and annual averages, series of daily data were also tested. In 
this case we used all days of a particular month and further an aggregation of “seasons and 
year” calculated from the first days of all months, the second days, etc. (see Fig. 6). 
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approach is better for detecting real inhomogeneities in the series. Significant 
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circulation effects, rather than in summer with its prevailing radiation factors. 
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In some cases, in which at least two neighbours were not available, interquartile 
ranges for each individual month of the candidate series were applied (i.e. absolutely) and 
the errors emerging were checked. This method has considerably inferior results in 
comparison with the relative method, but no other possibility existed for cases in the 
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” series cannot be used for common time series analysis because 
the time is “cracked”, it can be very useful for the purposes of finding discontinuity 
(seasonal to annual resolution), while original daily values, even when used only within 

s, can suffer from annual course (this is the case for air temperature rather 
than air pressure, mainly in winter) and normality is sometimes on the border of the 0.05 
significance level. Using the aggregates over seasons and year leads to series for which 

-to-noise ratio this 
approach is better for detecting real inhomogeneities in the series. Significant 
autocorrelations within a number of first lags (days) appear to present a larger problem and 
have to be further investigated. Series are more persistent in winter with stronger 
circulation effects, rather than in summer with its prevailing radiation factors.  

homogeneity tests (significance level 0.05) were used: the 
Alexandersson Standard Normal Homogeneity Test SNHT (Alexandersson, 1986, 1995), 
the Maronna and Yohai bivariate test (Potter, 1981), the Pettit test (Pettit, 1979), the t-test 

966) and the Easterling and Peterson test (Easterling, Peterson, 1995). 
year sections of the series tested for monthly averages and 30-

years series of daily data because the alternative hypothesis of the Alexandersson and 
tests assumes the presence of only one inhomogeneity in a series (we applied 

SNHT for a single shift). Series longer than 40 years were divided into several parts with 
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an overlap of ten years (or five years for daily data). This is important in the light of 
tendencies to overestimation of detected inhomogeneities near the ends of series (see 
Alexandersson, 1995). Reference series were created separately with respect to each 40-
year (30-year) parts of a candidate series (this means with its own selection of neighbours 
in each part). For daily data, 185 sections of series (of 49 original elements-terms-stations) 
were created and tested. 

The use of series with durations of 40 and/or 30 years seems to be reasonable for 
homogeneity testing. Shorter series would not be so suitable from a statistical point of 
view, while, on the other hand, longer series usually contain more than one inhomogeneity 
(the typical duration of a period with one inhomogeneity does not usually exceed 30–40 
years – see e.g. Auer et al., 2001). 

To ensure that only one inhomogeneity detected by the Alexandersson or bivariate 
tests was present in a series, a further modification was introduced into the AnClim 
software. The series was divided at the position of a detected inhomogeneity and sections 
before and after it were tested separately. If no other inhomogeneity was found, we can 
rely on the results of the given test for the whole length of the series (especially the 
significance of a test statistic). 

3.3 Reference series creation 

Reference series were created in two ways: (i) an average from the best correlated stations, 
(ii) an average from nearest stations. Correlation coefficients used for station selection 
were calculated from the series of first differences, when inhomogeneities are manifested 
in the only value (see e.g. Alexandersson, Moberg, 1996; Peterson, 1998). Various types of 
reference series with analysis of their advantages and drawbacks have been discussed, for 
example, by Štěpánek (2005). 

The values of correlation coefficients were not allowed to drop below 0.60 between 
neighbour stations (selection by means of correlation) and no distance or altitude limits 
were applied as additional conditions for air pressure and temperature. Weighted averages 
were calculated using correlations and/or reciprocal values of station distances as weights. 
Values of selected neighbour stations were standardized to candidate station average and 
standard deviation to avoid problems with biased reference series. This can often happen in 
the event of missing data in one of the neighbour series. The standardization was done for 
each particular month individually (also for daily data). No transformation of values has 
been applied to the data. 

In the first stage, a list of proposed neighbour stations was obtained, which was 
subsequently checked and its approved version was then finally used for the reference 
series calculation. 

3.4 Assessment of detected inhomogeneities 

The main criterion for determining a year of inhomogeneity was the probability of the 
given inhomogeneity, i.e. the ratio between the count of detections for a given year from 
all tests for the given station (using all types of reference series, tests, daily, monthly, 
seasonal and annual series) and the count of all theoretically possible detections. The count 
of detections for groups of years was also taken into account (some inhomogeneities 
started in the course of the year and thus were manifested in at least two years). If metadata 
did not confirm the detected shift (in most cases), the percentage limit of all possible 
detections was taken higher and some other information (e.g. distribution of the given year 
within individual months or seasons, graphs of differences with reference series and some 
other characteristics) was required to decide whether the undocumented inhomogeneity 
could be regarded as “indubitably” proven and consequently corrected. For assessment of 
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the inhomogeneities detected, the Real Precision Index (RPI – see Petrovic, 2004) may 
also be applied to find sections of series that exhibit change in the quality of 
measurements.  
 

3.5 Adjustment of inhomogeneities 

Adjustment of inhomogeneities detected was addressed by means of the reference series 
calculated from the average over the five stations with the highest correlation coefficients 
with the series being adjusted (correlations were calculated again from the series of first 
differences). The adjustment value was estimated as the difference between averages 
calculated from difference series between the tested and the reference series. The start of 
inhomogeneity was allocated to a particular month (where this was possible). 

When dealing with daily data, there are several approaches to adjusting data for 
inhomogeneities detected. We may use either monthly adjustments which can be 
distributed into individual days (e.g., Mekis and Vincent, 2004) or we can calculate 
adjustments for daily data directly. 

Using monthly data in this paper, the estimated individual monthly adjustments were 
smoothed by low-pass filter (weights applied to adjacent months were approximately 1, 2, 
1) to suppress the influence of random errors in the series (the effect of smoothing results 
in a more realistic annual course for the adjustments, in line with what is better physically 
justified). The monthly adjustments obtained were then distributed (interpolated) among 
individual days and the final daily adjustments (again possibly smoothed to eliminate the 
edges of lines occurring each month) were then applied to data.  

In the second case, the daily adjustments difference series (reference and tested) for 
each day of the year were used, taking 20 years before and after the change. Final daily 
adjustments were then smoothed using a low-pass filter for 60 days (to each side). 

Various characteristics were analyzed before applying the adjustments: increment of 
correlation coefficients between candidate and reference series after adjustments, change 
of standard deviation in differences before and after the change, presence of linear trend, 
etc. In the event of any doubts, the adjustments were not applied.  

3.6 Further considerations 

The above-mentioned steps were performed in several iterations. At each iteration, more 
precise results were obtained. Missing values were filled in only after homogenization and 
adjustment of inhomogeneities in the series. The reason for this was that the new values 
were estimated from data not influenced by possible shifts in the series. Moreover, when 
missing data are filled in before homogenization, they may influence inhomogeneity 
detection in a negative way. The gaps were filled by means of linear regression between 
filled value series (dependent variable) and a reference series (independent variable), 
separately for each month. For assessing the quality of the process, various statistics were 
monitored, e.g. differences of averages and standard deviations in periods before and after 
the gap. 

4. HOMOGENIZATION RESULTS 

As has been shown above, the values of correlation coefficients for daily data (using each 
month individually) are comparable with values gained from monthly averages. The same 
holds true of correlations between tested and reference series. The medians of correlation 
coefficients for monthly air temperature range from 0.87 in the summer months to 0.98 in 
the winter months for individual observation hours; again the results at 1400 hours 
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correlate the best. For daily data, the correlations for individual months range from 0.87 to 
0.95. For air pressure, daily data correlates between 0.97 in summer and 0.99 in winter, 
monthly data between 0.94 and 0.99. 

From these results, it follows that it is worth working with daily data in the course 
of homogenization, even if it is more demanding compared to “simple” monthly averages. 
By employing daily data we have longer series (28 to 31 times, depending on number of 
days in a particular month) and we can then also better detect shifts near the end of the 
series (not resolvable for monthly averages with breaks of less then five years to the end of 
series). Fig. 7 gives count of inhomogeneities detected for daily and monthly series by the 
Alexandersson test with reference series created by means of correlations.  

 

Fig. 7. Percentage of inhomogenities in air pressure and temperature series for daily 
data and monthly averages, detected by the Alexandersson test, related to the total 
number of series used  

The annual course of numbers of inhomogeneities is evident from the figure, as are the 
differences between air pressure and temperature readings, as well as observation hours. 
The large difference between monthly- and daily-based detections is, among other things, 
due to the fact that in the Alexandersson test the series is divided into sections in the 
position of each detected break. Since the series contain more members, we are able to 
detect relatively more inhomogeneities (mainly in the shorter sections). In this sense, the 
numbers between daily and monthly series are not comparable. But the aim was to show 
that during homogenization we should try to use information that is as dense as possible, 
using daily data, individual observation hours, etc.  

The advantages of using daily data mentioned above are apparent from the example in 
Fig. 8. In the event of missing values and breaks near the ends of series it is more difficult 
to detect inhomogeneities in the series if one works with only monthly data. 

 

0

20

40

60

80

100

J F M A M J J A S O N D

Air pressure, monthly

0

20

40

60

80

100

J F M A M J J A S O N D

Air pressure, daily

0

20

40

60

80

100

J F M A M J J A S O N D

0700 1400 2100

Air temperature, daily

0

20

40

60

80

100

J F M A M J J A S O N D

Air temperature, monthly

%
 

 
%

 

 



117 
 

 

Fig. 8. Differences between tested and reference series for daily (left) and monthly 
(right) data for Brno, air temperature at 0700 (0600) hours, July 1873–1902 

4.1 Homogenized pressure and temperature series of Brno 

The creation of homogenized air pressure and temperature series for Brno covering the 
period 1848–2005 consists of several steps. First, the individual series for the different 
Brno stations (Brno stations before 1890 & Brno-Pisárky, Brno-Května, Brno-Tuřany – see 
Chapter 2) were homogenized according to the methodology described in Chapter 4. In the 
second step, a common compiled Brno series was developed by adjusting the individual 
parts. Starting from the recent observing station at Brno-Tuřany (reference station, 1958–
2005), Brno-Květná data were adjusted to its measurements to obtain a series for the 
period 1923–2005. In the next step, the Brno-Pisárky station was adjusted to the combined 
Květná-Tuřany reference series to obtain a series for the period 1890–2005 (Fig. 9). This 
approach was applied separately for each observation time (0700, 1400 and 2100 hours).  

Fig. 9. Scheme of creation for the series compiled by combining measurements from 
several locations in Brno 

The principle of combination used for the individual Brno stations is identical to that 
employed for adjustments of inhomogeneities applied to data in the course of 
homogenization. Two approaches may be selected: one that uses monthly averages or one 
that works directly from daily data. The only difference is that final offsets are not 
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computed by comparing periods before and after the change; in this case we use the whole 
period in common (shortened to 20 years if it is longer). The overlap periods vary from 5 
years (air pressure) or 13 years (air temperature) in the first round to 15 years (air pressure) 
or 20 years (air temperature) in the second round. 

Fig. 10 gives an example of when final adjustment is obtained either from monthly 
averages or through direct use of daily data. It seems appropriate to calculate adjustments 
from daily values using a low-pass filter for 60 days, or, leading to the same results, using 
a low-pass filter for two months and subsequently distributing the smoothed monthly 
adjustments into daily values.  
 

 

Fig. 10. Annual variations of adjustments applied to air temperature series at 1400 
hours for Brno-Kv ětná to the reference station Brno–Tuřany: a) monthly-based 
approach (1 – raw adjustments, 2 – smoothed adjustments, 3 – smoothed adjustments 
distributed into individual days), b) daily-based approach (4 – individual calendar 
day adjustments, 5 – daily adjustments smoothed by low-pass filter for 30 days, 6 – 
for 60 days, 7 – for 90 days) 

 
The values measured at different observation hours exhibited quite different annual 
variations of adjustment, making it useful to work with them directly, and not just with 
calculated daily averages. For example, depending on the formula used for the calculation 
of daily averages, real inhomogeneities may be masked there.  

A fully compiled series for the period 1848–2005 was again tested for homogeneity 
as a whole. Finally, homogenous Brno pressure and temperature series for 1848–2005 at 
0700, 1400 and 2100 hours were obtained, from which corresponding daily and monthly 
averages were calculated. Fig. 11 shows fluctuations in annual averages both for the 
compiled homogeneous Brno series and the original series from the various places, in 
which it was derived.  
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Fig. 11. Fluctuations of annual averages of air temperature series at 1400 hours (1 – 
compiled Brno series, 2 – Brno–various places and Brno-Pisárky, 3 – Brno-Květná, 4 
– original Brno–Tuřany, 5, 6, 7, 8 –series smoothed by Gaussian low pass filter for 10 
years) 

5. CONCLUSIONS 

This work was carried out in quest of a proper methodology for daily data homogenization 
and made an attempt to apply it subsequently to daily air pressure and temperature series 
for Brno in the period 1848–2005. Different methods for the homogenization of daily 
values were sought, and finally applied to find possible inhomogeneities and to obtain 
adjusted, homogeneous series. Although further investigation in this matter is required, 
progress so far may be summarized as follows:   

(i) Two basic approaches, based on the homogenization of monthly series and 
projection of estimated monthly adjustments into a smoothed annual course of daily 
adjustments, or homogenization of daily values of individual months, estimating proper 
adjustments for each calendar day with smoothing adjustments, can be used. 

(ii) The same final adjustments may be obtained from either monthly averages or 
through direct use of daily data. For the daily-values-based approach, it seems reasonable 
to smooth them with a low-pass filter for 60 days. The same results may be derived using a 
low-pass filter for two months (weights approximately 1:2:1) and subsequently distributing 
the smoothed monthly adjustments into daily values.  

(iii) The values of the correlation coefficients between the candidate and reference 
series for daily data (working with each month individually) are comparable with values 
gained from monthly averages, although daily data are better in some months, monthly 
data in others. For this reason, a combination of both approaches in (i) is useful.   

(iv) It is profitable to analyze series of individual observation hours because 
inhomogeneities manifest in different ways within their series – this is the case for the 
number of inhomogeneities detected, the value of change, the correlations between 
reference and tested series (and thus detectability of inhomogeneities) and other 
characteristics. Series of daily averages can serve as complementary information in the 
course of homogeneity test evaluation. For inhomogeneity assessment, we recommend the 
use of as much information as possible.  

(v) The data processing in this work has been done by means of LoadData software 
(application for downloading data from central database, e.g. Oracle), ProClimDB software 
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for processing whole datasets (finding outliers, combining series, creating reference series, 
preparing data for homogeneity testing, etc.) and AnClim software for homogeneity testing 
(http://www.klimahom.com/software). Further development of the software, e.g. 
connection with R software, is to be assumed. 
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1. INTRODUCTION 

The MASH procedure was developed originally for homogenization of monthly series. It is 
a relative method, and depending on the distribution of examined meteorological element, 
additive (e.g. temperature) or multiplicative (e.g. precipitation) model can be applied. In 
the earlier program system, MASHv2.03, the following subjects were elaborated for 
monthly series: series comparison, break point (changepoint) and outlier detection, 
correction of series, missing data complementing, automatic usage of meta data and last 
but not least a verification procedure to evaluate the homogenization results.   
The new version, MASHv3.01, was developed for homogenization of daily series as well 
as for quality control of daily data and missing daily data completion. During the 
procedure normal distribution is assumed, therefore at the present version of the software 
additive model can be applied, that is appropriate e.g. for temperature elements. 

