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Abstract―The cycle properties of the annual average, absolute maximum, and absolute 
minimum precipitation values have been calculated from precipitation data the Mátra and 
Bükk regions. The cycle parameters of annual average and annual absolute maximum 
precipitation values have been determined using the data of a shorter 34-year (1970–
2006) and a longer 53-year (1960–2012) period (38 precipitation measurement stations) 
through the determination of the parameters of frequency, amplitude, and phase with an 
analytic version of the discrete Fourier transform (DFT), and the values obtained on the 
basis of the two periods have been compared. Using prognosis parameters, a prognosis 
until 2025 has been made. Then, the regression function of the variation in time of 
average and absolute maximum precipitation values has been determined on the basis of 
actual and prognosticated data for the whole period (1960–2025). 
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1. Introduction 

The analysis of precipitation data in the Mátra-Bükkalja region between the 
years 1960 and 2012 has given the result that that both the 53-year average 
values of specific precipitation and the annual absolute maximum values of the 
measured values for the 38 precipitation measurement stations (settlements) 
show cylicity for both the 3–5 years and longer periods (INNOCENTER, 2013a; 
Kovács, 2014). Minimum and maximum ’local’ values recur for both annual 
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average and annual maximum values. With the cyclic variation of annual 
precipitation values, annual average precipitation displayed constancy around 
the 600 mm/year value in both the Mátra and Bükkalja regions even on the basis 
of the combined set of data. With respect to annual absolute maximum and 
minimum values, regarding these parameters as indicators of extreme weather, 
plenty of precipitation or years of drought, the data of 53 years showed a 
decreasing tendency. 

In the present paper, the cycle parameters of the average and absolute 
maximum precipitation values are calculated using the data sets reported in 
INNOCENTER (2013a) and Kovács (2014), analysing the precipitation data of 
the region investigated (Mátra-Mátraalja, Bükk-Bükkalja) and developing a 
calculation method of cycle parameters as a research task in the Carpathian 
Basin (Szűcs, 2012). Based on this, a prognosis is made for the period until 
2025. 

2. Theoretical basis of analysis and calculation, the Fourier transform 

In the interpretation of frequency, amplitude. and phase, a 2π periodical cos(t) 
function has been taken as starting point, where T = 2π is the period length of 
the function. Next, the argument of the function has been transformed (Meskó, 
1984; Turai, 1983):  
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The rate expressing the density of periods (period density or with the 

commonly used term, frequency) is 
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If t stands for length in space, then frequency gives the number of periods 

per unit of spatial length for the given direction. Spatial frequency is called wave 
number. 

Multiplying the cos(2πft) function with factor A and shifting its maximum 
by Δt, after writing up 

 
[ ]( )Δ+tfπ2cos , factor A 

 
is called amplitude. In the case of a monofrequency periodical signal, the 
amplitude equals half of the difference between the maximum (Fmax) and 
minimum (Fmin) of signal value: 
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After a further transformation of the argument of the cosine function, the 
following formula can be written: 
 

[ ] )2cos()22cos()22cos()2cos( ϕππππππ +=Δ+=Δ+=Δ+ ftA
T

tftAtfftAttfA . 

 
The quantity φ, thus introduced, is called phase (phase angle). the absolute 

phase shows the part of the phase length (phase time or wavelength) the 
maximum of the signal has shifted with in relation to the origin (t = 0). As it can 
be seen in Fig. 1, in the case of Δt = 0, the maximum shifts to the, left while in 
the case of Δt < 0 to the right of the origin. Absolute phase can be given in both 
radians and degrees: 
 

T
tΔ= πϕ 2 [rad]             

T
tΔ= 360ϕ    [degrees]. 

 
 

 
 

 
Fig. 1. The interpretation of the absolute phase. 

 
 
 

Relative phase (Δφ) is interpreted between two signals and shows that in 
relation to the maximum of one of two signals of identical frequency, what part 
of the period length the maximum of the other signal has shifted with. As it can 
be seen in Fig. 2, the two signals are x(t) and y(t) while the difference of the 
maximums of the two signals Δtxy. The relative phase between the two signals 
can also be calculated:  
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Fig. 2. The interpretation of the relative phase. 

