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Abstract — We derive a version of the virial theorem that is applicable to diatomic 

planetary atmospheres that are in approximate thermal equilibrium at moderate 

temperatures and pressures and are sufficiently thin such that the gravitational 

acceleration can be considered constant. We contrast a pedagogically inclined theoretical 

presentation with the actual measured properties of air. 
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In his widely discussed article, Miskolczi (2007) postulates that the virial 

theorem, which relates the average kinetic and average potential energies of a 

bound mechanical system (see Landau and Lifshitz (1972) for a thorough 

introduction), can be applied to a planetary atmosphere in equilibrium in the 

planet’s gravitational field. 

To investigate if Miskolczi’s postulate is correct (whether or not the 

postulate was correctly applied is a question beyond the scope of the present 

paper), let us first consider the case of a bouncing ball in a homogeneous 

gravitational field. (The gravitational field within the Earth’s atmosphere, the 

thickness of which is small compared to the Earth’s radius, is approximately 

homogeneous. However, the same results presented here could also be obtained 

using a Newtonian gravitational potential (Pacheco and Sañudo, 2003).) 

Consider dropping the ball from a height hb above the surface, and assume 

that it falls without air resistance, and bounces back from the ground with no 

loss of kinetic energy. We wish to calculate its average kinetic and average 

potential energy. It is sufficient to compute these averages for the first part of 

the ball’s motion, as it falls to the ground; the bounce-back is just a time-

reversed copy of its initial drop, and afterwards, in the absence of dissipative 

losses, the ball repeats the same motion ad infinitum. 
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We presume that the ball was dropped at t = 0. At any other time t > 0, 

before the ball hits the ground, its height will be 
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where g (≈ 9.81 m/s
2
 on the Earth) is the surface gravitational acceleration. 

From this, 
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and notably, the time it takes to reach the ground (h = 0) is 
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The velocity of the ball at time t (0 ≤ t ≤ t0) is 
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The kinetic energy K and potential energy U of the ball are calculated the 

usual way: 
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According to the virial theorem, for a bound mechanical system with 

kinetic energy K, 
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where the angle brackets denote time averaging and ra and Fa are the position 

of, and the force acting on, the ath particle that constitutes the system. In the 

case of a system in which the potential energy is a homogeneous function of 

degree k of the coordinates, we get 
 

 UkK2 . (8) 

 

For Eq. (6), k = 1. The time averages of the kinetic energy, Eq. (5), and potential 

energy, Eq. (6), between t = 0 and t = t0 can be calculated as 
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Hence,  UK2  and the virial theorem for the potential energy, Eq. (6), 

appears satisfied. This was made possible, in part, by referencing the height h to 

ground level; this allowed us to ignore the effects of the ground surface in Eq. (7), 

because at the ground, ra = 0, as observed also by Pacheco and Sañudo (2003). 

How about a column of atmospheric gas? We assume a column of gas in 

hydrostatic equilibrium standing over a unit surface area in a homogeneous 

gravitational field. Its density will be a function of height h above ground: 
 

ρ = ρ(h). (11) 
 

The pressure at h is equal to the weight of gas situated at heights above h: 
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We assume that the gas is in thermal equilibrium (the real atmosphere is 

not in thermal equilibrium, but that is another story), so its temperature is 

constant: 

T = T0. (13) 
 

We also assume that the gas obeys the ideal gas law (this is a valid approximation 

for air at room temperature and sea level pressure), hence 
 

pV = nRT, (14) 
 

where V is the volume of n moles of gas, and R ≈ 8.31 J
 
K

−1 
mol

−1
 is the ideal 

gas constant. The mass of n moles of gas is nMn where Mn (≈ 0.029 kg/mol for 

air) is the molar mass of the gas; its density is ρ = nMn
 
/ V, hence V = nMn

 
/ ρ. 

We can thus rewrite the ideal gas law in the form 
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Using this in Eq. (12), we obtain 
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or, in differential form, 
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which can be solved trivially: 
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which we can also write in the form 
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For air at T0 = 273 K, we get 
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which agrees well with the observed properties of the atmosphere. 

So what about the virial theorem? Going back to the bouncing ball for a 

moment, we can immediately spot a potential problem: what if the ball is 

moving horizontally as well? Indeed, it can move horizontally at an arbitrary 

velocity, yet its potential energy will be no different, hence the virial theorem 

fails. We must make sure that we only consider the vertical component of the 

ball's velocity before the theorem can be considered valid. The velocity of the 

ball can be written in rectilinear form as 2222
zyx vvvv  , but we are only 

interested in the vertical component. In the specific case when the average 

velocities in the x, y, and z direction are the same, we get 22

3

1
vv z  . 

Accordingly, the virial theorem in this case reads 
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This result can also be obtained using another argument, presented by 

Pacheco and Sañudo (2003): rather than allowing the coordinates to remain 

unbounded in the horizontal plane, we can consider confining the ball to within 



 233 

a cylinder of unit radius, integrating and time averaging the force acting on the 

ball as it hits the cylinder walls, in order to obtain the right-hand side of Eq. (7). 

An atmosphere, unfortunately, is not made of bouncing balls, however 

appealing that picture might appear. Air, in particular, is composed mainly of 

diatomic gases (notably N2 and O2), which at room temperature have two 

rotational degrees of freedom in addition to the three translational degrees of 

freedom discussed above. (At higher temperatures, vibrational modes also play 

a role.) The kinetic energy of a column of gas is its internal thermal energy. The 

principle of equipartition of energy states that internal thermal energy is distributed 

equally between all degrees of freedom. Therefore, the virial theorem now reads 
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This is our main result, valid for any diatomic atmosphere that obeys the ideal 

gas law in an homogeneous gravitational field at moderate temperatures. 

For a column of gas over a unit surface area, the thermal kinetic energy is 
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where cV is the specific heat of the atmosphere at constant volume. The potential 

energy is just the gravitational potential energy: 
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The ratio of the two is 
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Using Eq. (22), we obtain 
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Given Eqs. (25) and (29), we can calculate the specific heat cV. For air, we 

obtain 
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a value that agrees well with the known properties of air (cV = 718 J K
−1 

kg
−1

). 
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In this derivation, we assumed that T = T0 is constant. Our result, however, 

remains valid even when T is not constant, so long as the gas is in “local 

thermodynamic equilibrium”, which ensures that the principle of equipartition 

remains valid and that thermodynamic quantities, such as temperature or 

specific heat, remain well-defined. To see this, we first rewrite the condition of 

hydrostatic equilibrium, Eq. (12), in differential form: 

 

dp = −gρ dh. (31) 

 

This allows us to write the potential energy of the gas, Eq. (27), as 
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where the last step was taken by integrating in parts and using p(∞) = 0. On the 

other hand, the thermal kinetic energy, Eq. (26), can be rewritten as 

 





00

dhp
R

Mc
dhTcK

nV
V  . (33) 

 

The ratio of Eqs. (32) and (33) remains the same constant ratio, Eq. (29), that 

we obtained in the T = T0 case: 
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even as T varies with altitude. Therefore, even as we allow T to be a function of 

h, Eq. (25) remains satisfied. 

Hence we were able to demonstrate, without having to invoke concepts 

such as “hard core” potentials or intramolecular forces, that the virial theorem is 

indeed applicable to the case of an atmosphere in hydrostatic equilibrium. 

However, it must be “handled with care”: the nature of the atmosphere and the 

fact that the horizontal (translational) and internal (rotational) degrees of 

freedom of the gas molecules are unrelated to the gravitational potential cannot 

be ignored. 
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