 

2. RELATION OF DAILY AND MONTHLY HOMOGENIZATION 

The alternative possibilities are as follows: 

– To use the detected monthly inhomogeneities directly for daily data  
   homogenization. 
– Direct methods for daily data homogenization. 

The problems connected with the possibilities: 

– The direct usage of the detected monthly inhomogeneities is probably not  
   sufficient.  
– Direct methods for daily data homogenization is probably not enough efficient  
   thinking of the larger variability (less signal to noise ratio).  
So we have the following question: 
How can we use the valuable information of detected monthly inhomogeneities  
for daily data homogenization?  
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3. THE ADDITIVE MODEL OF RELATIVE METHODS 

Relative methods can be applied if there are more station series given which can be 
compared mutually.  
 

3.1 Additive model for daily values (e.g. temperature) 

In case of relative methods, the additive model for more daily series in a small climate 
region is as follows, 

( ) ( ) ( ) ( ) ( )dmydmyIHdmEdmydmyX stststst ,,,,,,,,, εµ +++=                       (1) 

where the notations are, st : station,  y : year,  m: month,  d : day, 

furthermore ( )dmy ,,µ  is the common and unknown climate change signal, ( )dmEst ,  are 

the spatial expected values, ( )dmyIH st ,,  are the inhomogeneity signals and ( )dmyst ,,ε  

are normal white noise series. As concerns the type of ( )dmy ,,µ  there is no assumption 
about the shape of this signal.  
 

3.2 Additive model for monthly means 

From daily model (1) can be obtained the following model for the monthly means, 
( ) ( ) ( ) ( )yyIHEyyX st

m
st
m

st
mm

st
m εµ +++=                                                               (2) 

where the means are, ( ) ( )myXyX stst
m ,= , ( ) ( )myym ,µµ = , ( ) ( )myEyE stst

m ,= , 

( ) ( )myIHyIH stst
m ,= , ( ) ( )myy stst

m ,εε = , 

and ( )ymµ  is the common and unknown monthly climate change signals, st
mE  are the 

monthly spatial expected values, ( )yIH st
m  are the monthly inhomogeneity signals and 

( )yst
mε  are normal white noise series. There is no assumption about the shape of signals 

( )ymµ  and the type of inhomogeneity signals is in general a step-like function in time with 

unknown break points and shifts.  

4. USAGE OF ESTIMATED MONTHLY INHOMOGENEITIES FOR D AILY 
HOMOGENIZATION  

4.1 Possibilities and problems 

Direct methods for daily data homogenization are probably not enough efficient owing to 
the larger variability that means less signal to noise ratio. However the direct usage of the 
detected monthly inhomogeneities for daily homogenization is probably not sufficient.  
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Let us assume that we have the estimation ( )yHI st
m

ˆ  with good quality for the monthly 

mean inhomogeneities ( ) ( )myIHyIH stst
m ,= . It is valuable information but the direct usage 

of such step curve for daily homogenization may be problematic, as it can be seen in Fig. 
1. Consequently the question is how can we obtain appropriate smooth estimation 

( )dmyHI st ,,ˆ  for daily inhomogeneities ( )dmyHI st ,,ˆ  by using the estimated monthly 

inhomogeneities ( )yHI st
m

ˆ ? 

 

 

Fig. 1. Example for estimated monthly ihomogeneities for a year 

4.1.1 Smoothing according to the method of Vincent et al.  

According to Vincent et al. (2002), (Mekis, 2006) the following condition is given for the 

daily inhomogeneity estimation ( )dmyHI st ,,ˆ . 

The condition for the monthly means is,  ( ) ( )yHImyHI st
m

st ˆ,ˆ = . 

It seems to be a natural condition if we think on the equality of ( ) ( )yIHmyIH st
m

st =, , 

however it is possible that too strong inhomogeneities may be obtained occasionally.  

4.1.2 Smoothing according to the MASH method  

Let us consider another train of thought. Let us not forget that the monthly estimates, 

( )yHI st
m

ˆ , are not real values, these are estimated values only, thus stochastic variables. We 

have to be aware that to know the real ( )yIH st
m  is impossible. Consequently the monthly 

estimates ( )yHI st
m

ˆ  may be modified, but the modification must be controlled of course.The 

essence of the applied procedure is as follows. 

 i, Smooth estimation ( )dmyHI st ,,ˆ  for daily inhomogeneities by using the   

   monthly estimates ( )yHI st
m

ˆ  with a not too strong condition, e.g.:           

  ( ) ( )yHIdmyHId st
m

st ˆ,,ˆ: 00 =∃  
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ii, Test of hypothesis to control the new monthly estimations which are the monthly means 

of daily estimations ( )dmyHI st ,,ˆ :   ( ) ( )myHIyHI stst
m ,ˆ:

~ =  

Fig. 2. is an illustration of smoothing applied at MASH method. 
 

 

Fig. 2.  Example for smoothing of monthly inhomogeneities 

4.2 The MASH procedure for daily data homogenization 

The algorithm of MASH for daily data homogenization is as follows.  
1. Monthly means ( )yX st

m   from daily data  ( )dmyX st ,, . 

2. MASH homogenization procedure for monthly series ( )yX st
m  , 

    estimation of monthly inhomogeneities:  ( )yHI st
m

ˆ  

3. On the basis of estimated monthly inhomogeneities  ( )yHI st
m

ˆ , 

    smooth estimation for daily inhomogeneities: ( )dmyHI st ,,ˆ . 

4. Homogenization of daily data:  

    ( ) ( ) ( )dmyHIdmyXdmyX ststst ,,ˆ,,,,
~ −= . 

5. Quality Control for homogenized daily data ( )dmyX st ,,
~

. 

6. Missing daily data complementing. 

7. Monthly means ( )yX st
m

~
  from homogenized, controlled, complemented 

    daily data  ( )dmyX st ,,
~

. 

8. Test of homogeneity for the new monthly series  ( )yX st
m

~
  by MASH. 

    Repeating steps 2-8  with   ( )yX st
m

~
,  ( )dmyX st ,,

~
  if it is necessary! 

The procedure includes also quality control (QC) and missing data completion for the daily 
data.   
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5. INTERPOLATION TECHNIQUE USED FOR QUALITY CONTROL  (QC) AS 
WELL AS DATA COMPLEMENTING 

In this session the mathematical background of the applied interpolation technique is 
presented. Let us introduce the following notations.  
 

5.1 Notations 

Daily data for a given month:  
( ) ( ) ( )( )tDtENtX jjj ,∈      ( )30,...,1;station,..,1 == tMj  

Candidate data: ( )tX j , and reference data: ( ) ( )jitX i ≠ . 

Interpolation of the candidate data:  

 ( ) ( ) ( ) ( )∑
≠

+=
ji

ijijj tXtttX λλ 0
ˆ   where    ( ) 1=∑

≠ ji
ji tλ .  

RMS error and representativity values:  ( )tRMSEj   ,  ( ) ( )
( )tD

tRMSE
tREP

j

j
j −= 1  

The optimum interpolation parameters ( ) ( ) ( )30,..,1;,0 =≠ tjitt opt
ji

opt
j λλ  which minimize 

( )tRMSEj  are uniquely determined by the expectations, standard deviations and the 

correlations. However we have the problem how we can estimate these necessary daily 
statistical parameters. 
 

5.2 Assumptions for the daily statistical parameters 

 i,  ( ) ( ) jiij etEtE =− ,   ( ) ( ) jiij dtDtD =  , ( )30,..,1; =≠ tji  

ii,  ( ) ( )( ) T
tt

S
jjjj rrtXtX

212121 21 ,corr ⋅=   ( )30,..,1,;,...1, 2121 == ttMjj  
S

jjr
21
: correlation structure in space,   T

ttr 21
: correlation structure in time 

⇔  Partial corr.: ( ) ( ) ( )( ) =21 2121
,corr tXtX jjtX j ( ) ( ) ( )( ) 0,corr 21 2112

=tXtX jjtX j
   

 

5.3 Statements    

If the assumptions i, ii, are fulfilled then  
 ( ) ( ) ( ) ( )30,..,1,,00 =≡≡≡ tREPtREPtt opt

j
opt
j

opt
ji

opt
ji

opt
j

opt
j λλλλ  ,  

where opt
j

opt
ji

opt
j REP,,0 λλ    are the optimal parameters of monthly interpolation:   

( ) ∑
≠

+=
ji

ijijj XtX λλ 0
ˆ     where    1=∑

≠ ji
jiλ . 
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5.4 Consequences 

The monthly statistical parameters can be used for daily interpolation. 

 i, Data completion based on interpolation: ( ) ( )∑
≠

+=
ji

i
opt
ji

opt
jj tXtX λλ 0

ˆ   

ii, Quality control can be based on the following standardized error: 

( ) ( ) ( )
( )( )opt

jj

jj
j

REPtD

tXtX
tZ

−
−

=
1

ˆ
  ( )1,0N∈  

where  opt
j

opt
ji

opt
j REP,,0 λλ    are the optimal parameters of monthly interpolation, and  ( )tD j   

is the daily standard deviation.  
 

6. TEST OF HYPOTHESIS FOR THE STANDARDIZED ERROR SERIES   

 
The standardized errors ( ) ( )1,0NtZ ∈ ( )nt ,..,1=  if data have good quality. 

But we have the problem: ( ) 






 < ztZ
t

maxP  depends on the autocorrelation. 

6.1 Statement 

 i, If  ( )tZ ( )nt ,..,1=  is a Markov process, furthemore 

ii,  ( ) ( )( ) ( )( )ztZztZztZ <≥<−< P1P
        

( )nt ,..,2= , 

then    ( ) ( )( )∏
=

<≥






 <
n

t

ztZztZ
t 1

PmaxP . 

Example:  If  ( )tZ ( )nt ,..,1=  is a normal AR(1) process then i, ii, are fulfilled. 
 

6.2 Decision according to test of hypothesis 

The data ( )tZ  is wrong if and only if    where critical value pz  is defined by the 

significance level  p   (e.g.:  p=0.01) as, 

( ) ≥






 < pztZ
t

maxP ( )( ) pz n
p −=−Φ 112   , 

where ( )zΦ  is the standard normal distribution function.  

6.3 Multiple QC for daily data 

More standardized error series are examined without common reference series in order to 
separate the wrong data of the candidate station. Correction of the wrong data can be based 
on confidence intervals.  

( ) pztZ >
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7. EXAMPLE FOR APPLICATION OF MASH  FOR DAILY DATA 
Examined data: daily temperature series (1901-1930), 10 stations in Hungary. 
Temperature element: (max+min)/2. The homogenization procedure 4.2. was implemented 
and some partial results are presented in Table 1, 2, 3.                     

Table 1.  Partial results of Quality Control for daily data (output ERROR.RES)  
Detected errors in September 1903 at Station 10   
          st1  st2  st3  st4  st5  st6  st7  st8  st9 st10 
1903 9 1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -3.4 
1903 9 2  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -2.2 
1903 9 3  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -3.1 
1903 9 4  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -5.0 
1903 9 5  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -2.6 
1903 9 6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -2.7 
1903 9 7  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -4.9 
1903 9 8  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -2.9 
1903 910  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -1.8 
1903 911  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -5.5 
Original Data 
1903 9 1 20.5 17.1 20.0 17.5 21.0 18.1 18.7 19.5 19.3 12.3 
1903 9 2 19.8 17.9 20.8 15.5 21.5 14.9 18.4 19.3 20.2 13.2 
1903 9 3 19.1 17.3 20.8 15.5 21.3 15.8 18.5 17.2 17.5 11.3 
1903 9 4 19.7 17.5 19.8 15.3 19.0 15.8 18.8 19.2 17.2 10.4 
1903 9 5 20.3 17.8 20.5 16.0 21.0 17.4 19.3 20.4 17.8 13.2 
1903 9 6 20.9 18.7 21.3 17.3 20.0 18.6 19.9 21.4 18.8 13.8 
1903 9 7 22.9 21.5 22.5 17.8 22.0 19.5 18.9 23.6 19.0 13.9 
1903 9 8 22.5 20.9 25.0 19.0 23.0 19.8 19.1 23.5 19.5 15.5 
1903 910 17.7 18.4 17.0 13.8 13.6 19.0 14.3 18.9 13.7 12.7 
1903 911 16.5 13.7 18.3 11.8 14.5 13.5 13.1 18.8 14.1  6.2 
Longterm means in September 
         16.7 15.9 16.2 14.9 15.9 15.5 14.6 17.0 14.7 16.6 

 

Table 2.  Verification results for the annual series (output MASHVERI.RES) 
TEST STATISTICS for ANNUAL SERIES (OUTPUT of MASH) 
Critical value (significance level 0.05): 20.53 
 1. Test Statistics Before Monthly Homogenization                                
Station      TSBM     Station      TSBM     Station       TSBM    
      4    317.85           6    241.41            2    155.04   
      9    127.66           7     91.66           10     68.36   
      1     62.55           8     61.84            5     42.06   
      3     15.82     AVERAGE:   118.42                                                             
 2. Test Statistics After Monthly Homogenization 
Station      TSAM     Station      TSAM     Station       TSAM                                   
      7     28.64           5     25.11           9      22.73   
      4     18.52           1     18.12           8      15.26   
      6     14.96           2     14.82          10      12.41   
      3     10.26     AVERAGE:    18.08                                                             
 3. Test Statistics After Monthly&Daily Homogenization  
Station     TSAMD     Station     TSAMD     Station      TSAMD                                 
      7     28.89           5     25.40           2      25.06   
      9     21.98           1     17.60           4      16.52 
      8     15.23           6     14.66           3       9.69 
     10      9.00     AVERAGE:    18.40 
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Table 3.  Average of verification results for the monthly series 

AVERAGED TEST STATISTICS FOR MONTHLY SERIES (10 Stations) 

Average of Test Statistics Before Monthly Homogenization: TSBM 

Average of Test Statistics After Monthly Homogenization: TSAM 

Average of Test Statistics After MonthlyDaily Homogenization:TSAMD 

MONTH       TSBM       TSAM       TSAMD 
    1       28.5       12.0        12.1 
    2       21.1       16.6        17.0 
    3       41.2       24.0        22.4 
    4       73.7       17.5        17.8 
    5       82.1       15.7        13.4 
    6      100.7       14.7        12.5 
    7       84.5       16.1        14.2 
    8       61.7       16.0        14.3 
    9      131.4       12.9        13.1 
   10       56.3       14.6        16.0 
   11       38.9       10.4        11.2 
   12       34.5       18.7        20.4 
   SP       90.6       19.9        20.2 
   SU       92.6       18.7        17.2 
   AU      101.3       17.1        19.6 
   WI       32.1       18.3        16.6 
    Y      118.4       18.1        18.4 
 Critical value (significance level 0.05): 20.53 
 Test statistics (TS) can be compared to the critical value. 
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1. INTRODUCTION 

There has been a large number of homogenisation methods developed in the latest decades, 
for correcting observed climatological time series. However, only few papers analyse their 
practical efficiency with comparative tests. The earlier test procedures (Easterling and 
Peterson, 1995; Ducré-Robitaille et al., 2003; Syrakova, 2003; Štěpánek, 2004) were 
applied on relatively few homogenisation methods, and the degree of similarity of 
statistical properties between observed and simulated data sets were hardly or not at all 
examined. 