 
 

 
The relative phase can also be calculated as the difference of the absolute 

phases of the two signals: 
 

Δϕxy = ϕy – ϕx . 
 

With the help of the Fourier transform, signals can be transferred from the 
space-time domain into the frequency domain. During the process, the mappings 
of signals in the frequency domain are called Fourier spectra. 

Working with harmonic functions (cos(2πft), sin(2πft)) in the analytic 
Fourier transform, a complex Fourier spectrum is obtained, which can be 
divided into a real and an imaginary part. The Re[F(f)] real part of the spectrum 
can be written up with a real cosine transformation 
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while its imaginary part with a real sine transformation is 
 

 [ ] dtfttffF )2sin()()(Im π∫
+∞

∞−

= . (2) 

 
The complex Fourier spectrum can be written up with two real spectra: 
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( ) ( )[ ] ( )[ ]fFjfFfF ImRe += . 
 
The real spectrum gives the weights of the cosine components falling into a 
frequency band unit around any f frequency, while the imaginary spectrum gives 
the weights of the sine components for the formation of the signal. 

The F(f) complex spectrum can also be defined in an exponential form by 
the introduction of two other real spectra: 

 
( ) ( ) ( )fjefAfF Φ= . 

 
The A(f) spectrum, thus introduced, is called amplitude spectrum, while the 

φ(f) spectrum is called phase spectrum. The amplitude spectrum gives the 
weight in the formation of the signal of the harmonic component falling into a 
frequency band unit around any f frequency, while the phase spectrum shows the 
part of the period length the maximum of this harmonic component shifts with 
in relation to the maximum of base function cos(2πft), taken at point t = 0. 

The amplitude and phase spectra are the following in the knowledge of real 
and imaginary spectra with the help of the correlations yielded by Fig. 3: 
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Real and imaginary spectrum values can also be calculated from amplitude 

and phase spectra: 
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Fig. 3. Plotting of Fourier spectra in a complex plane. 
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3. Spectral analysis 

In the search for the deterministic periodic components, the spectrum of the 
Δy(t) deviations from the (Y ) expected values has been investigated with the 
following correlations: 

( ) ( ) Ytyty ˆ−=Δ , 
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The period lengths of the deterministic periodic components to be found in 

the stochastic signal are given by the reciprocal values of the (f1,max, f2,max, …, 
fN,max) frequencies belonging to the maximums of the A(f) amplitude density 
spectrum of the Y(f) spectrum: 
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where N is the number of deterministic periodic components (the number of the 
maximums of the A(f) spectrum). 

It can be calculated from the φ(Ti) values of the phase-density spectrum 
belonging to the given period time, what Δt(Ti) time the maximum of the given 
component of any  Ti (i = 1, 2, …, N) period time has shifted in relation to the 
starting year (1973) of data registration: 
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Τhe Ai amplitudes of a component of any Ti period time are given by the 

values of A(f) amplitude density: 
 

( )ii TAA = . 
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Figure Ai gives the amplitude of the deterministic component with Ti period 
time. 

Let A(f)max denote the maximum of the A(f) amplitude density spectrum. 
The relative amplitude density spectrum normed to maximum value (A(f)rel) as 
the percentage of maximum value can be calculated as follows: 
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Relative amplitude density spectrum values show percentage of the 

amplitude density of any given component of T = 1/f period time in the 
maximum amplitude density. 

4. Spectral analysis of the variation of annual precipitation amount on the basis 
of Mátra Bükkalja precipitation data 

In INNOCENTER (2013b) the cycle properties of the variation in time of 
precipitation have been investigated on the basis of the territorial average values of 
precipitation data in the years 1960–2012 in 23 settlements/precipitation 
measurement stations in the Mátra-Mátraalja region and 15 settlements/ 
precipitation measurement stations in the Bükk-Bükkalja region. Table 1 shows 
the average annual precipitation values and the annual absolute maximum 
precipitation values on the basis of the data of the two regions and combined 
data. In order to assess the effect of the registration period on results, cycle 
properties have been calculated for a shorter (1973–2006, 34 years) and a longer 
(1960–2012, 53 years) period. (Yearbook of the Hydrographical Service of 
Hungary 1960–2005.) 

4.1. The results of spectral analysis on the basis of precipitation data for the 
years 1973–2006  

In the spectral analysis of the precipitation data, the registration time (Treg was 
33 years for end-sampling periods and the 34 years for middle-sampling periods. 
The sampling rate (Δt) was 1 year, while the number of samples was 34. 

Analyses have been performed with an analytic version of the discrete 
Fourier transform (DFT) (Turai, 1983). The complex amplitude density spectra 
of the function of annual precipitation values have been determined as the 
function of discrete period time values. Of the four real spectra describing the 
complex spectrum (real spectrum, imaginary spectrum, amplitude spectrum, and 
phase spectrum), amplitude spectra are presented. In the plotting, logarithmic 
linear scale has been chosen to illustrate spectrum maximums more clearly. 
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Table 1. Precipitation data in the Mátra-Bükkalja region as the function of time 

Number of 
settlements / 
measurement points 

Years 

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

Mátra 
Average 727 506 568 681 747 868 814 538 478 737 861 455 636
Absolute 
maximum 1016 584 724 923 1012 1098 1029 610 599 899 1080 559 789

Bükk 
Average 712 436 499 548 693 825 769 569 517 623 891 378 557
Absolute 
maximum 811 487 535 599 769 947 956 733 563 764 971 410 674

Mátra 
Bükk 

Average 721 476 538 624 724 849 795 551 495 688 874 422 602
Absolute 
maximum 1016 584 724 923 1012 1098 1029 733 599 899 1080 559 789
 

Number of 
settlements / 
measurement points  

Years 

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Mátra 
Average 509 804 607 709 620 576 691 659 504 444 425 655 674 453
Absolute 
maximum 712 1061 748 935 748 704 844 821 595 555 504 791 814 566

Bükk 
Average 453 698 675 659 691 585 652 697 524 423 504 535 594 399
Absolute 
maximum 535 735 843 747 781 708 763 740 574 506 581 648 680 438

Mátra 
Bükk 

Average 485 759 636 688 650 580 674 676 512 435 459 604 640 430
Absolute 
maximum 712 1061 843 935 781 708 844 821 595 555 581 791 814 566

 

Number of 
settlements / 
measurement points  

Years 
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Mátra 
Average 534 638 611 560 692 393 514 497 718 637 433 654 949 474
Absolute 
maximum 654 851 729 613 774 486 603 586 874 751 519 754 1092 563

Bükk 
Average 499 596 586 492 652 346 457 454 679 576 482 722 874 426
Absolute 
maximum 559 613 655 523 694 418 516 509 727 609 535 774 988 474

Mátra 
Bükk 

Average 519 620 600 531 675 373 490 479 701 611 454 683 917 453
Absolute 
maximum 654 851 729 613 774 486 603 586 874 751 535 774 1092 563

 

Number of 
settlements / 
measurement points  

Years 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012  

 
Mátra 

Average 585 639 551 647 751 651 632 657 666 1054 404 434  
Absolute 
maximum 723 837 674 747 929 733 791 777 736 1195 462 486  

 
Bükk 

Average 653 591 517 749 741 631 599 625 624 1118 447 466  
Absolute 
maximum 736 669 564 828 791 711 649 701 709 1153 488 557  

Mátra 
Bükk 

Average 614 618 536 690 746 642 619 645 658 1079 420 446  
Absolute 
maximum 736 837 674 828 929 733 791 777 736 1195 488 557  
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In the calculation of spectra, the spectrum of Δy(t) deviations from (Y Ŷ) 
expected values has been determined: 

 
Ytyty −=Δ )()( . 

 
The (Tmin) minimum period time that can theoretically be found in the 

signal is defined by the Nyquist frequency (fN). 
 

Δt = 1 year ,        fN = 0,5 
year

1  ,       Tmin = 2 years. 