In my opinion a high degree of similarity between the simulated and observed time 
series must be implemented, otherwise any test-procedure may bring misleading results. 
As the properties of observed climatological time series are quite diverse, and even the 
same homogenisation procedures may be applied with different parameterisations and 
supplementary parts (e.g. in relation to filtering outlier values or automatic consideration of 
metadata), it is not a simple task to construct a really usable comparative test procedure. In 
this paper some principles and initial steps are discussed, and some preliminary results are 
presented. 

2. PRINCIPLES 

A complete homogenisation procedure comprises several segments. The first step is 
usually the selection of set of time series which can be examined together. It is followed by 
filtering of outliers, the creation of reference series and calculation of relative time series, 
the use of statistical methods for finding inhomogeneities [= IH hereafter] in relative time 
series, etc. In this study the efficiency of one segment is examined only: what is the 
capability of the applied statistical method to find the timing of the IHs and assess the 
optimal corrections. From combined homogenisation procedures (e.g. MASH) segments of 
this type were separated before testing. 
 
Further principles are as follows: 
 
i) Only homogenisation methods having the following properties are tested: a) objective 
and reproducible, b) widely used in climatology c) its usable mathematical description is 
easily available in climatological journals or in the issues of previous homogenisation 
seminars. I constructed the necessary computer programs relying on these sources, with 
one exception (MASH, see later). 
 
ii) Tests are fulfilled on large simulated data sets. The statistical characteristics of relative 
time series from observations are closely approached by those of simulated data sets 
through the thorough preparation of the simulation method. 
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iii) Methods, usually applied for finding real jumps in climate, are tested as well, since 
finding climatic jumps is a twin-task of homogenisation, both require the same type of 
statistical tools. 
 
iv) In the present phase only relative time series with at least 0.4 autocorrelation are 
examined. 
 
v) Segments of homogenisation procedures those comprise purely objective steps are 
tested. As in the present phase the way of creating reference series is not tested, the same 
way of creating relative time series is supposed for each homogenisation method. 

3. HOMOGENISATION METHODS UNDER TESTING 

Seventeen versions of 11 objective homogenisation methods are under examination. Two 
of the examined methods (the Multiple Linear Regression and the later version of the 
Standard Normal Homogeneity Test) are able to detect both sudden shifts and gradual 
changes (trends), but most of them are for detecting sudden shifts only. The list below 
comprises the tested homogenisation methods, it begins with the simplest ones which are 
followed by the more and more complex types: 
 
a) t-test [tta] (Ducré-Robitaille et al., 2003) 
b) t-test [ttb] (Kyselý and Domonkos, 2006) 
c) Buishand-test [Buia] (maximum of the absolute values of accumulated anomalies, 
Buishand, 1982) 
d) Buishand-test [Buib] (difference between maximum and minimum values of 
accumulated anomalies, Buishand, 1982) 
e) Standard Normal Homogeneity Test for shifts only [SNHa] (Alexandersson, 1986) 
f) Wilcoxon Rank Sum test [WRS] (Karl and Williams, 1987) 
g) Multiple Linear Regression [MLR] (Vincent, 1998) 
h) Bayesian test (Ducré-Robitaille et al., 2003) with serial correlation analysis (Sneyers, 
1999) [Baya]  
i) Bayesian test (Ducré-Robitaille et al., 2003) with penalised maximum likelihood method 
for calculating number of change-points (Caussinus and Lyazrhi, 1997; Mestre, 2004) 
[Bayb] 
j) Pettitt-test [Pett] (Pettitt, 1979) 
k) Mann-Kendall test [M-K] (Aesawy and Hasanean, 1998) 
l) method of Mestre [Mest] (Mestre, 2004) 
m) method of Mestre with parameterised minimum unit-length [Mesb] 
n) Standard Normal Homogeneity Test for shifts and trends [SNHT] (Alexandersson and 
Moberg, 1997) 
o) Easterling-Peterson test [East] (Easterling and Peterson, 1995) 
p) Multiple Analysis of Series for Homogenisation [MASH] (Szentimrey, 1999) 
q) Multiple Analysis of Series for Homogenisation with parameterised minimum unit-
length [MASb] 
 
In certain cases I made some supplements or modifications relative to the original 
homogenisation methods. Parameterised versions for Mestre-method and MASH are 
produced, because all the selected homogenisation methods are tested with various 
minimum unit-lengths. Minimum unit-length [denoted by u] means the shortest length of 
periods to which distinct statistical characteristics can be assigned during the search of IHs. 
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In most of the methods it is not fixed by original instructions, but it is definitely 1 single 
value in the original Mestre-method and in the original MASH. (“Number of values” in a 
series is referred as “number of years” hereafter, because it is the most frequent case in 
homogenisation procedures.) 
 At the Bayesian test I found the description of significance-test part to be non-
reproducible (Ducré-Robitaille et al. 2003), therefore two other significance-tests are 
applied instead, producing two versions of the method. The Mann-Kendall test is supplied 
with the test of serial correlations, because otherwise the frequency of first-type errors 
seemed to be too high in white noise processes. In t-test the standard deviations are 
estimated from the whole series, instead of from 5-year long sections of the series. 
 T-test, Mest, East and MASH methods have inner instructions how to deal with 
multiple IHs, but most of the methods do not contain such unambiguous instructions. 
Moberg and Alexandersson (1997) give recommendations what can be an optimal way of 
detecting multiple IHs in a procedure (namely in SNHT) which includes step-by-step 
detection of individual IHs. The application of these proposals is implied in all of the 
methods that have no other relevant instructions. 
 In case of MASH, I have the opportunity to use the program with the assistance of 
the original constructor (Tamás Szentimrey, Hungarian Meteorological Service). 
 Further details about nine of the eleven homogenisation methods can be found in 
Domonkos (2006). 

4. PREPROCESSING 

Before the beginning of efficiency tests, some preparatory steps must be done. This section 
presents how the simulation method was developed, and deals with the problem of finding 
evaluation methods for measuring efficiencies of homogenisation methods. 

4.1. Examination of an observed data set 

One of the first tasks is to calculate statistical characteristics of an observed data set, since 
these characteristics must be compared with the same type of characteristics of simulated 
data sets before determining simulation method for producing data sets for the test 
procedure. Therefore, common statistical characteristics (moments, distribution, serial 
correlation), as well as mean characteristics of detected IHs are calculated for an observed 
data set. All the homogenisation methods are used, and the parameterisation of the 
individual methods is varied, in order to increase the number of the comparable 
characteristics. Before the beginning of the homogenisation procedures, relative time series 
are derived for each data series of the observed data set, according to the guides of 
Alexandersson and Moberg (1997). 
 The observed data set consists of 215 temperature and 112 precipitation time series. 
They are monthly or annual means (totals) of temperatures (precipitation), their length is 
98 - 100 years, and most of them are originated from the observing network of the 
Hungarian Meteorological Service. 
 The obtained statistical characteristics varies according to the type of the examined 
meteorological element (temperature or precipitation), and the season of the year, but they 
can be well clustered in another way, according to the serial correlation of the relative time 
series. In the present work only time series with at least 0.4 serial correlations are 
examined, so mean statistical characteristics of 70 temperature and 2 precipitation 
(relative) series were selected for later comparisons with simulated characteristics. 
 Detailed description about the observed data set and the examinations performed on 
that is presented in Domonkos (2006). 
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4.2. Creation of the simulation method 

An iteration technique was applied, namely simulation experiments were repeated many 
times in order to gain similar statistical characteristics of simulated data series to that of 
observed series. Though large numbers of statistical characteristics were compared, it 
appeared during the experiments that a set of statistical characteristics of detected IHs is 
partly more typical to the rate of factual small IHs relative to factual medium-size IHs, than 
to the factual mean frequency of all IHs. It is likely because of the fact that non of the 
homogenisation methods can detect very small IHs (see also Ducré-Robitaille et al., 2003; 
Štěpánek, 2004), thus direct information about the frequency of them cannot be obtained. 
To reduce the chance of possible biases because of an improper simulation method, the 
number of compared statistical characteristics was raised above 200. Yet it seemed that the 
function-type of the magnitude-distribution of small IHs can be chosen partly arbitrarily. 
Several results indicated that this distribution is close to that of the white noise, and 
eventually it was set to be just equal to the distribution of the white noise. Further 
properties of the simulation method were deduced from the results of the approximation 
experiments. The main findings are as follows: i) Frequency of small IHs is much higher, 
than that of IHs with medium-size or large magnitudes (see also Domonkos, 2006); ii) 
Frequency of short-term IHs is much higher, than IHs with long duration; iii) The 
examined time series can be well modelled composing the following elements: a) 
stationary white noise, b) change-points in certain time-points, c) gradual linear changes, 
d) platform-like changes (= pair of change-points with the same magnitudes, but with the 
opposite directions) and e) short-term platform-like changes. The latter is theoretically the 
same type as d), but I mention distinctly, because its frequency turned out to be 
surprisingly high, and its effect on the general characteristics of the time series is partly 
similar to that of the white noise. The length of the simulated series is always 100 years. 
To determine a proper simulation method the forms of frequency distributions and suitable 
parameterisations were searched by iterations. The final simulation method is presented in 
Appendix I. 

4.3. Handling of outliers 

In the observed data set elements with higher than 4 standard deviations are very seldom. It 
is true both for the original and the relative time series. Anomalies higher than this 
threshold were corrected before the homogenisation procedure, so that they were 
substituted with the mean of the time series (i.e. with 0 anomalies). This practise is applied 
in all of the homogenisation procedures, and both for the observational and simulated time 
series. 

4.4. Testing of the simulation method 

Before the utilisation of the simulation method its properties were tested by the comparison 
of wide range of statistical characteristics of detected IHs. All the 17 homogenisation 
methods are involved. The compared characteristics are means of frequencies of detected 
change-points, means and standard deviations of the magnitudes of detected change-points, 
and in cases of MLR and SNHT the characteristics of detected gradual changes are also 
compared. Parameters of the applied minimum unit-length (u) and significance threshold 
(c) are varied, thus the number of the compared statistical characteristics is as high as 204. 
 Figure 1 presents the distribution of the differences between observed and 
simulated characteristics. Empty bars show the number of the differences belonging to the 
individual categories, while darkened bars show weighted sums of occurrences. The 
weights are the sample sizes of detected IHs, from which the characteristics of observed 
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data set were calculated. It can be seen that vast majority of the differences are smaller 
than 10%, and they are never higher than 20%. The largest differences, which are higher 
than 10%, are partly explainable by the relatively low simple sizes belonging to these 
cases. 
 Distributions of serial correlations are also compared. The observational 
characteristics are calculated from the 72 relative time series whose serial correlations are 
higher than 0.4. Ten thousand time series were simulated, and the serial correlations were 
higher than 0.4 in 4533 cases. The comparison of relative frequencies of above 0.4 serial 
correlations are shown in fig. 2. The fitting is excellent; the distribution of the simulated 
serial correlations seems to be the smoothed version of the distribution of observational 
serial correlations. 
 

 
Fig. 1. Distribution of differences                        Fig. 2. Distributions of serial 
between the same type statistical                         correlation of the examined 
characteristics of detected inhomogeneities        time series 
for observed and simulated time series 
 

4.5. Measuring efficiency 

The way of evaluating efficiency of a homogenisation method is not so simple as it could 
be expected over non-quantitative speculations. Let we examine a simple example: We 
have a relative time series with two change-points (and no more IHs, neither any noise, see 
fig. 3.a). The time-points and degrees of the shifts are i) year 40, +3 and ii) year 60, -2. In 
this idealised case all the values of the series would become 1 after a perfect correction.  
Method ‘B’ (fig. 3.b) detects precisely IH i), but fails to detect IH ii), thus it recommends a 
correction of +3 for the first 40 years of the series. 
 
a)     b)    c) 
 
 
 
 
 
 

 

Fig. 3. The effect of IHs (a), and that of the adjustments of time series, relying on 
imperfect detections of IHs (b and c), on the detectable slope of linear change. (See 
more explanation in the text.) 
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Method ‘C’ (fig. 3.c) does not detect well the IHs, it finds IH neither around year 40, nor 
around year 60. However, method ‘C’ detects a change-point in year 30 with a shift of 
+1.2, and recommends a correction of +1.2 for the first 30 years of the series. The skill in 
detecting IHs is 50% for method ‘B’ and 0% for method ‘C’, but the reproduction of the 
trend of the series is good in case ‘C’ and false (worse, than without correction) in case 
‘B’. 
 Two measures of efficiency are introduced: a) “Skill of change-point detection” 
evaluates the skill only in detecting relatively large shifts. (In certain cases it is the only 
purpose of the use of a homogenisation method.) b) “General efficiency” is a complex 
characteristic. It calculates the average of 14 elements characterising different kind of 
skills of the homogenisation methods. 4 elements are for evaluating the skill of detecting 
relatively large shifts, 4 elements measure the reliability of trends, 2 elements measure the 
reliability of the range of long-term changes, and 4 elements characterise the reliability of 
further properties of variability. The full description of the verification method is presented 
in Appendix II. 
 Efficiencies are expressed in percent unit, as the rate of the improvement relative to 
the perfect solution. The correction is perfect, if all the change-points and the gradual 
changes are precisely detected. If the distance of the corrected time series, relative to the 
perfect solution is just as large as that of the uncorrected series, the efficiency is zero. If the 
corrected series is worse than the uncorrected one, the efficiency is negative. 
 Some more specifications of the evaluation method are as follows: The perfect 
solutions are known only for simulated series. The calculation of perfect solutions takes 
into account the possibly previous modifications because of outlier values. However, there 
is a further factor complicating the calculation of efficiency. While all of the IHs of relative 
time series are usually considered to be the indications of errors in the candidate series, this 
rule may not be valid for very small IHs. Small IHs in relative time series can be caused by 
changes in climatic gradients or by the imperfectness of the reference series. Therefore a 
part of the small IHs is considered to be noise. Details are presented in Appendix III.  

5. TESTING OF EFFICIENCIES OF HOMOGENISATION METHOD S 

The efficiency characteristics evaluated according to 4.5. were calculated for simulated 
data series, generated according to 4.2. All the 17 homogenisation methods and wide 
ranges of u and c parameters were applied. The number of generated series for each 
method and each of the applied parameterisations is always one thousand. The total 
number of experiments performed (considering all the homogenisation methods and 
applied parameterisations) with the simulation method of 4.2. is approximately . 
In addition, further experiments were made with certain modifications of the simulation 
method, in order to get an insight into the stability of the results. Results obtained with the 
base simulation method and with one modified version (few large IHs) are presented in this 
paper. The description of modified simulation method is included in Appendix I and III.  
 Efficiency values, obtained from adjacent values of c parameter applications, are 
smoothed with a Gaussian filter. 

6. RESULTS 

6.1. General efficiency 

The Standard Normal Homogeneity Test is a very popular and the most often applied 
homogenisation method was in the last two decades. The earlier version (SNHa, for shifts 
only) was usually applied. Now, its efficiency can be checked. Fig. 4 shows the 
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 Fig. 6 presents all the optimum efficiencies belonging to the examined methods. It 
can be seen that most of the values are within a narrow range (70 – 76%). According to 
these results the best methods are the Mesb, MASb, Mest, Bayb, MLR, MASH and SNHa, 
while the Mann-Kendall test and the t-test provide much lower general efficiency than the 
other methods. 

 

Fig. 6. General efficiencies of individual homogenisation methods, applying the 
optimal parameterisations. 