 
As in the case of all the six time series, the ’sampling’ time was 1 year, the 

analysis can only reveal cycles of longer period time than 2 years in the changes 
everywhere.  

In theory, maximum period time (Tmax) is determined by the registration 
time (Treg): 

Tmax = Treg – in case of end sampling, 
 

Tmax =Treg + Δt – in case of middle sampling. 
 

Therefore, the maximum period time that can be revealed by analysis is 33 years 
in case of end-sampling and 34 years in case of middle-sampling 

With the data in Table 1, both the amplitude spectra of the amplitude 
density and the relative spectra have been determined. In the latter case, spectra 
have been normed to maximum spectrum value. In all the six cases – annual 
average and annual absolute maximum precipitation, – for Mátra, Bükk, and 
Mátra+Bükk regions, similar amplitude and relative amplitude spectrum 
functions have been obtained. 

The cycle properties of annual average precipitation in the Mátra region are 
the following on the basis of amplitude peaks, cycle time, and amplitude 
density: 

Major cycles: 1. T1 = 4.9 years, A1 = 1243 mm; 2. T2 = 3.5 years, A2 = 
1195 mm; 3. T3 = 29.8 years, A3 = 946 mm; 4. T4 = 9.9 years, A4 = 806 mm; 
minor cycles: 1. T1 =7.3 years, A1 = 476 mm; 2. T2 = 6.3 years, A2 = 440 mm. 

Cycle properties revealed on the basis of Bükk data are, cycle time and 
amplitude density: major cycles: 1. T1 = 28.7 years, A1 = 1216 mm; 2. T2 = 
3.5 years, A2 = 1064 mm; 3. T3 = 4.9 years, A3 = 1035 mm; 4. T4 = 9.5 years, A4= 
929 mm; minor cycles: 1. T1 = 7.3 years, A1 = 541 mm; 2. T2 = 6.1 years, A2 = 
308 mm. 

The combined treatment of Mátra+Bükk data has also revealed 4 major and 
2 minor cycles in the variation of annual precipitation values (Figs. 4 and 5), 
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cycle time and amplitude density: major cycles 1. T1 =   5.0 years, A1 = 1,139 
mm; 2. T2 =   3.5 years, A2 = =1,119 mm; 3. T3 = 29.2 years, A3 = 1,080 mm; 4. 
T4 =   9.7 years, A4 =   860 mm; minor cycles 1. T1 =   7.4 years, A1 =   508 
mm; 2. T2 =   6.2 years, A2 =   310 mm. 

 
 

 
Fig. 4. Amplitude spectrum of annual 
precipitation int he Mátraalja and Bükkalja 
regions.(sampling rate = 1 year) 

Fig. 5. Relative amplitude spectrum of annual 
precipitation in the Mátraalja and Bükkalja 
regions. (sampling rate = 1 year) 

 
 
 
Cycle properties that can be revealed on the basis of the amplitude spectrum 

and relative amplitude spectrum detected in the variation of annual absolute 
maximum precipitation values, cycle time, and amplitude density for the Mátra 
region are the following: 1. T1 = 3.5 years, A1 = 1561 mm; 2. T2 = 5.0 years, A2 = 
1434 mm; 3. T3 = 10.9 years, A3 = 1352 mm; 4. T4 = 31.4 years, A4 = 1262 mm; 
minor cycles 1. T1 = 7.5 years, A1 = 741 mm; 2. T2 = 6.2 years, A2 = 474 mm. 

Cycle properties of the Bükk region are: major cycles 1. T1 = 27.0 years, A1 
= 1408 mm; 2. T2 = 3.4 years, A2 = 1297 mm; 3. T3 = 5.0 years, A3 = 1168 mm; 
4. T4 = 9.7 years, A4 = 973 mm; minor cycles 1. T1 = 7.4 years, A1 = 796 mm; 2. 
T2 = 6.2 years, A2 = 362 mm. 