The optimal significance thresholds are usually much lower, than the original 
recommendations, except for Mest and M-K. The omission of significance investigation 
provides the optimum efficiency in Baya, ttb, tta and in the first phase of East. The optimal 
u spreads over 3 - 10 years, and it tends to decrease with rising efficiency. Leaving out of 
consideration the very special case of M-K, the correlation between optimal minimum unit 
length and efficiency-optimum is –0.73. 

6.2. Skill of change-points detection 

Fig. 7 presents the order of the skill values of optimum parameterisations for all the 
examined methods, in the same way, as Fig. 6 shows the general efficiencies. All the 
values, except for that of M-K, range between 80 and 90%. Mesb and MASb are the most 
efficient two methods again, but the order substantially differs from the third place. tta 
seems to be very efficient for this task, while the rank of MLR is much weaker in this 
examination, than in the general efficiency results. The optimal parameterisation usually 
differs substantially from that of the general efficiencies, except for Mesb and MASb. The 
optimal unit length is 3 or 4 years for each of the methods. The optimal significance 
threshold is stricter in tta, ttb and East, but even lower, than for general efficiency for most 
of the methods. Omission of significance examination, or the use of a very low 
significance threshold is the optimal choice for Baya, Bayb, SNHa, SNHT, Buia, Buib, 
WRS, Pett and M-K.  
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Fig. 7. Skill of change
applying the optimal parameterisations.

6.3. Case of few large inhomogeneities

Although the base simulation method imitates well the mean characteristics of the 
temperature time series observed in Hungary, the real time series characteristics are 
diverse. One of the frequent versions might be the “few large IHs” type, since in case of 
higher than average level of continuous quality control, the development of large shift
biases may be prevented, while the features of small IH occurrences are likely the same.
 Fig. 8 and 9 show the efficiency distributions of Mestre method (Mest and Mesb) 
for base dataset and few large IHs dataset, respectively. Comparing the results, 
that the efficiency much more depends on the characteristics of the candidate series and 
quality of the reference series, than on the applied homogenisation method. In case of 
Mesb the optimum efficiency drops from 76.0 to 53.8% owing to the c
type to few large IHs type. The optimal 
distribution remained resembling otherwise.
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7. Skill of change-point detection for individual homogenisation methods, 
applying the optimal parameterisations. 

6.3. Case of few large inhomogeneities 

Although the base simulation method imitates well the mean characteristics of the 
ture time series observed in Hungary, the real time series characteristics are 

diverse. One of the frequent versions might be the “few large IHs” type, since in case of 
higher than average level of continuous quality control, the development of large shift
biases may be prevented, while the features of small IH occurrences are likely the same.

Fig. 8 and 9 show the efficiency distributions of Mestre method (Mest and Mesb) 
for base dataset and few large IHs dataset, respectively. Comparing the results, 
that the efficiency much more depends on the characteristics of the candidate series and 
quality of the reference series, than on the applied homogenisation method. In case of 
Mesb the optimum efficiency drops from 76.0 to 53.8% owing to the c
type to few large IHs type. The optimal c values are increased, but the shape of the 
distribution remained resembling otherwise. 
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point detection for individual homogenisation methods, 

Although the base simulation method imitates well the mean characteristics of the 
ture time series observed in Hungary, the real time series characteristics are 

diverse. One of the frequent versions might be the “few large IHs” type, since in case of 
higher than average level of continuous quality control, the development of large shifts or 
biases may be prevented, while the features of small IH occurrences are likely the same. 

Fig. 8 and 9 show the efficiency distributions of Mestre method (Mest and Mesb) 
for base dataset and few large IHs dataset, respectively. Comparing the results, it turns out 
that the efficiency much more depends on the characteristics of the candidate series and 
quality of the reference series, than on the applied homogenisation method. In case of 
Mesb the optimum efficiency drops from 76.0 to 53.8% owing to the change from base 
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Fig. 9. Variation of general efficiency of Mest and Mesb with minimum unit
(u) and significance threshold coefficient (

 Fig. 10 presents another example of efficiency
time series. Applying Buib method the optimal efficiency is slightly lower (51.2%), than 
that for the best methods. The distribution is conspicuously flat. The optimum significance 
threshold is near to the one for 0.1 p
but the choice of c = 0 (omission of significance test) results in efficiencies lower with few 
tenths of a percent only. The optimum 
spreads over 7 to 18 years. 

Fig. 10. Variation of general efficiency of Buib with minimum unit
significance threshold coefficient (

 In spite of the large changes in the measured efficiencies, the order of optimum 
efficiencies tends to be conservative against time series characteristics. Yet a little change 
can be noticed in the top places: for few large IHs type the highest optimum general 
efficiencies belong to 1) Mesb (53.8%), 2) Bayb (53.0%), 3) MASb (52.7%), wh
order of the highest skills of change
and 3) tta (79.6%). 

7. DISCUSSION AND CONCLUSIONS

Large number of test experiments with simulated data set imitating relative time series 
from observations, with at least 0.4 serial correlation were performed for 17 
homogenisation methods. All the calculated efficiencies belonging to realistic 
parameterisations are positive. It means that the application of any kind of homogenisation 
method generally improve th
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Fig. 10 presents another example of efficiency distribution for few large IHs type 
time series. Applying Buib method the optimal efficiency is slightly lower (51.2%), than 
that for the best methods. The distribution is conspicuously flat. The optimum significance 
threshold is near to the one for 0.1 probability of first type errors in white noise processes, 

= 0 (omission of significance test) results in efficiencies lower with few 
tenths of a percent only. The optimum u is 13 years, and the range of near optimal 
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significance threshold coefficient (c). Type of data set: few large IHs. 

In spite of the large changes in the measured efficiencies, the order of optimum 
efficiencies tends to be conservative against time series characteristics. Yet a little change 
can be noticed in the top places: for few large IHs type the highest optimum general 
efficiencies belong to 1) Mesb (53.8%), 2) Bayb (53.0%), 3) MASb (52.7%), wh
order of the highest skills of change-point detection is 1) MASb (82.0%), 2) Mesb (81.7%) 

NCLUSIONS 

Large number of test experiments with simulated data set imitating relative time series 
ith at least 0.4 serial correlation were performed for 17 

homogenisation methods. All the calculated efficiencies belonging to realistic 
parameterisations are positive. It means that the application of any kind of homogenisation 
method generally improve the quality of climatological time series. (It does not mean, 

0.01

0.7

1.4

1 4 7

c

u

0.01

0.83

2 6
10

14
18

c

u

Variation of general efficiency of Mest and Mesb with minimum unit -length 
). Type of data set: 

distribution for few large IHs type 
time series. Applying Buib method the optimal efficiency is slightly lower (51.2%), than 
that for the best methods. The distribution is conspicuously flat. The optimum significance 

robability of first type errors in white noise processes, 
= 0 (omission of significance test) results in efficiencies lower with few 

is 13 years, and the range of near optimal u values 

 

-length (u) and 

In spite of the large changes in the measured efficiencies, the order of optimum 
efficiencies tends to be conservative against time series characteristics. Yet a little change 
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however, that substantial false corrections never happen.) Positive values of general 
efficiency calculated according to Appendix II. mean that the corrected time series are 
usually more appropriate for investigating climate variability, than the original series, 
independently from the kinds and sources of residual errors in the corrected series. In 
addition, most of the methods prove rather high efficiency in detecting and correcting 
change-points of relatively large magnitudes. 
 Most of the methods have similarly high optimum efficiency. It indicates that 
numerical values of efficiencies depend more on the properties of the data set under testing 
and on the chosen measure of efficiency, than on the homogenisation method. However, 
some exceptions have been found. Both types of the calculated efficiencies for the Mann-
Kendall test, and the general efficiencies for the t-test are always substantially lower, than 
the efficiencies for the other methods. 
 It must be noted that the resemblance in efficiencies refers at first to the optimum 
values. Although the distribution of efficiencies is usually flat around the optimum 
efficiency, and thus parameter-pairs can be chosen from a rather large area, the use of 
original parameterisations recommended by the constructors of the methods sometimes 
results in considerably lower efficiencies. This problem is unusually serious for the 
Easterling-Peterson method. That method contains a two-phase examination of change-
points with the application of a specific significance threshold for each phase. It has been 
turned out that the best choice is the omission of the significance-test in the first phase, and 
even a very weak significance threshold seems to be the best for the second phase (at least 
for time series with at least 0.4 serial correlations). The calculated general efficiencies for 
base type data set are 72.9% with the optimum parameterisation, but as low as 41.1% with 
the original parameterisation. Interestingly, the skill of change-point detection is high 
(84.1%) with the original parameterisation, which shows that the scale of reasonable 
expectations from a good homogenisation method must be wider than the reliable detection 
of large IHs. 
The optimal parameterisation depends on the properties of the time series under 
examination. It is a problematic point, since the frequency and size-distribution of IHs are 
unknown in practice. However, stochastic-type information can be obtained by pre-
examinations, for example serial correlation gives such information. A long-term purpose 
of efficiency-test investigations is to find methods and parameterisations whose application 
ensures high efficiencies for a wide range of time series properties. 
 The optimal parameterisation often contains very weak significance thresholds. It 
may have two explanations: a) The condition of minimum 0.4 serial correlation usually 
goes with a relatively high contamination of IHs, therefore the detected change-points can 
be approved without examining the statistical significance; b) Uncovered mid-size IHs 
might cause larger biases, than the application of unnecessary, but small corrections. 
 It seems that relatively complicated homogenisation methods are not always more 
efficient, than the simpler ones. For example, the earlier and simpler version of the SNHT 
(Alexandersson, 1986) produces higher efficiency, than its later development created for 
detecting both shifts and trends. The Easterling-Peterson method also seems to be an 
improper way of development, because the general efficiencies are low, except for 
parameterisations those are far from the original concept of the method. 
 During the evaluation of the results it must be considered that the category of 
relative time series with at least 0.4 serial correlations has been investigated so far, and the 
two, partly arbitrarily chosen measures of efficiency cannot be enough for drawing 
eventual conclusions. 
 Main conclusions of this paper are as follows: 
Efficiency depends on the applied homogenisation method, but also on the 
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 preferred purpose(s) of the homogenisation. 
Achievable efficiency is very sensitive to the statistical properties of the 
 examined data set, but the rank-order of the optimum efficiencies among the 
 different homogenisation methods tends to be conservative. 
The efficiency testing procedure gives advice about the optimal values of 
 significance threshold and minimum unit-length. 
So far results show that for R1 > 0.4 type relative time series the Mestre 
 method and the MASH are the most efficient homogenisation methods. 
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APPENDIX I. Simulation of time series 

a) Denotations 

 
D –  duration of the effect of IHs 
G – random element of the standard Gaussian distribution 
Int(..) integer part 
K(..) function whose value is 0 or 1. 
N –  length of the time series (100 years) 
p –  parameter of time series, it characterises the rate of short-term IHs and the 
 magnitude-distribution of IHs. 
q –  random element of the uniform distribution over the period [0,1) 
r –  parameter characterising serial correlation of series of IHs, its value is 
 -0.5. 
sign(..) function whose value is -1 or 1 according to the sign of the parent value 

W  –  white noise process with standard Gaussian distribution ],...,,[ 21
1

Nwww=−W  

X –  generated (target) time series: ],...,,[ 21
1

Nxxx=−X    

Y –  (time series of) accumulated effects of long-term IHs 
∆Y –  (time series of) long-term IH events. Each event is paired with a specific 
 year. 
Z –  (time series of) accumulated effects of short-term IHs 
∆Z –  (time series of) short-term IH events. Each event is paired with a specific 
 year. 
 
Note: serial numbers of the elements of time series are indicated as indices of variables, but 
these indices are often omitted. Indices of D, G, K and q denote else, namely the repeated 
use of similar type variables/functions. 

b) Simulation of data series of base data set 

 
(i) 196-year long series are generated, and always the slices of years 48 - 147 are the target 
series. 
(ii) IHs and noises are introduced in each year (but their values can be 0, naturally). 
(iii) Types of the terms for introduction to time series: a) long-term IH (∆y), b) short-term 
IH (∆z) and c) white noise (w). Note: certain part of y- and z-type terms are handled as 
noise later (see Appendix III). 
(iv) Forms of the IHs: a) sudden shift, b) gradual change, c) platform-like change, d) bias 
for one specific year. Form d) is a specific case of class c). 
 
(v) Introduction of long-term IHs. 
(v)/1: Size and direction of the IH 
This term includes an IH whose magnitude can be large, with the probability given in K1, 
as well as a small IH with the probability given in K2:  
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3211 )(K))48()5.0sign()(K Gqqpqqy p
i ⋅+⋅+⋅−⋅=′∆ + , (1) 

 
where K1(a) = 1, if a < 0.012, and K1(a) = 0 otherwise;  K2(a) = 1, if a < 0.07, and K2(a) = 
0 otherwise; p has the same distribution as q does, but p is constant for a time series.  
 
(v)/2: Form of the IH 
The form of ∆yi’ is (A) sudden shift, (B) gradual change or (C) platform-like change, with 
0.4, 0.25 and 0.35 probability, respectively. 
 For (A)- and (B)-form IHs: 
 

 Fryry ii ⋅−′∆⋅−=∆ 21 ,      (2) 

 
where 0=F  for the first (A)- or (B)-form IH of the series, and kyF ∆=  otherwise, k 

indicates the year of the previous introduction of (A)- or (B)-form IH. 
 For (C)-form IHs: 
 
 ii yy ′∆=∆         (3) 

 
(v)/3: Calculation of the yi components of the series 
(A)-form IHs: 
 
 ijj yyy ∆+= −1,  for each [ ]Nij ,∈ ,     (4) 

  
where  yj,-1 denotes the value of term yj before the actual adjustment. 
 For (B)- and (C)-form IHs duration-values must be paired at first. For B-form IHs 
 

 )48Int(25 5.1
51 qD ⋅⋅+= ,      (5) 

 

1

1
1,

)5.0(

D

yDij
yy i

jj

∆+−
+= −  for each [ ]15.0,5.0 11 −+−∈ DiDij , (6) 

 
and for (C)-form IHs: 

 )30Int( 5.1
62 qD ⋅= ,       (7) 

 
 ijj yyy ∆+= −1,   for each [ ]2, Diij +∈ .    (8) 

(vi) Introduction of short-term IHs 
The size and the direction of this term is calculated by the same functions as those of long-
term IHs (eq. 1), but the frequencies (determined by the K-functions) are different: 

 2104
46

9873 )(K))48()5.0sign()(K Gqqpqqz p
i ⋅+⋅+⋅−⋅=′∆ + , (9) 

 
where K3(a)=1, if pa 03.004.0 −< , and K3(a) = 0 otherwise; K4(a)=1, if pa 4.05.0 −<
, and K4(a) = 0 otherwise. 
 

 1,
21 −⋅−′∆⋅−=∆ iii zrzrz       (10) 
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The form of this term is always platform-like change. 
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 ijj zzz ∆+= −1,   for each [ ]3, Diij +∈ .    (12) 

 
(vii) Introduction of white noise term 
 
 3Gwi =         (13) 

 
(viii) WZYX ++=        (14) 
 
(ix) Serial correlation of X is calculated, and the series is added to the data set if the value 
is not lower than 0.4, but discarded otherwise. 

c) Simulation of data series for the data set of few large IHs 

The procedure is the same, as for the base data set, except for K1 always equals to zero. 

APPENDIX II. Calculation of efficiency 

Time series are considered to be the sum of IH and noise components: X = -V + W (the 
series of positive v values indicates the theoretically perfect corrections). The series of 
estimated corrections by homogenisation methods is denoted with U. 

a) Skill of change-point detection 

It takes into account 6 characteristics. All of them have 2 values: good (1) or bad (0). The 
skill is calculated as the weighted average of the six characteristics. The weights are 1-1 for 
characteristics 1) – 4), and 2-2 for characteristics 5) and 6). 
 The way of evaluation is presented for negative shifts only (there is no logical 
difference in the evaluation of positive shifts). 
 
1) Detection of large, long-term changes. The form of the IH:  
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The best estimation of the change-point (denoted with v*): 
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The detection is good (1), if [ ]2,2, +−∈∃ iijj  for which 11 *
1

* +<−<− − ijji vuuv ; and 

0 otherwise. 
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2) Detection of large, short-term changes. 
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The detection is good (1), if [ ]2,2, +−∈∃ iijj , for which 11 ≥− −jj uu , and 0 otherwise. 

 
3) Detection of medium-size, long-term changes. 
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The way of the verification is the same, as for case 1). 
 
4) Detection of medium-size changes with very long duration. 
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The way of the verification is the same, as for case 1). 
 
5) Change-point appears in the U series, and the detection is right. 
 

11 ≥−=∆ −iii uuu ; *
iv  of eq. (16) is positive; 

 
 ( ) 1min +∆<∆ iuv ,       (22) 

 
 ( )vui ∆<−∆ max1 ,       (23) 

 
  ( ) ( ) ( )32121 ,max,,minmin −−−++ −=∆ iiiiii vvvvvvv ,   (24) 

 
  ( ) ( ) ( )32121 ,min,,maxmax −−−++ −=∆ iiiiii vvvvvvv ,   (25) 

 
 
6) Change-point appears in the U series, but the detection is false. 
 

11 ≥−=∆ −iii uuu , but *
iv  of eq. (16) is not positive. 
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b) General efficiency 

It takes into account 14 characteristics (d1, d2,…,d14). The verification results are 
expressed in percents of the perfect corrections, where the 0 means neither improvement, 
nor deterioration relative to the initial state. The general efficiency is the simple average of 
the 14 characteristics. 
 
1) The same as the 1) of skill of change-point detection. 
 
2) The same as the 3) of skill of change-point detection. 
 
3) The same as the 5) of skill of change-point detection. 
 
4) The same as the 6) of skill of change-point detection. 
 
 
 
5) Difference in the slopes of the linear regressions (b) for the whole series. 
 

 
)()( 100110015 −− −= vbubd

      (26) 
 
 
6) Difference in the slopes of the linear regressions for the last 50 years of the series. 
 

 
)()( 10051100516 −− −= vbubd

      (27) 
 
 
7) Rate of right decisions about the significance (at the 0.05 level) of the slopes of linear 
changes for the relative time series (X). 
 
8) Rate of right decisions about the significance (at the 0.05 level) of the slopes of linear 
changes for the second half of the X series. 
 
9) Difference in the ranges between the extremes of decade-averages. 
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where [ ]9,...2,1,,, −∈ Nmlki       (28) 
 
 

10) Absolute value of the range-difference: 910 dd =
   (29) 

 
11) Combined characteristic for biases in size and/or in sign from the perfect corrections, 
and for time-lapses. First the combined characteristic for year i, (hi, i = [1,2,…N]) is 

performed. Let ii vu >  (the reverse case is handled with the same logic rules). 
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where gk is a penalty-term of k-year lapse: 
 

 ( )( ) 321exp cckpcgk −−⋅= ,      (31) 

c1 = 0.369, c2 = 3.297, c3 = 0.2962, p = 0.5; [ ]21, jjj ∈ , ),1max(1 kij −= , 
),min(2 Nkij +=  and k = [0,1,2,…,15]. 
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12) The same as 11), but p = 1. 
 
13) The same as 11), but p = 2. 
 

14) SSE error-term: 
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     (33) 

APPENDIX III. NOISE-PART OF INHOMOGENEITIES 

A part of long-term IHs (Y) and short-term IHs (Z) is not considered to be errors of the 
candidate series, so it is handled as noise. The rate of this type noise increases with 
decreasing IH-magnitudes, and it is higher for platform-like changes, than for lonely shifts 
and gradual changes. The probabilities of noise (P) for given IHs are determined according 
to the rules below: 
 
1) Base data set, platform-like IHs. 
 
 ( )0,4.06.0max1 iyP ∆⋅−= ,      (34) 

 
where iy∆  is determined by eq. (2) of App. I. Eq. (34) also applicable for ∆z-type terms. 

 
2) Base data set, lonely shifts and gradual changes. 
 
 ( )0,4.03.0max2 iyP ∆⋅−= .      (35) 

 
3) Few large IHs, platform-like changes. 
 
 ( )0,2.06.0max3 iyP ∆⋅−= .      (36) 

 
4) Few large IHs, lonely shifts and gradual changes. 
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ABSTRACT 

Homogenization of monthly averages of air temperature and relative humidity has been 
carried out for the area of the Czech and Slovak Republics for the period 1961-2005. 
Because of presence of a noise in the series, statistical homogeneity tests give their results 
with some portion of uncertainty. Using various statistical tests along with various types of 
reference series made it possible to considerably increase the number of homogeneity tests 
results for each tested series and thus to assess homogeneity more reliably. 
Homogenization was performed on individual hourly observations and comparison 
demonstrating the improvement of results compared to the homogenization of daily 
averages was made. Air temperature and relative humidity series were compared in order 
to help identify to what extent multi-element processing can help improve the 
homogenization of individual elements. All data processing and analysis were carried out 
using AnClim and ProcClimDB (softwares developed for automatic processing, analyzing, 
homogeneity testing and adjusting of climatological data). 

INTRODUCTION 

Long time series often suffer from non-climatic effects. It became well known and 
accepted fact that such inhomogeneous or erroneous series can lead to biased results in 
climatological time series analysis. Inhomogeneities may occur when stations are relocated 
and by changes of observer, instruments and observing procedures. This type of 
information should be documented in station metadata but there are numerous cases where 
such metadata is incomplete or missing, so we can rely then only upon statistical test 
results. A large array of statistical techniques has been developed to detect 
inhomogeneities in climatological time series. Various methods and different countries 
approaches are described e.g. in Peterson et al. (1998) and Szalai et al. (1999, 2004). 

Different tests often identify different inhomogeneities (particularly for smaller 
amount of change), application of different types of reference series usually leads to 
different results as well, differences occur also among individual monthly, seasonal or 
annual series. In a number of instances, particularly where detections in series coincide 
were identified, adjustments can often be clearly justified, even in the absence of metadata. 
The existence of good quality reference series is very important for the detection of real 
inhomogeneities. That is why it is useful to include as many series for a particular area as 
possible, to help identify series abnormalities. In the case of air temperature, spatial 
correlations decrease with distance quite slowly, and so, it makes sense to analyze large 
areas. In this study the homogenization of both Czech and Slovak Republics series was 
considered useful and appropriate. To further increase the quality of homogenization, the 
number of test results was increased by testing monthly means of individual observation 
hours (i.e. those taken at 07:00, 14:00, 21:00 hours local time). Additionally, two 



 

meteorological elements, air temperature and relative humidity were mutually compared 
for detected inhomogeneities and were used when considering final adjustments of series.
Single shift inhomogeneities are the most frequent in climatological time series
to detect. Only single shift inhomogeneities were examined and adjusted for in this study 
so far. Data formatting and processing was performed using da
ProcClimDB (Štěpánek 2006b). Homogeneity testing and time series analysis was 
conducted on AnClim software (Št

DATA CHARACTERIZATIO

The Czech and Slovak Republics cover a total area of 128 km
mountainous. The Czech Republic ranges from 115 m to 1602 m at its highest peak 
(Sněžka). Despite being smaller, the Slovak Republic has a much greater height range, 
ranging from 94 m to 2655 m at Gerlachovský štít. From west to east the climatic influence 
of ocean diminishes and the continental influence progressively increases. 

Air temperature and relative humidity were analyzed as series of monthly means of 
observations taken at 07:00, 14:00 and 21:00 hours local time, and daily averages. Stations 
with a minimum length of 25 years were selected. For the period since 1961, 230 stations 
measuring air temperature and 217 stations measuring relative humidity were available. 
The mean minimum distance between stations is 18.6 km, and means
(median 380 m). Nine stations are situated above 1000 m a.s.l., and 4 above 1500 m a.s.l.

Because of processing of large number of stations, different methods of 
homogenization (e.g. different reference series, different tests) were examined in smaller 
areas such as Southern Moravia (Czech Republic) and Western Slovakia (Slovak 
Republic), see Fig. 1. From the results of these areas, the most useful types of reference 
series and homogeneity tests were selected and consecutively applied to the whole area of 
the Czech and Slovak Republics.

Fig. 1. Area of interest (Czech and Slovak Republics) with marked borders of the test 
area: Southern Moravia and Western Slovakia. Right top: location within Europe (at 
a different scale) 

Air temperature was found to correlate very
Republics (see Fig. 2). Medians of correlation coefficients (from all the stations) vary only 
around 0.9 for all months in case of observation hour 14:00, 
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Air temperature was found to correlate very well throughout the Czech and Slovak 
Republics (see Fig. 2). Medians of correlation coefficients (from all the stations) vary only 
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Fig. 2. Correlation coefficients for individual observation hours (07:00, 14:00, 21:00), 
for air temperature (T) and relative humidity (H) ( using 25.420, resp. 22.595 station 
pairs - values) 

and drop to 0.8 in case of hours 07:00 and 21:00. Correlations were lower in summer 
months and higher in winter. Values of correlation coefficients for daily averages are 
comparable with the hour 14:00, i.e. values of medians vary around 0.9, and during winter 
they are even higher.   Relative humidity correlates better in summer than in winter, again 
the best for the hour 14:00. Daily averages are comparable with the hour 14:00, and their 
values of correlation coefficient are similar or higher than in case of individual observation 
hours. Relative humidity correlations decrease relatively quickly with distance, but the 
stations network was sufficiently dense to create a well correlated reference series (see Fig. 
8). 

1. METHODOLOGY DESCRIPTION 

In the case of series with missing or incomplete metadata, only statistical tests for 
homogeneity are relied upon to identify inhomogeneities. Unfortunately using solely the 
results of statistical tests during homogenization is problematic due to the fact that the 
detected year of inhomogeneity is often given with some error, or not identified. Štěpánek 
(2004) demonstrated that the determination of the correct year of inhomogeneity for air 
temperature, where the difference was less than 0.5°C, occurred in less than half of the 
cases. In the remained of cases, false years of inhomogeneity were given, or the years were 
not detected. According to this result, inhomogeneities less than 0.5°C are likely to be 
difficult to detect.  

Because of this uncertainty in the result of homogeneity testing, it was attempted to 
increase the reliability of inhomogeneity determination through processing as many test 
results for each candidate series as possible. Series of individual observation hours were 
used, and several statistical tests for homogeneity were applied, various types of reference 
series were calculated for each candidate series, and monthly series as well as seasonal and 
annual averages of the series were tested. By combining all of these it was possible to 
considerably increase the number of test results for each tested series, thereby increasing 
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the reliability of the homogenization process. Through the statistical processing of a large 
number of test results, it was possible to calculate the probability of each inhomogeneity of 
a given series (probability calculated as a portion of count of detected inhomogeneities - 
for each year, group of years or whole series - as an amount of all theoretically possible 
detections). One of the advantages of this approach is that a sum count of all detected 
inhomogeneities out of all the theoretically possible detections in the series can be used for 
assessing quality of measurements of a particular station as a whole. 

Processing of the series during quality control and homogenization included the 
following steps: detection, verification, where necessary the correction of outliers (extreme 
values), creation of reference series (various ways), homogeneity testing (using 3 
homogeneity tests), inhomogeneities (years) determination according to test results and 
metadata, adjustment of inhomogeneities and, only at the end, filling missing values. These 
steps are outlined in the Fig. 3. and are further discussed in the text. 
 

 

Fig. 3. Scheme of data processing during quality control and homogenization of the 
series 

1.1. OUTLIERS IDENTIFICATION  
Data quality control was carried out in two ways: by applying limits derived from 
interquartile ranges (it can be applied either to individual monthly series, or preferentially, 
by difference series between candidate and reference series), and, secondly, by comparing 
values to values of neighbouring stations  

Where comparing neighbouring stations, the five best correlated neighbors were 
selected (correlations calculated form first difference series, see e.g. Peterson 1998), the 
values of correlation coefficients being at least 0.5, no limit for distance nor for altitude 

 Data Processing
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difference was applied. Only series with the same element and observation hour were 
selected. For outliers evaluation, the following characteristics were considered. 

Counts of statistically significant different neighbours (compared to base station) 
exceeding confidence limit (0.95) were evaluated from difference series (neighbour and 
base station), the differences standardized to zero mean and standard deviation equal to one 
(to enable using standardized normal distribution), for each base station and month 
individually. Cases, where more than 75 % of neighbours significantly differed from the 
base station value, were visually checked. To help depict outliers, the values of neighbours 
were standardized with respect to base station average and standard deviation and also a 
new (theoretical) value for the base station was calculated - as weighted average from the 
standardized values of the neighbours (using 1/distances as weights, with power 1 which 
seems to be sufficient in case of air temperature, and 2 in case of relative humidity). 
Further, coefficient (multiply) of interquartile ranges (q75-q25) above q75 (or below q25) 
were evaluated (calculated from the standardized neighbours values), and applied to base 
station value. The reason for this was to assess the similarity of used neighbours values 
with regard to the outlier test value: the more values of neighbours are similar, the higher is 
the value of the coefficient. 

The final decision on the removal of outliers was based on a percentage count of 
significantly different neighbours, the difference from the “expected value”, coefficient of 
interquartile range and finally value was conducted by visual (subjective) comparison of 
the standardized values of neighbours with the base station value. 

1.2. COMBINING NEAR STATIONS MEASUREMENTS 
In order to produce longer time-series, the neighboring station measurements (within 15 
kilometers in case of temperature, and 10 kilometers in case of relative humidity, nearer 
stations having preference) was merged into one. A maximum gap of two combined series 
was allowed to be 4 years, the minimum length of reconstructed series was 25 years. In this 
instance, 14 stations were recorded and the year of merging then used as metadata 
information during series homogenization. 

1.3. HOMOGENEITY TESTING  
The AnClim software (Štěpánek, 2006a) was used to identify the inhomogeneities applying 
following tests for relative homogeneity (significance level α=0,05) on monthly, seasonal 
and annual data: 

• Alexandersson test (SNHT for a single shift) (Alexandersson 1986, 1995)  
• Bivariate test of Maronna and Yohai (Maronna and Yohai 1978, Potter 1981) 
• Easterling and Peterson test (Easterling and Peterson, 1995) 

To ensure that only one inhomogeneity was present in series when using Alexandersson or 
Bivariate test, a further modification was introduced into the AnClim software, which 
divides the series at the position of the found inhomogeneity and test the parts before and 
after the detected inhomogeneity separately. If no additional inhomogeneity was found in 
these two parts, we can rely upon the results of the given test for a whole length of the 
series (especially the significance of a test statistic). 
These tests were applied for the whole studied area (the Czech and Slovak Republics). For 
the tested area, additional tests were also used to study differences in detection capabilities 
of individual tests and influence of various types of reference series (see chapter 4.2). 
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1.4. REFERENCE SERIES CALCULATION  
In order to increase the number of homogeneity test results and thus better assess 
inhomogeneities in the series, two different calculations of reference series were 
performed: 

• as an average from selected stations based on correlations 
• as an average from selected stations based on distances 

Each of these types of reference series has both advantages and disadvantages. By using 
correlations, the reference series created is the most similar to tested series (and thus 
suppressing variability in the differences/ratios series the best), but stations with similar 
inhomogeneities to the tested series can be selected. However this effect can be minimized 
by using first difference series for calculation of correlation coefficients, then 
inhomogeneities are manifested in one value (see e.g. Alexandersson, Moberg, 1996, 
Peterson 1998). For the latter type of reference series, by using distances, the geographical 
vicinity of the selected stations are preserved, but different climatic conditions even for 
near stations (due to different altitude etc.) can occur. Differences between reference series 
are further discussed e.g. by Mikulova and Stepanek (2004) or Stepanek (2005). 