Cycle properties of Mátra and Bükk combined data on the basis of 
amplitude spectra (Figs. 6 and 7), cycle time, and amplitude density are the 
following: major cycles 1. T1 = 3.5 years, A1 = 1482 mm; 2. T2 = 5.0 years, A2 = 
1413 mm; 3. T3 = 30.3 years, A3 = 1256 mm; 4. T4 =11.1 years, A4 = 1225 mm; 
minor cycles 1. T1 = 7.5 years, A1 = 734 mm; 2. T2 = 6.2 years, A2 = 298 mm. 

On the basis of the above results, the following generalizations can be made: 
― In the case of the six time series examined with respect to annual 

precipitation variation, cycles of approximately identical period times 
can be revealed. 
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― In the case of all the six time series, there have been found periods of 
3.5 years, 5 years, 10–11 years, and 27–31 years as major cycles. 

― In all the cases, 6.2-year and 7.3–7.5-year periods appear as minor 
cycles. (To prove the existence of 27–31-year cycles in a more reliable 
way, longer data series would be needed.) 

 
 

 

Fig. 6. Amplitude spectrum of annual 
precipitation in the Mátraalja and Bükkalja 
regions (sampling rate = 1 year). 

Fig. 7. Relative amplitude spectrum of the 
absolute maximum of annual precipitation in 
the Mátraalja and Bükkalja regions  
(sampling rate = 1 year.)

4.2. The results of spectral analysis on the basis of precipitation data in the 
years 1960-2012 

The registration period is 1960–2012, the length of the registration period (Treg) 
is 52 years with end sampling and 53 years with middle sampling, sampling rate 
(Δt) is 1 year, the number of samples is 53. The calculation process has been 
according to Section 4.1, the maximum period time that the analysis can reveal 
is Tmax = 52 years – 53 years. 

On the basis of amplitude peaks, the following precipitation cycles can be 
revealed for the Mátra annual precipitation values, cycle time, and amplitude 
density: major cycles T1 = 5.0 years, A1=2765 mm; 2. T2 = 3.6 years, A2 = 
2074 mm; 3. T3 = 41.1 years, A3 = 1555 mm; 4. T4 = 10.7 years, A4 = 1494 mm; 
minor cycles 1. T1 = 6.4 years, A1 = 1101 mm; 2. T2 = 5.7 years, A2 = 1027 mm; 
3. T3 = 8.6 years, A3 = 675 mm; 4. T4 = 14.3 years, A4 = =642 mm; 5. T5 = 
7.4 years, A5 = 577 mm; 6. T6 = 19.8 years, A6 = 456 mm. 

In the Bükkalja region, the following cycles can be revealed in the variation of 
annual precipitation values on the basis of amplitude spectrum and relative 
amplitude spectrum, cycle time, and amplitude density: major cycles 1. T1 = 
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5.0 years, A1 = 2567 mm; 2. T2 = 38.6 years, A2 = 1759 mm; 3. T3 = 10.5 years, A3 
= 1747 mm; 4. T4 = 3.6 years, A4 = 1719 mm; minor cycles 1. T1 = 5.7 years, A1 = 
1413 mm; 2. T2 = 6.5 years, A2 = 1220 mm; 3. T3 = =14.2 years, A3 = 753 mm; 4. T4 
= 7.5 years, A4 = 552 mm; 5. T5 = 8.4 years, A5 = 504 mm; 6. T6 = 19.8 years, A6 =   
323 mm. 

The combined treatment of Mátra and Bükk data also reveals 4 major and 6 
minor cycles on the basis of annual precipitation values (Figs. 8 and 9), cycle 
time and amplitude density: major cycles:  1. T1 = 5.0 years, A1 = 2685 mm; 2. 
T2 = 3.6 years, A2 = 1928 mm; 3. T3 = 40.4 years, A3 = 1635 mm; 4. T4 = 10.6 
years, A4 = 1587 mm; minor cycles 1. T1 =5.7 years, A1 = 1188 mm; 2. T2 = 6.4 
years, A2 = 1151 mm; 3. T3 = 14.2 years, A3 = 669 mm,;4. T4 = 8.5 years, A4 =   
592 mm; 5. T5 = 7.4 years, A5 = 577 mm; 6. T6 = 20.0 years, A6 = 383 mm. 