Weighted averages of neighbour series for reference series calculation were applied. 
The values of the selected neighbour stations were standardization to base station average 
and standard deviation to avoid problems with biased reference series. This can often 
happen in cases of missing data in of one of the neighbour series. No transformation of 
values (in case of air temperature and relative humidity) was applied to data. 

In the first stage, a list of proposed neighbour stations was obtained. The list was 
subsequently checked, comparing correlation coefficients, distances, and also difference in 
stations altitude. This approved list was then finally used for the reference series 
calculation. 

 

1.5. ASSESSMENT OF DETECTED INHOMOGENEITIES  
The main criteria for determining the year of inhomogeneity was the probability of the 
given inhomogeneity, i.e. count of detections of a given year from all the testing of a given 
station expressed relatively to count of all theoretically possible detections. For detected 
inhomogeneities, a limit of 20% of all possible detections was used in cases where there 
was no information in metadata about the change. A limit of 10-15% was sufficient in 
cases where the inhomogeneity was in agreement with metadata. The count of detections 
for groups of years was also taken into account (some inhomogeneities started during the 
course of a year and thus manifested in 2 years at least). In cases where there was no 
mention in the metadata concerning a detected shift (which was most common), other 
sources information were used. Distribution of the given year within individual months or 
seasons, graphs of differences with reference series and some other characteristics, were all 
used for deciding whether the undocumented inhomogeneity could be regarded as 
"undoubtfully" proven and thus be corrected. 

The mentioned decision limits were estimated subjectively, from selected set of 
stations, so that only clear inhomogeneities were corrected (an aim being not to “over-
homogenize” the series). These limits are appropriate for the studied elements series of the 
analyzed area, for other elements or areas would have to be determined according to the 
given purposes. 

1.6. ADJUSTMENT OF INHOMOGENEITIES  
Adjustment of the detected inhomogeneities was carried out by means of reference series 
calculated as an average of five stations with the highest correlation coefficients to the 
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series being adjusted (correlations were calculated again from the first difference series). 
The amount of change was estimated as a difference between averages calculated from 
difference series between the candidate and reference series from a period taken 20 years 
before and 20 years after the year being adjusted. The period was truncated in case another 
inhomogeneity within the period was encountered. These adjustments were applied to all 
monthly data. Where possible, the start of inhomogeneity was determined to a particular 
month. 

Inhomogeneities within 4 years of the end of a series could not be adjusted. This 
happened relatively often in recent years, because of the transition to automatic 
measurements (being successively introduced since 1995). The parts of series with 
inhomogeneities near the ends of series had to be removed from further processing. 
Various characteristics were analyzed before applying proposed adjustments including: 
increment of correlation coefficients between candidate and reference series after the 
adjustments, change of standard deviation in differences before and after the change, 
presence of linear trend, etc. In case of doubt, adjustments were not applied and the 
respective series was considered for removal from further processing. 

Estimated adjustments are influenced by random errors in the series. To produce a 
smoother and physically more justifiable annual course of adjustments, weighted averages 
of the adjacent months were applied (with weights 1:2:1).  

1.7. FURTHER CONSIDERATIONS 
The above-mentioned steps (creating reference series, homogeneity testing, assessing and 
adjusting possible inhomogeneities) were performed in several iterations. In each iteration 
more precise results were obtained. The final adjustments of inhomogeneities were 
estimated from original data, taking into account inhomogeneities detected in all the 
previous iterations. It was necessary to use original data for the final correction (but used 
reference series were calculated from adjusted series in the last iteration), so that the final 
adjustments were estimated using periods without any inhomogeneities (a period taken for 
an adjustment was truncated when there was found another inhomogeneity in the series). 

The filling of missing values was performed only after homogenization and adjustment 
of inhomogeneities in the series. The reason for this was to enable the new values to be 
estimated from data not influenced by possible shifts in the series. Moreover, when 
missing data are filled before homogenization, they may influence correct inhomogeneity 
detection (above all when a gap is longer than one year and there is an inhomogeneity - 
change of mean - near the position of the missing value). Filling the gaps was done by 
means of linear regression between filled value series (dependent variable) and a reference 
series (independent variable). Reference series were calculated as an average of five 
stations with the highest correlations with respect to the series with filled value. For the 
linear regression model, values 20 years before and 20 after the value being filled were 
used. Again, for assessing quality of the process, various statistics were monitored, e.g. 
differences of averages and standard deviations in periods before and after the gap. 

A remaining question on the homogenization is the influence of the transition to 
automatic measurements which started in the station network of the Czech Republic in 
1997 and in the Slovak Republic since 1995. For some of the series it is too early to assess 
the influence of automation, for other stations the effect was already very well detectable. 
The crucial problem is that the change do not manifest in the only data characteristic, such 
as arithmetic mean, but rather influencing several properties of the series, and moreover, 
these changes in series properties can not be usually linked linearly to the previous 
segment (before the change). That is why we need to possess long series (after the breaks) 
to be able to detect all the possible influences and, last but not least, to invent appropriate 
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approaches for such analysis. Another difficulty is that there exist only few stations with 
comparative measurements, and stations from other sites are influenced by several other 
factors that are problematic to enumerate and thus to suppress.  

 

2 SERIES FOR HOMOGENIZATION 

2.1 Finding and removing outliers  

For outlier identification, the approach described earlier in chapter 3.1 was applied. We 
tried to detect causes of anomalous monthly data by tracing the problems in daily data (the 
same method as mentioned above, applied to daily data within individual months), but due 
to huge database of processed values and shortage of time, we were not able to check all 
the detected values. This area will be the subject of further work. For the purposes of this 
study, approved errors were removed from further processing and were replaced by 
missing values. Considerably higher count of outliers occurs during summer months, in 
both processed elements (see Fig. 4)  

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Left: count of removed outliers for individual observation hours, for relative 
humidity (RV) and air temperature (T).  Right: count of removed outliers for 
individual months, for relative humidity and air temperature  

2.2 Verification of homogeneity detection procedure in the selected area 

Due to the huge database (1.2 millions of monthly values for all the elements and 
observation hours within the whole area of the Czech and Slovak Republics, compared to 
“only” 240.000 months in the tested area), some approaches were tested in smaller areas, 
namely Southern Moravia and Western Slovakia (see Fig. 1).  
 

We analyzed various types of reference series. These were created either by means 
of correlations or distances (using either simple or weighted mean), using either original 
series or series with removed outliers, using either the same element and observation hour 
of the neighbour stations as was that of candidate or using arbitrary observation hour from 
neighbours, or by using monthly or seasonal and annual averages. Altogether 18 different 
reference series were analyzed for each candidate. Reference series from distances and 
using arbitrary elements and observation hours of neighbours were not calculated because 
this option makes no sense.  

 
 
Correlation coefficients for the different reference series are shown in Fig. 5. In 

case of air temperature, the medians of correlations are very similar, in winter there is no 
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difference, in the summer months a maximum difference of five hundredths. The reference 
series for relative humidity differ, on the contrary, rather in the winter months, during the 
summer months the differences are again very small.  

 
 
 

 

Fig. 5. Correlation coefficients (medians, calculated from 47 values) between various 
types of reference series and the tested series, for individual months. For explanation 
of used names of reference series see Fig. 6  

 
 
Homogenization results for the questioned reference series and the Alexandersson test 

are shown in Fig. 6. The highest count of detected inhomogeneities occurs in the reference 
series created by means of distances, the same element and observation hour, using 
original series and unweighted mean. It is clear that this is caused by higher portion of 
random error in the tested candidate – reference difference series compared to the other 
types of reference series. Generally, series where outliers have not been removed give a 
higher count of detected inhomogeneities. The lowest count of detected inhomogeneities 
occurs in the reference series created by means of correlations. In Fig. 6 we can also see 
portion of the count of corrected to all detected inhomogeneities, which can be used for 
evaluation of the best reference series. The higher values of the portion are achieved by 
reference series created from correlations; the most efficient method to find true 
inhomogeneities is by using seasonal and annual averages for reference series calculation, 
series with removed outliers, and the same meteorological element and observation hour of 
the neighbour stations as in the tested series.  

 
Following the presented results, for the homogenization of the series within the whole 

area of the Czech and Slovak Republics, reference series created both from correlations 
and distances, using neighbours with the same element and observation hour as that of 
candidate series and using weighted average were applied.  
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Fig. 6. Count of detected inhomogeneites for various types of reference series and 
ratio of the number of corrected inhomogeneities (100 adjusted elements and 
observation hours) to count of all detected inhomogeneities. COR – reference series 
created by means of correlations, DIST – by means of distances. 1Elem – reference 
series created using neighbours with the same element and observation hour, AllElem 
– neighbours with different hours can be selected. noW – simple mean from 
neighbour series, otherwise weighted mean is used. OAdj – series with removed 
outliers, Orig – original series (no removal of detected outliers). S – seasonal and 
annual averages, otherwise monthly averages are used. Results for Alexandersson test 

 
Various types of reference series give slightly different results due to random error 

present in the series. Where detections coincide, it is possible to better rely upon the test 
results. Including other types of reference series should lead only to a small improvement, 
therefore it seems more appropriate to gain further test results through testing individual 
monthly, seasonal and annual averages, testing individual observation hours etc.  

 

2.3 Homogenization results for the whole studied area 

As mentioned in chapter 3.1, we have used three tests for homogeneity, two types of 
reference series, monthly as well as seasonal and annual averages.  

For the limits in which the values of correlation coefficients between candidate and 
reference series vary, for daily averages, see boxplots (i.e. median, lower and upper 
quartile and limits for outliers) in Fig. 7. Comparison of individual observation hours is 
shown in Fig. 8. For air temperature, the lowest values of medians (0.95) occur during 
summer months (for the hours 07:00 and 21:00), for the hour 14:00 they do not drop below 
0.98, the same occurs for daily averages. In case of relative humidity, the correlation 
coefficients with reference series are markedly lower, mainly during winter months, but 
still usable for homogeneity testing. Again, values for the observation hour 14:00 are 
higher than those for 07:00 and 21:00, being comparable with daily averages. 
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Fig. 7. Boxplots for correlation coefficients between candidate and reference series, 
applying correlations for reference series calculation, for air temperate (T, Left, from 
227 values in each category) and relative humidity (H, Right, from 214 values) 

Fig. 8. Correlation coefficients between candidate and reference series (medians), for 
individual observation hours, applying correlations for reference series calculation 
(from 227, resp. 214 values for each category) 

Fig. 9 shows the count of homogeneity tests detections for individual observation hours. 
Since data from the same place were used, both for air temperature and relative humidity, 
it is clear that inhomogeneities are more obviously detected in the air temperature series. 
One conclusion is that, effects such as station relocation manifest more profoundly in air 
temperature series (and within air temperature mainly during summer months). 
Nevertheless, an important role can also be played by lower correlations between candidate 
and reference series in case of relative humidity.  

Fig. 9. Percentage of significant inhomogeneities (0.05) detected by used tests (SNHT 
test, Bivariate test, reference series created both by means of correlations and 
distances, altogether) related to the total number of series used. For individual 
months  
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In individual tests, the count of detections in individual years for Alexandersson, 
Bivariate and Easterling and Peterson tests is similar, if we do not consider ends of the 
tested series. The similarity of Easterling and Peterson test with Alexandersson one was a 
surprise because during simulations (for series with properties of air temperature series in 
the Czech Republic) that have been done previously (presented e.g. in Stepanek, 2005), the 
Easterling and Peterson test gave many more inhomogeneities, compared to Alexandersson 
test, that had no justification. This field is highlighted for further study, to better assess the 
relative power of these tests.  

Counts of inhomogeneity detections – years – for various types of reference series 
show the same fluctuations, but for references series created by means of distance, the 
count of detections is about 10 percent lower for air temperature and 20 percent lower for 
relative humidity compared to reference series created by means of correlations.  
Detected inhomogeneities were the subject of careful control before accepting final 
adjustments; this primarily took account of metadata, but also a number of auxiliary 
characteristics (see chapter 3.5). Fig. 10 shows final adjustments applied to the processed 
series. For air temperature, lower values of adjustments were applied for the hour 14:00 
compared to the hours 07:00 and 21:00. The same behavior is valid for the improvement of 
correlation coefficients between candidate and reference series after realizing the 
adjustments. Relative humidity adjustments differ for individual observation hours and part 
of a year, e.g. in summer the highest values of adjustments occur for the hour 21:00, while 
in winter for the hour 14:00, the same course can be seen repeated for the correlations 
improvements after realizing adjustments. 

 

  

Fig. 10. Adjustments - averages of their absolute values and improvements of 
correlation coefficients (between tested and reference series) after realizing the 
adjustments, for air temperature and relative humidity, for individual months (using 
40, resp. 32 values for each category) 
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In respect of air temperature (counts of detected inhomogeneities and amount of 
adjustments) the difference between summer and winter months can be explained by 
different influence of active surface upon the formation of air temperature regime in these 
distinct periods. In winter, prevailing circulation factors and reduced vegetation ensures the 
influence of effects leading to inhomogeneities (e.g. station relocation) is smaller, while in 
summer, resulting from prevailing radiation factors and increased volume of vegetation, 
the influence (of relocation for instance) is greater. The role of different active surfaces are 
also manifested in the fact that values of correlations are higher in winter months (climate 
conditions are similar for larger areas) in comparison with summer. Due to this 
characteristic, correlations were improved mainly in summer, in winter months the effect 
of homogenization was smaller (both for the adjustments and correlations improvement).  
Relative humidity is a complex meteorological element influenced by many factors 
including air temperature, precipitation, wind speed, evaporation. This has the effect that 
explanation of inhomogeneity manifestation throughout a year is much difficult than in the 
case of air temperature. For instance, precipitation in the analyzed area is effected by 
station relocation primarily in winter, mainly due to the larger error in measurements 
connected with solid precipitation (manifested both in count of detected inhomogeneities 
and amount of adjustments).  

Homogenization results obtained for air temperature can be generalized to a wider 
area (outside the analyzed area), since the spatial correlations of air temperature decrease 
with distance slowly. On the contrary, relative humidity correlations decreas rapidly with 
distance, so the presented results (annual course of inhomogeneities characteristics, etc.) 
can differ outside this study area. 

3. SUMMARY 

Our results indicate that analyzing series of individual observation hours improves the 
detectability of inhomogeneities. This is because inhomogeneities manifest in the different 
series in a different way: count of inhomogeneities, amount of change, correlations 
between reference and tested series (and thus delectability of inhomogeneities).  

If we compare individual observation hours, inhomogeneities are better detected for 
the individual observation hour 14:00 – mainly because of higher correlations between 
candidate and reference series. Since inhomogeneities may manifest only in one of the 
observation hours and thus be masked in daily averages, performing homogenization on 
both individual observation hours and daily averages at the same time is recommended. 

Valid for both the processed elements: station relocation and other effects that lead 
to inhomogeneities in the series are more profoundly manifested in summer months than in 
winter months in this study. In the case of air temperature, large differences of the used 
inhomogeneity characteristics occurred between individual months; the annual courses for 
relative humidity are, on the contrary, found to be much smoother. For relative humidity, 
the height of correlation coefficients (in summer) coincides well with the count of detected 
inhomogeneities, amount of adjustments, and correlation improvement (after adjustments). 
Inhomogeneity characteristics for air temperature were found to have a different annual 
course: higher correlations were found in winter but the count of detected inhomogeneities 
and amount of change were highest in summer. 

Data processing and analysis was conducted using ProClimDB and AnClim 
software. This software is available from a server at http://www.klimahom.com/software/. 
Ongoing development of this software, e.g. connection with R software, is planned. 
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APPENDIX I. ANCLIM SOFTWARE DESCRIPTION 

 
• General characteristics 
o A comprehensive tool for processing monthly time series (from transformations 

through quality control and homogenization to time series analysis) 
o Operates under Windows 95/98/NT/ME/2000/XP 
o User friendly: a lot of graphical components, graphs clarifying the results, etc. 
o Continuous development 1995-2006 

• Functionality 
o Series overview:  

� basic statistical characteristics, tests of randomness, outliers detection etc. 
� normal distribution testing, histograms 
� graphs of the series 

o Regression models:  
� linear, polynomial regression. 
� multivariate linear regression graphs of the series  

o Adjusting data:  
� replacing outliers, filling missing values 
� various transformations, converting series into anomalies from a mean, etc. 
� calculating differences/ratios of two series  
� switching between monthly or seasonal and annual averages  

o Homogeneity testing: 
� absolute homogeneity tests 
� relative homogeneity tests (Alexandersson SNHT – various modifications, Bivariate test, Easterling and 

Peterson test, Vincent MLR, and others), creating reference series 
� adjustment of the inhomogeneities 

o Time series analysis: 
� one series analysis (autocorrelations, power spectrum – MESA, dynamic MESA, etc.) 
� two series analysis (coherency analysis, etc.) 
� filtering the series (low-pass, band-pass, high-pass filters) 

o Automation: 
� functions for automatized processing of selected functions (tests) for up to 1000 files (stations): 
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APPENDIX II. PROCLIMDB SOFTWARE DESCRIPTION 

 
• General characteristics 
o Database software for processing climatological datasets (supports dbf IV files) 
o Two modes of processing: monthly or daily data 
o Automation of the processing (processing for a given list of stations, using all the 

stations in database) 
o Full control of the processing: many parameters for each option can be set, various 

outputs are created 
o Flexibility in modifying or adding new functions 

• Functionality 
o Basic statistical characteristics computation, normal distribution testing, etc. 
o Finding outliers and extreme values 
o Neighbouring stations analysis (reconstructions, quality control, etc. ) 
o Calculating correlation coefficients between all the pairs of a given list of stations  
o Reference series calculated as:  

� an average from the best correlated stations 
� an average from the nearest stations  
� an average of all stations available for a given year and month (regionally) 

o Processing output from the AnClim software homogeneity testing 
o Adjusting the series for inhomogeneities 
o Filling missing values:  

� from differences 
� using linear regression 

o Calculating monthly or seasonal and annual averages, calculating differences with a given reference series, etc. 
o Export to txt files, Excel, import from txt to dbf and other formats 
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Tuesday, 30 May  

9:00-12:00 
Guijarro, J.A. (ES): Homogenization of a dense thermo-pluviometric monthly database 

in the Balearic Islands using the free contributed R package "climatol" 
Staudt, M., Esteban-Parra, M.J. and Castro-Díez, Y. (ES): Obtaining a homogenized 

dataset of monthly Spanish maximum and minimum temperatures 
González-Hidalgo, J.C., De Luis Arrirraga, M., Stepanek, P., Lanjeri, S. (ES, CZ): 

Quality Control of monthly precipitation series from Mediterranean areas of Spain  
Toreti, A. and Desiato, F. (IT): Homogenization and validity controls for temperature 

trend estimates over Italy 
Kejna, M. (PL): Homogenisation of air temperature series from Antarctic 
Petrović, P. (SCG): Detection Of Inhomogeneities In Wind Direction And Speed Data 

 
 

Lunch break 

 
14:00-17:00 

Kveton, V. and Zak, M. (CZ): Urban effects on the temperature time series of Prague 
Aguilar, E., Brunet, M., Saladié, O., Sigró, J. (ES): Homogenization of the Spanish 

Daily Temperature Series. A step forward. 
Štěpánek, P., Řezníčková, L., Brázdil, R. and Pilařová, Z. (CZ): Homogenization of 

daily air pressure and temperature series of Brno in the period 1848–2005  
Mestre, O., Prieur, C. and Caussinus, H. (FR): Daily temperature homogenisation based 

on non-parametric kernel regression 
Szentimrey, T. (HU): Development of MASH homogenization procedure for daily data 

 
 
 
Wednesday, 31 May 
Excursion to Lake Balaton 
Meeting point: HMS, 1, Kitaibel P. street at 8:00 
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Thursday, 01 June  

9:00-12:00 
Domonkos, P. (HU): Testing of homogenisation methods: purposes, tools and problems 

of implementation 
Venema, V., Rust, H., Bachner, S., Kapala, A. and Simmer, C. (DE): Generators for 

surrogate historical daily data records withknown statistical properties for testing 
algorithms 

Wan, H., Wang, X.,L. and Swail, V.R. (CA): A Quality Assurance System for Canadian 
Pressure Data 

Niedźwiedź, T. (PL): Selected problems regarding homogenization and quality control 
of  daily and monthly pressure data 

Boroneant, C., Baciu, M. and Orzan, A. (RO): On the statistical parameters calculated 
for the essential climatological variables during 2-years of parallel observations with 
automatic and classical stations in Romania 

Cheval, S., Baciu, M., Copaciu, V., Breza, T. and Pescaru, V. (RO): Intercomparison 
between the hourly meteorological parameters provided by the automatic and 
classical stations in Romania 

 

Lunch break 

 
14:00-16:30 

Vizi, Zs. and Przybylak, R. (PL): Estimation of the accuracy of methods used for the 
calculation of mean and extreme daily air temperature values in the American Arctic 
in the 19TH century 

Stepanek, P. and Mihulová, K. (CZ,SK): Homogenization of air temperature and 
relative humidity monthly means for individual observation hours in the area of the 
Czech and Slovak Republik 

Van Hauteghem, H. (BE): Quality Control Framework at the Royal Meteorological 
Institute of Belgium 

Chen, Y. and Churkina, G. (DE): A comparison of climate variables between various 
data source as the climate forcing to ecosystem modelling 

Heino, R. (FI): CCl perspectives on climate data 
 
 
18:00 Seminar banquet 
 
 
Friday, 02 June (only morning session) 

9:00-13:00 
Discussion: 

- COST action plan 
- Further cooperation and plans 
- recommendations 

 
Additionally: 
PC experience, Presentation of softwares  
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LIST OF PARTICIPANTS 

BELGIUM 

HANS VAN HAUTEGHEM 
Royal Meteorological Institute of 
Belgium 
hans@oma.be 
 

BULGARIA 

TANIA MARINOVA 
National Institute of Meteorology and 
Hydrology 
Tania.Marinova@meteo.bg 
 

CANADA 

XIAOLAN (LEONA) WANG 
Climate Research Division, 
ASTD, STB, Environment Canada       
Xiaolan.Wang@ec.gc.ca 
 

EVA MEKIS 
Meteorological Sevice of Canada 
Eva.Mekis@ec.gc.ca 
 

CROATIA 

ANA SANTIC 
Meteorological and Hydrological 
Service of Croatia 
santic@cirus.dhz.hr 
 

KSENIJA ZANINOVIC 
Meteorological and Hydrological 
Service of Croatia 
zaninovic@cirus.dhz.hr 
 

CZECH REPUBLIC 

VIT KVETON 
Czech Hydrometeorological Institute 
vit.kveton@chmi.cz 
 

MICHAL ZAK 
Czech Hydrometeorological Institute 

michal.zak@chmi.cz 
 

 
 
PETR ŠTĚPÁNEK 
Czech Hydrometeorological Institute, 
regional office Brno 
petr.stepanek@chmi.cz 
 
LADISLAVA ŘEZNÍČKOVÁ 
Institute of Geography, Masaryk 
University 
reznickova@mail.muni.cz 

FINLAND 

RAINO HEINO 
Finnish Meteorological Institute 
raino.heino@fmi.fi 
 

FRANCE 

OLIVIER MESTRE 
Météo-France 
olivier.mestre@meteo.fr 
 

SYLVIE JOURDAIN 
Météo-France 
Direction de la Climatologie 
sylvie.jourdain@meteo.fr 
 

GERMANY 

HERMANN MÄCHEL 
German Weather Service 
hermann.maechel@dwd.de 
 

YOUMIN CHEN 
Max-Planck-Institute for Biogeochemistry 
ychen@bgc-jena.mpg.de 
 

VICTOR VENEMA 
Meteorologisches Institut, Universität 
Bonn, Germany 
Victor.Venema@uni-bonn.de 
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GREECE 

MAGDALINI TZANAKOU 
Hellenic National Meteorological 
Service 
magdalini.tzanakou@gmail.com, 
klimat1@hnms.gr 
 

HUNGARY 

BLANKA BARTÓK 
University of Debrecen 
bartokblanka@yahoo.com 
 

PETER DOMONKOS 
dpeterfree@freemail.hu 
 

ZITA BIHARI 
Hungarian Meteorological Service 
bihari.z@met.hu 
 

BÁLINT BIRSZKI 
Hungarian Meteorological Service 
birszki.b@met.hu 
 

MÓNIKA LAKATOS 
Hungarian Meteorological Service 
lakatos.m@met.hu 
 

SÁNDOR SZALAI 
Hungarian Meteorological Service 
szalai.s@met.hu 
 

TAMÁS SZENTIMREY 
Hungarian Meteorological Service 
szentimrey.t@met.hu 
 

IRELAND 

SÉAMUS WALSH 
Irish Meteorological Service 
seamus.walsh@met.ie 
 

ITALY 

ANDREA TORETI 
Agenzia per la protezione dell’ambiente 
e per i servizi tecnici (APAT) 
andrea.toreti@apat.it 
 

 
 
 
FRANCO DESIATO 
Agenzia per la protezione dell’ambiente e 
per i servizi tecnici (APAT) 
franco.desiato@apat.it 
 

STEFANIA VERGARI 
Italian Air Force Met Service 
vergari@meteoam.it 
 

LATVIA 

LJUBA PIROZENOKA 
Latvian Environment, Geology and 
Meteorology Agency 
ljuba.pirozenoka@meteo.lv 
 

POLAND 

JERZY CZECHOWICZ 
Data Base Center 
Institute of Meteorology and Water 
Management  
jerzy.czechowicz@imgw.pl 
 

MAREK KEJNA 
Department of Climatology, Nicholas 
Copernicus University 
makej@geo.uni.torun.pl 
 

ZSUZSANNA VIZI 
Department of Climatology, Nicholas 
Copernicus University 
vizi@uni.torun.pl 
 

TADEUSZ NIEDZWIEDZ 
University of Silesia, Faculty of Earth 
Science, Department of Climatology 
niedzwie@ultra.cto.us.edu.pl 
 

ROMANIA 

SORIN CHEVAL 
National Meteorological Administration 
sorincheval@fulbrightweb.org 
 

CONSTANTA BORONEANT 
National Meteorological Administration 
boroneant@meteo.inmh.ro 
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SERBIA-MONTENEGRO 

PETROVIĆ PREDRAG 
Republic Hydrometeorological Service 
of Serbia 
p.petrovic@hidmet.sr.gov.yu 
 

SLOVAK REPUBLIC 

KATARÍNA MIKULOVÁ 
Slovak Hydrometeorological Institute 
katarina.mikulova@shmu.sk 
 

SLOVENIA 

GREGOR VERTACNIK 
Environmental Agency of the Republic 
of Slovenia 
gregor.vertacnik@gov.si 
 

SOUTH AFRICA 

ERNEST MBAMBALALA 
ernest@weathersa.co.za 
 

SPAIN 

MATTHIAS STAUDT 
Atmosphere Physics Group, Applied 
Physics Department, University of 
Granada 
mstaudt@ugr.es, 
traduc@matist.jazztel.es 

ENRIC AGUILAR 
Climate Change Research Group, 
Geography Unit, Universitat Rovira i 
Virgili, Tarragona 
enric.aguilar@urv.net 
 

JOSÉ CARLOS GONZÁLEZ HIDALGO 
Department of Geography, Zaragoza 
University 
jcgh@unizar.es; mdla@unizar.es 
 

SIHAM LANJERI 
Department of Geography, Zaragoza 
University 
siham.lanjeri@unizar.es 
 

JOSÉ ANTONIO GUIJJARO 
Instituto Nacional de Meteorología 
jaguijarro@inm.es 
 

SYRIA 

MUHAMMAD IBRAHIM 
Syrian Meteorological Department

 





 
REPORTS PUBLISHED IN THE 

 
WORLD CLIMATE DATA PROGRAMME (WCDP)/ 

 
WORLD CLIMATE DATA AND MONITORING PROGRAMME (WCDMP) SERIES 

 
 
WCDP-1 WMO REGION III/IV TRAINING SEMINAR ON CLIMATE DATA MANAGEMENT AND 

USER SERVICES, Barbados, 22-26 September 1986 and Panama, 29 September 3 
October 1986 (available in English and Spanish) - (WMO-TD No. 227) 

WCDP-2 REPORT OF THE INTERNATIONAL PLANNING MEETING ON CLIMATE SYSTEM 
MONITORING, Washington DC, USA, 14-18 December 1987 - (WMO-TD No. 246) 

WCDP-3 GUIDELINES ON THE QUALITY CONTROL OF DATA FROM THE WORLD 
RADIOMETRIC NETWORK, Leningrad 1987 (prepared by the World Radiation Data 
Centre, Voeikov Main Geophysical Observatory) - (WMO-TD No. 258) 

WCDP-4 INPUT FORMAT GUIDELINES FOR WORLD RADIOMETRIC NETWORK DATA, 
Leningrad 1987 (prepared by the World Radiation Data Centre, Voeikov Main Geophysical 
Observatory) - (WMO-TD No. 253. p. 35) 

WCDP-5 INFOCLIMA CATALOGUE OF CLIMATE SYSTEM DATA SETS, 1989 edition (WMO-TD 
No. 293) 

WCDP-6 CLICOM PROJECT (Climate Data Management System), April 1989 (updated issue of 
WCP-l 1 9) - (WMO-TD No. 299) 

WCDP-7 STATISTICS ON REGIONAL NETWORKS OF CLIMATOLOGICAL STATIONS (based on 
the INFOCLIMA World Inventory).  VOLUME II: WMO REGION I - AFRICA (WMO-TD No. 
305) 

WCDP-8 INFOCLIMA CATALOGUE OF CLIMATE SYSTEM DATA SETS - HYDROLOGICAL DATA 
EXTRACT, April 1989 - (WMO-TD No. 343) 

WCDP-9 REPORT OF MEETING OF CLICOM EXPERTS, Paris, 11-15 September 1989 (available 
in English and French) - (WMO-TD No. 342) 

WCDP-10 CALCULATION OF MONTHLY AND ANNUAL 30-YEAR STANDARD NORMALS, March 
1989 (prepared by a meeting of experts, Washington DC, USA) - (WMO-TD No. 341) 

WCDP-11 REPORT OF THE EXPERT GROUP ON GLOBAL BASELINE DATASETS, Asheville, 
USA, 22-26 January 1990 - (WMO-TD No. 359) 

WCDP-12 REPORT OF THE MEETING ON HISTORICAL ARCHIVAL SURVEY FOR CLIMATE 
HISTORY, Paris, 21-22 February 1990 - (WMO-TD No. 372) 

WCDP-13 REPORT OF THE MEETING OF EXPERTS ON CLIMATE CHANGE DETECTION 
PROJECT, Niagara-on-the-Lake, Canada, 26-30 November 1990 - (WMO-TD No. 418) 

Note: Following the change of the name of the World Climate Data Programme (WCDP) to 
World Climate Data and Monitoring Programme (WCDMP) by the Eleventh WMO 
Congress (May 1991), the subsequent reports in this series will be published as 
WCDMP reports, the numbering being continued from No. 13 (the last 'WCDP" 
report). 