 
 

 
Fig. 8. Amplitude spectrum of annual 
precipitation in the Mátraalja and Bükkalja 
regions (sampling rate = 1 year). 

 

Fig. 9. Relative amplitude spectrum of annual 
precipitation in the Mátraalja and Bükkalja 
regions (sampling rate = 1 year). 

 
The analysis of the absolute maximum values of annual precipitation 

reveals the following cycle properties on the basis of Mátra data, cycle time, and 
amplitude density: major cycles 1. T1 = 5.0 years, A1 = 3306 mm; 2. T2 = 3.6 
years, A2 = 2656 mm; 3. T3 = 45.6 years, A3 = 2119 mm; 4. T4 = 10.8 years, A4 = 
1806 mm; minor cycles 1. T1 = 5.6 years, A1 = 1319 mm; 2. T2 = 6.4 years, A2 = 
1191 mm; 3. T3 = 13.9 years, A3 = 1044 mm; 4. T4 =  7.3 years, A4 = 1046 mm; 
5. T5 = 8.6 years, A5 = 814 mm; 6. T6 = 19.8 years, A6 = 722 mm. 

Similarly, 4 major and 6 minor cycles can be revealed on the basis of the 
Bükk-Bükkalja absolute maximum precipitation data, cycle time and amplitude 
density: major cycles 1. T1 = 5.0 years, A1 = 2646 mm; 2. T2 = 38.6 years, A2 = 
2138 mm; 3. T3 = 10.5 years, A3 = 2024 mm; 4. T4 = 3.6 years, A4 = 1758 mm; 
minor cycles 1. T1 = 5.6 years, A1 = 1434 mm; 2. T2 = 6.4 years, A2 = 1351 mm; 
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3. T3 = 14.0 years, A3 = 885 mm; 4. T4 = 8.4 years, A4 = 883 mm; 5. T5 = 7.3 
years, A5 = 445 mm; 6. T6 = 19.4 years, A6 = 454 mm. 

Cycle properties of absolute maximum precipitation values cycle time, 
and amplitude density in the combined assessment of the Mátra+Bükk region 
(Figs. 10 and 11) are the following: major cycles 1. T1 = 5.0 years, A1 = 3,168 
mm; 2. T2 =   3.6 years, A2 = 2468 mm; 3. T3 = 46 years, A3 = 2271 mm; 4. T4 = 
10.7 years, A4 = 1842 mm;  minor cycles 1. T1 = 5.7 years, A1 = 1273 mm; 2. T2 
= 6.4 years, A2 = 1127 mm; 3. T3 = 13.7 years, A3 = 982 mm; 4. T4 = 8.5 years, 
A4 = 721 mm; 5. T5 = 7.3 years, A5 = 726 mm; 6. T6 = 19.6 years, A6 = 714 mm. 

 
 

 
Fig. 10. Amplitude spectrum of annual 
precipitation in the Mátraalja and Bükkalja 
regions (sampling rate = 1 year) . 

Fig. 11. Relative amplitude spectrum of the 
absolute maximum of annual precipitation in 
the Mátraalja and Bükkalja regions (sampling 
rate = 1 year) . 

 
 
 
From the cycle properties determined on the basis of the data of 

precipitation time series of 53 years, the following generalizations can be made: 
― Cycles of nearly identical period time can be revealed on the basis of 

the six time series investigated with respect to annual precipitation 
variation. 

― In the case of all the six time series, the 3.6-year, the 5-year, the 10.5–
10.8-year and 38.6–46-year periods appear as major cycles. 

― In all the cases, the 5.6–6.7-year, 6.4-year, 7.3–7.5-year, 8.4–8.6-year, 
13.7–14.3-year and 19.4–20-year periods appear as minor cycles. 

The comparison of the cycle time data of the major and minor cycles 
revealed on the basis of the two time series of different lengths (34 years and 53 
years) has yielded the following results: 
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― With all the three data groups, the number of major cycles that can be 
revealed on the basis of both time series is the same: four. 