WCDMP-14 REPORT OF THE CCl WORKING GROUP ON CLIMATE CHANGE DETECTION, 
Geneva, 21-25 October 1991 
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WCDMP-15 REPORT OF THE CCl EXPERTS MEETING ON CLIMATE CODE ADAPTATION, 
Geneva, 5-6 November 1991 - (WMO-TD No. 468) 

WCDMP-16 REPORT OF THE CCl EXPERTS MEETING ON TRACKING AND TRANSMISSION OF 
CLIMATE SYSTEM MONITORING INFORMATION, Geneva, 7-8 November 1991 - 
(WMO-TD No. 465) 

WCDMP-17 REPORT OF THE FIRST SESSION OF THE ADVISORY COMMITTEE ON CLIMATE 
APPLICATIONS AND DATA (ACCAD), Geneva, 19-20 November 1991 (also appears as 
WCASP-18) - (WMO-TD No. 475) 

WCDMP-18 CCl WORKING GROUP ON CLIMATE DATA, Geneva, 11-15 November 1991 (WMO-TD 
No. 488) 

WCDMP-19 REPORT OF THE SECOND CLICOM EXPERTS MEETING, Washington DC, 18-22 May 
1992 - (WMO-TD No. 511) 

WCDMP-20 REPORT ON THE INFORMAL PLANNING MEETING ON STATISTICAL PROCEDURES 
FOR CLIMATE CHANGE DETECTION, Toronto, 25 June, 1992 (WMO-TD No. 498) 

WCDMP-21 FINAL REPORT OF THE CCI WORKING GROUP ON CLIMATE DATA AND ITS 
RAPPORTEURS, November 1992 - (WMO-TD No. 523) 

WCDMP-22 REPORT OF THE SECOND SESSION OF THE ADVISORY COMMITTEE ON CLIMATE 
APPLICATIONS AND DATA (ACCAD), Geneva, 16-17 November 1992 (also appears as 
WCASP-22) - (WMO-TD No. 529) 

WCDMP-23 REPORT OF THE EXPERTS MEETING ON REFERENCE CLIMATOLOGICAL 
STATIONS (RCS) AND NATIONAL CLIMATE DATA CATALOGUES (NCC), Offenbach 
am Main, Germany, 25-27 August 1992 - (WMO-TD No. 535) 

WCDMP-24 REPORT OF THE TENTH SESSION OF THE ADVISORY WORKING GROUP OF THE 
COMMISSION FOR CLIMATOLOGY, Geneva, 20-22 September 1995 (also appears as 
WCASP-34) - (WMO-TD No. 711) 

WCDMP-25 REPORT OF THE FIFTH SESSION OF THE ADVISORY COMMITTEE ON CLIMATE 
APPLICATIONS AND DATA (ACCAD), Geneva, 26 September 1995 (also appears as 
WCASP-35) - (WMO-TD No. 712) 

WCDMP-26 REPORT ON THE STATUS OF THE ARCHIVAL CLIMATE HISTORY SURVEY 
(ARCHISS) PROJECT, October 1996 (prepared by Mr M. Baker) - (WMO-TD No. 776) 

WCDMP-27 SUMMARY REPORT OF THE MEETING OF THE THIRD SESSION OF THE CCl 
WORKING GROUP ON CLIMATE CHANGE DETECTION, Geneva, 26 February - 1 
March 1996 - (WMO-TD No. 818) 

WCDMP-28 SUMMARY NOTES AND RECOMMENDATIONS FOR CCI-XII FROM MEETINGS 
CONVENED TO PREPARE FOR PUBLISHING THE FIFTH AND SIXTH GLOBAL 
CLIMATE SYSTEM REVIEWS AND FOR A PUBLICATION ON THE CLIMATE OF THE 
20TH CENTURY, July 1997 - (WMO-TD No. 830) 

WCDMP-29 CLIMATE CHANGE DETECTION REPORT - REPORTS FOR CCI-XlI FROM 
RAPPORTEURS THAT RELATE TO CLIMATE CHANGE DETECTION, July 1997 (WMO-
TD No. 831) 

WCDMP-30 SUMMARY NOTES AND RECOMMENDATIONS ASSEMBLED FOR CCI-XlI FROM 
RECENT ACTIVITIES CONCERNING CLIMATE DATA MANAGEMENT, July 1997 
(WMO-TD No. 832) 

WCDMP-31 REPORTS FOR CCI-XlI FROM RAPPORTEURS THAT RELATE TO CLIMATE DATA 
MANAGEMENT, July 1997 - (WMO-TD No. 833) 
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WCDMP-32 PROGRESS REPORTS TO CCl ON STATISTICAL METHODS, July 1997 (prepared by 
Mr Christian-Dietrich Schönwiese) (WMO-TD No 834) 

WCDMP-33 MEETING OF THE CCl WORKING GROUP ON CLIMATE DATA, Geneva, 30 January - 3 
February 1995 - (WMO-TD No. 841) 

WCDMP-34 EXPERT MEETING TO REVIEW AND ASSESS THE ORACLE-BASED PROTOTYPE 
FOR FUTURE CLIMATE DATABASE MANAGEMENT SYSTEM (CDBMS), Toulouse, 
France, 12-16 May 1997 - (WMO-TD No. 902) 

WCDMP-35 REPORT OF THE ELEVENTH SESSION OF THE ADVISORY WORKING GROUP OF 
THE COMMISSION FOR CLIMATOLOGY, Mauritius, 9-14 February 1998 (also appears 
as WCASP-47) - (WMO-TD No. 895) 

WCDMP-36 REPORT OF THE MEETING OF THE CCl TASK TEAM ON CLIMATE ASPECTS OF 
RESOLUTION 40, Geneva, Switzerland, 10-1 1 June 1998 - (WMO-TD No. 925) 

WCDMP-37 REPORT OF THE MEETING OF THE JOINT CCl/CLIVAR TASK GROUP ON CLIMATE 
INDICES, Bracknell, UK, 2-4 September 1998 - (WMO-TD No. 930) 

WCDMP-38 REPORT OF THE MEETING OF THE WMO COMMISSION FOR CLIMATOLOGY (CCl) 
TASK GROUP ON A FUTURE WMO CLIMATE DATABASE MANAGEMENT SYSTEM 
(CDMS), Ostrava, Czech Republic, 10-13 November 1998 and FOLLOW-UP WORKSHOP 
TO THE WMO CCl TASK GROUP MEETING ON A FUTURE WMO CDMS, Toulouse, 
France, 30 March-1 April 1999 - (WMO-TD No. 932) 

WCDMP-39 REPORT OF THE MEETING OF THE CCl WORKING GROUP ON CLIMATE DATA, 
Geneva, Switzerland, 30 November-4 December 1998 - (WMO-TD No. 970) 

WCDMP-40 REPORT OF THE MEETING ON CLIMATE STATISTICS, PRODUCT DEVELOPMENT 
AND DATA EXCHANGE FOCUSING ON CLICOM 3.1, Geneva, 25-29 January 1999 - 
(WMO-TD No. 971) 

WCDMP-41 PROCEEDINGS OF THE SECOND SEMINAR FOR HOMOGENIZATION OF SURFACE 
CLIMATOLOGICAL DATA, Budapest, Hungary, 9-13 November 1998 (WMO-TD No. 962) 

WCDMP-42 REPORT OF THE MEETING OF EXPERTS ON THE CLIMATE OF THE 20TH 
CENTURY, Geneva, 26-30 April 1999 - (WMO-TD No. 972) 

WCDMP-43 REPORT OF THE TRAINING SEMINAR ON CLIMATE DATA MANAGEMENT 
FOCUSING ON CLICOM/CLIPS DEVELOPMENT AND EVALUATION, Niamey, Niger, 03 
May-10 July 1999, (WMO-TD No. 973) 

WCDMP-44 REPRESENTATIVENESS, DATA GAPS AND UNCERTAINTIES IN CLIMATE 
OBSERVATIONS, Invited Scientific Lecture given by Chris Folland to the WMO Thirteenth 
Congress, Geneva, 21 May 1999 - (WMO-TD No. 977) 

WCDMP-45 WORLD CLIMATE PROGRAMME - WATER, DETECTING TREND AND OTHER 
CHANGES IN HYDROLOGICAL DATA, Zbigniew W. Kundzewicz and Alice Robson 
(Editors) - (WMO-TD No. 1013) 

WCDMP-46 MEETING OF THE WMO CCl TASK GROUP ON FUTURE WMO CLIMATE DATABASE 
MANAGEMENT SYSTEMS (CDMSs), Geneva, 3-5 May 2000 (WMO-TD No. 1025) 

 
WCDMP-47 REPORT ON THE ACTIVITIES OF THE WORKING GROUP ON CLIMATE CHANGE 

DETECTION AND RELATED RAPPORTEURS, 1998-2001 (May 2001, updated from 
March 2001) (WMO-TD No. 1071) 

 
WCDMP-48 REPORT OF THE FIRST SESSION OF THE MANAGEMENT GROUP OF THE 

COMMISSION FOR CLIMATOLOGY (Berlin, Germany, 5-8 March 2002) (also appears as 
WCASP-55) (WMO-TD No. 1110) 
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WCDMP-49 1. REPORT ON THE CLICOM-DARE WORKSHOP (San José, Costa Rica, 17-28 July 
2000); 2. REPORT OF THE INTERNATIONAL DATA RESCUE MEETING (Geneva, 11-13 
September 2001) (WMO-TD No. 1128) 

 
WCMDP-50 REPORT OF THE CLIMATE DATABASE MANAGEMENT SYSTEMS EVALUATION 

WORKSHOP (Geneva, 11-13 September 2001) (WMO-TD No. 1130) 
 
WCDMP-51 SUMMARY REPORT OF THE EXPERT MEETING FOR THE PREPARATION OF THE 

SEVENTH GLOBAL CLIMATE SYSTEM REVIEW (7GCSR) (Geneva, 16-19 September 
2002) (WMO-TD No. 1131) 

 
WCDMP-52 GUIDELINES ON CLIMATE OBSERVATION NETWORKS AND SYSTEMS (WMO-TD No. 

1185) 
 
WCDMP-53 GUIDELINES ON CLIMATE METADATA AND HOMOGENIZATION (WMO-TD No. 1186) 
 
WCDMP-54 REPORT OF THE CCl/CLIVAR EXPERT TEAM ON CLIMATE CHANGE DETECTION, 

MONITORING AND INDICES (ETCCDMI) (Norwich, UK, 24-26 November 2003) (WMO-TD 
No. 1205) 

 
WCDMP-55 GUIDELINES ON CLIMATE DATA RESCUE (WMO-TD No. 1210) 
 
WCDMP-56 FOURTH SEMINAR FOR HOMOGENIZATION AND QUALITY CONTROL IN 

CLIMATOLOGICAL DATABASES (Budapest, Hungary, 6-10 October 2003) (WMO-TD No. 
1236) 

 
WCDMP-57 REPORT OF THE RA V DATA MANAGEMENT WORKSHOP (Melbourne, Australia, 

28 November-3 December 2004) (WMO-TD No. 1263) 
 
WCDMP-58 GUIDELINES ON CLIMATE WATCHES (WMO-TD No. 1269) 
 
WCDMP-59 REPORT OF THE MEETING OF THE RA I WORKING GROUP ON CLIMATE MATTERS 

(Dakar, Senegal, 22 – 24 February 2006) (WMO-TD No. 1351) 
 
WCDMP-60 GUIDELINES ON CLIMATE DATA MANAGEMENT (WMO-TD No. 1376) 
 
WCDMP-61 THE ROLE OF CLIMATOLOGICAL NORMALS IN A CHANGING CLIMATE (WMO-TD No. 

1377) 
 
WCDMP-62 GUIDELINES FOR MANAGING CHANGES IN CLIMATE OBSERVATION PROGRAMMES 

(WMO-TD No. 1378) 
 
WCDMP-63 RA VI TRAINING SEMINAR ON CAPACITY BUILDING IN CLIMATE-RELATED MATTERS 

(Yerevan, Armenia, 2 – 5 October 2006) (WMO-TD No. 1386) 
 
WCDMP-64 JOINT CCL/CLIVAR/JCOMM EXPERT TEAM ON CLIMATE CHANGE DETECTION AND 

INDICES (Niagara-on-the-Lake, Canada, 14 - 16 November 2006) (WMO-TD No. 1402) 
 
WCDMP-65 EXPERT TEAM ON OBSERVING REQUIREMENTS AND STANDARDS FOR CLIMATE 

(Geneva, 28 - 30 March 2007) (WMO-TD No. 1403) 
 
WCDMP-66 A CASE-STUDY/GUIDANCE ON THE DEVELOPMENT OF LONG-TERM DAILY 

ADJUSTED TEMPERATURE DATASETS (WMO-TD-1425) 
 
WCDMP-67 PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON RESCUE AND 

DIGITIZATION OF CLIMATE RECORDS IN THE MEDITERRANEAN BASIN (Tarragona, 
Spain, 28-30 November 2007) (WMO-TD-1432) 

 
WCDMP-68 CLIMATE DATA MANAGEMENT GUIDELINES 
 
WCDMP-69 REPORT OF THE MEETING OF THE CCL EXPERT TEAM ON THE RESCUE, 

PRESERVATION AND DIGITIZATION OF CLIMATE RECORDS (Bamako, Mali, 13-15 May 
2008) (WMO-TD-1480) 
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WCDMP-70 GUIDELINES FOR PLANT PHENOLOGICAL OBSERVATIONS (WMO-TD No. 1484) 
 
WCDMP-71 PROCEEDINGS OF THE FIFTH SEMINAR FOR HOMOGENIZATION AND QUALITY 

CONTROL IN CLIMATOLOGICAL DATABASES (Budapest, Hungary, 29 May-2 June 2006) 
(WMO-TD-1493) 

 
 



For more information, please contact:

World Meteorological Organization

Observing and Information Systems Department
Tel.: +41 (0) 22 730 82 68 – Fax: +41 (0) 22 730 80 21

E-mail: wcdmp@wmo.int 

7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland

www.wmo.int

Proceedings of the Fifth Seminar for 
Homogenization and Quality Control in 
Climatological Databases

(Budapest, Hungary, 29 May – 2 June 2006)

Climate Data and Monitoring 
WCDMP-No. 71

WMO-TD No. 1493