― In the case of the shorter time series, 2 minor cycles have been found 
for all the three data groups, while for the longer time series (53 
years), 6 minor cycles have been revealed. 

― With the shorter, generally maximum 10-year cycle times, practically 
identical/equivalent cycle time has been revealed for both the major 
and minor cycles, namely, in Mátra: 3.5–3.6 years, 4.9–5.0 years, 9.9–
10.7 years, 6.3–6.4 years, 7.3–7.4 years,in Bükk: 3.5–3.6 years, 4.9–
5.0 years, 9.5–10.5 years, in Mátra+Bükk: 3.5–3.6 years, 5.0–5.0 
years, 9.7–10.6 years, 6.2–6.4 years, 7.4–7.4 years. 

― In all the three areas, it has been identically found for longer cycle 
times (above 30 years) that on the basis of the 34-year time series, a 
shorter major cycle time, while on the basis of longer time series, a 
longer major cycle time has been revealed, namely, in Mátra: 29.8 
years, 41.1 years, in Bükk: 28.7 years, 38.6 years, in Mátra+Bükk: 
29.2 years, 40.4 years. 

The differences found in the latter case confirm the former observation that 
for a long-time prognosis, a time (data) series longer than 50 years is required. 

5. Determination of prognosis values 

On the basis of Sections 2 and 3, including the summary of the basics of spectral 
data processing, the y(t) time series of precipitation values can be restored 
through the ’use’ of the A(f) amplitude density and φ(f) phase density spectra, 
defined in the previous analyses: 
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where fN is the Nyquist frequency and it equals to 0.5 year–1. 
As the Fourier spectrum is even, the former equation can also be written up 

in the following form: 
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With the use of the Ti (i = 1,2,…, N=10) period times of major and minor 

cycles, the Ai (i = 1,2,…, N = 10) amplitude, and the φ(Ti) (i = 1,2,…, N = 10) 
phase values, it is possible to define the [y(t)det] time series of the amount of 
precipitation attributable to deterministic causes: 
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Using the {Re[F(Ti)]} and {Im[F(T)i]} values calculated for given Ti period 

times of real and imaginary spectra, the φ(Ti) phases of the specific components 
can be defined with the following correlation: 
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The difference between the y(t) actual time series and y(t)det represents the 

accidental (stochastic) impact. 
If t > 2012 values are put in the former equation, the amount of 

precipitation that can be expected in the given years can be estimated (forecast) 
with extrapolation. It must be added, however, that this estimation would only 
yield a prognosis of 100% reliability by using spectra calculated from an 
infinitely large y(t) registratum (annual data), which, of course, cannot be 
expected in the case of the 53 years long time series investigated. 

Furthermore, there is a possibility of estimating periodicity with modern 
statistical methods (analysis with autocorrelation functions, factor and cluster 
analysis), although these tools would only give similarly precise results as the 
spectral analysis applied on the basis of data series of several hundred years. 

Using the spectrum data in Fig. 8, taking into account the impact of the 
four deterministic major cycles (5, 3.6, 40.4, and 10.6 years) and taking into 
consideration the impact of the further 6 minor cycles in Fig. 12 as well as 
that of the two cycles (2.1 years and 2.8 years) earlier omitted due to aliasing 
distortion, the prognosis values in Figs. 13, 14 are obtained. According to 
Fig. 4, the two short cycles are present in the prognosis of annual 
precipitation values with a relatively high amplitude, above 55%, there has 
been a spectacular improvement in classic statistical indicators. Deviation 
(RMS) has decreased from 16.1% and 15.7% to 12.6%, while the correlation 
coefficient (r) has increased from 0.78 and 0.79 to 0.89. 
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Fig. 12. Annual precipitation value in the Mátraalja and Bükkalja regions. 
(Prognosticated on the basis of four cyclic components.)  
 
 

 

 

 
Fig. 13. Annual precipitation value in the Mátraalja and Bükkalja regions. 
(Prognosticated on the basis of ten cyclic components.) 
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Fig. 14. Annual precipitation value in the Mátraalja and Bükkalja regions. 
(Prognosticated on the basis of twelve cyclic components.) 
 
The amplitude data in Fig. 10 and relative amplitude data in Fig. 11 have 

been used in the calculation of annual absolute maximum precipitation 
prognosis. Taking the four deterministic and the further 6+2 cycle properties 
into account, the absolute maximum precipitation prognosis in Figs. 15, 16, and 
17 has been obtained.  

 

 
Fig. 15. Variation in the annual maximum of annual precipitation value in the Mátraalja 
and Bükkalja regions. (Prognosticated on the basis of four cyclic components.) 
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Fig. 16. Variation in the annual maximum of annual precipitation value in the Mátraalja 
and Bükkalja regions (Prognosticated on the basis of ten cyclic components.)  
 
 
 
 

 
Fig. 17. Variation in the annual maximum of annual precipitation value in the Mátraalja 
and Bükkalja regions. (Prognosticated on the basis of twelve cyclic components.) 



87 

On the basis of the classical statistical parameters (RMS = 16.2%, r = 0.77) 
it can be concluded here, too, that between 1960 and 2012, the four deterministic 
major cycles decisively determined absolute maximums (Fig. 15). Taking the 
six minor cycles into account hardly improves classical statistical parameters 
(RMS = 15.6 %, r = 0.79) in this case, either, but the prognosticated sections in 
Figs. 15 and 16 are significantly different here, too. Taking into account the two 
short cycles (2.1 years and 2.8 years), also appearing here with a high amplitude, 
has considerably improved classical statistical indicators (RMS = 12.5%, 
r = 0.87) (Fig. 17). 

On the basis of the data in Fig. 14, for the purpose of practical utilisation it 
can be underlined in the prognosis, that the exceedingly high, 1079 mm/year 
amount of precipitation of 2010 – a uniquely high value in the last 53 years – 
will not recur in the next 12–15 years. The 850–900 mm/year annual 
precipitation, having occurred several times in previous years (1965, 1970, 
1999) may ’probably be expected’ in 2016. On the other hand, it is good news 
that in the coming 12–15 years, no annual precipitation below 500 mm/year, 
causing severe drought, may be expected. 

The 1100 mm/year maximum precipitation prognosticated for 2016 (see 
Fig. 17), remains 100 mm/year below the round 1200(1195) mm/year value of 
2010 but may reach the 1100 mm peak data of the years 1965, 1970, 1974, and 
1999. 
 

6. Variation in time of precipitation properties between the years 1960 and 2025 

With the combined handling of the actual data for the years 1960–2012, 
presented in Table 1 and Figs. 14 and 17, and the prognosis data in Figs. 14 and 
17 related to the Mátra+Bükk region, the time function of the variation of annual 
precipitation, and the absolute maximum precipitation values for the years 
1960–2025 have been determined with the conventional statistical method. 

The function in Fig. 18 shows a constancy of 620–605 mm/year of annual 
(average) precipitation with 0.23 = 23% empirical deviation (Ddeg/Yaverage). The 
correlation coefficient characterizing the closeness of the function determined 
from the data of the 65-year time series is r2 = 0.00048, which indicates the 
independence of the two variables of annual precipitation (average) and time 
(years) according to conventional statistical interpretation. 

Fig. 19 shows the regression function determined on the basis of actual and 
prognosed annual absolute maximum precipitation data between the years 1960 
and 2025. With an acceptable (reliable) 19% corrected empirical deviation and a 
r2 = 0,00027 regression coefficient, the function predicts the constancy of the 
annual absolute maximum in the statistical sense while, for example, it predicts 
a 1100 mm precipitation maximum for 2016. 
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Fig. 18. Regression function of the variation in time of the annual precipitation conditions 
(1960-2012) and prognosis data (2013-2025) of the Mátra-Bükkalja region. 

 

 

 
Fig. 19. Regression function of the variation in time of the annual absolute maximum 
precipitation properties (1960–2012) and prognosis data (2013–2025) of the Mátra-
Bükkalja region. 
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