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Abstract―Spectral analysis is often based on a comparison of the periodogram and the 
spectral density of a so-called background noise. This spectral density is estimated by 
fitting a first order autoregressive (AR(1)) process to data, as climatological time series 
generally exhibit red noise spectra that can be approximated by AR(1) models. When 
periodogram exceeds some threshold at a frequency, the spectrum is said to differ from 
this background noise, and the frequency is characteristic for the time series in question. 
The traditional periodogram, however, must not be used without modifications for 
unevenly spaced data. Additionally, red noise, characterized by spectral densities 
monotone increasing to low frequencies, covers a much wider class of processes than the 
AR(1) processes. Our purpose is (1) to introduce a new periodogram (ELSP) based on a 
least square (LS) fit for an entire set of frequencies instead of using the well-known 
Lomb-Scargle periodogram (LSP) based on individual LS fits for individual frequencies; 
(2) to estimate the spectral density without any assumption on its analytical form using 
the nearly isotonic regression (NIR) method with either ELSP or LSP. As NIR allows the 
possibility of deviations from red noise, comparison of the periodogram with a 
background noise is unnecessary. Note that ELSP has never been used before as is a new 
concept for defining the periodogram for unevenly spaced data. NIR is more or less 
known for curve fitting problems but has not been applied yet to spectral density 
estimation. Three examples show that although ELSP does not radically differ from LSP, 
NIR-ELSP and NIR-LS spectra can exhibit distinct shapes. 
 
Key-words: spectra, unevenly spaced data, Lomb-Scargle periodogram, red noise, nearly 

isotonic regression 

1. Introduction 

Literature of spectral analysis of climatological time series is extremely broad. 
The task of the spectral analysis is to identify sets of frequencies that essentially 
contribute to the behavior of time series. A common way is to calculate the 
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periodogram and then to fit a first order autoregressive (AR(1)) process to data 
in order to model the so-called background noise. When periodogram exceeds 
some threshold at a frequency, the spectrum is said to differ from this 
background noise, and the frequency is characteristic for the time series in 
question. The threshold depends on the AR(1) model and the significance level 
selected. 

Let )(),...,( 1 ntxtx  be a stationary time series observed at ntt ,...,1 . Usually, the 
data set is evenly spaced, and iti =  can be taken. Hence, the time series can be 
written as nxx ,...,1 . The background noise is taken as red noise, and is generally 
described with the spectral density 
 
 )1(,))cos(21()/()( 22222 aaaf ee −=−+= σσλπσλ  (1) 

 
of an AR(1) process with substituting the autoregressive parameter a and 
variance 2σ with their consistent estimates â  and 2σ̂  obtained from nxx ,...,1 . As 
Eq. (1) provides red noise spectra under positive a, red noise and AR(1) spectra 
are seldom used as synonyms. But red noise, characterized by spectral densities 
monotone increasing to low frequencies, represents a much wider class of 
processes than the AR(1) processes, and the usage of AR(1) spectra can thus fail 
to properly detect frequencies mainly contributing to spectra. Therefore, we 
propose a method that ignores the comparison of periodograms with background 
noise models. 

In some cases, time series are unevenly spaced, and hence the periodogram 
defined for evenly spaced data must not be used without modifications. There 
are two main ways to handle the problem. The first one is based on an 
interpolation of the data onto an equispaced time grid, and this new regularly 
spaced data set is analyzed with traditional techniques. Such data manipulations, 
however, always deform the true spectra (Broersen, 2006). The other way, 
which is addressed in this paper, produces a reformulated periodogram directly 
from data. Evidently, such a periodogram is always affected by temporal 
distributions of data spacing. Generally, the Lomb-Scargle periodogram (LSP) 
(Lomb, 1976; Scargle, 1982), based on a simple least squares (LS) estimation 
procedure, is used for the purpose. However, important statistical properties of 
LSP, e.g., its probability distribution are known only for white background 
noise. Additionally, the bias of LSP for unevenly spaced data can be 
substantially higher than that of the periodogram for evenly spaced data (Vio et 
al., 2010), principally at high frequencies (Schulz and Mudelsee, 2002). 
Therefore, we will examine first the properties of LSP. Then we will propose a 
periodogram that is based on a so-called entire least squares (ELS) technique 
(Matyasovszky, 2013a). Properties of this newly introduced periodogram will 
also be discussed.  
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The methodology is described in Sections from 2 to 4. As paleo-
climatological records represent a typical case of unevenly spacing, our 
technique is demonstrated by three paleoclimatic records in Section 5. Finally, a 
section for discussion and conclusions is provided. 

2. Periodograms 

2.1. Lomb-Scargle periodogram (LSP) 

Let )(),...,(),( 21 ntxtxtx  with Ntt n == ,11  be a time series coming from a stationary 
stochastic process with mean zero. The LSP for any frequency jλ  in the interval 
( ]π,0  is based on an LS procedure as follows. Parameters ja  and jb  that 
minimize 
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are obtained with the solution of the system of equations 
 

 wcD = , (2) 
 
where ZZD T= , and the elements of Z  are nitztz ijiiji ,...,1),sin(),cos( 21 === λλ , 
furthermore xZw T= , and T
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denoting transpose. The quadratic form 
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defines LSP. For evenly spaced data, Eq. (3) becomes to the well-known 
expression 
 
 ))(4/()( 22

jjj banI += πλ  (4) 

with 

 ∑∑
==

⋅=⋅=
n

i
jij

n

i
jij ixnbixna

11
)sin(/2,)cos(/2 λλ . 

 

It is known from the LS procedure that c  is asymptotically normally 
distributed under very general conditions. Supposing that x  comes from a white 
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noise process, the covariance matrix of c  is 12 −Dσ , where 2σ  is the variance of 
the process. Hence, the random variable )( jLSI λ  defined with the quadratic form 
in Eq. (3) follows an exponential distribution (Scargle, 1982). The probability 
distribution of LSP when  x  does not come from a white noise process is, 
however, an open question. Therefore, we will discuss this issue together with 
the expected value of )( jLSI λ  in Section 4. Although jλ  can be any of 
frequencies in an interval [ ]maxmin ,λλ , it is advisable to define a grid 

Ljnj ,...,1),/(2 =Δπ , where L is the largest integer not larger than n/2, Δ= /max πλ  is 
the average Nyquist frequency (Stoica et al., 2009), and Δ  is the average of time 
steps nitt iii ,...,2,1 =−= −δ . As the frequency range of )(λI  is ( ]π,0 , the range 
[ ]maxmin ,λλ  of )(λLSI  is generally rescaled into [ ]ππ ,/2 n  for convenience. )(λLSI  
can thus be viewed as )(λI  of a time series sampled evenly at time steps Δ . An 
important difference is, however, that elements of )( jLSI λ  are correlated in 
contrast to elements of )( jI λ . Additionally, the bias of )( jLSI λ  can be higher than 
the bias of )( jI λ  (Vio et al., 2010). This is due to the interrelationship between 
unevenly spacing and the effect of the omission of frequencies different from jλ  
when calculating )(λLSI  at jλ . Furthermore, it is known that )(λI  integrates to 
the sample variance 2σ̂  in the sense that 
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while )(λLSI  does not integrate to 2σ̂ . 

2.2. Entire least squares periodogram (ELSP) 

The deficiency of LSP is that it handles the different frequencies separately. 
Therefore, we propose an entire least squares (ELS) procedure by calculating the 
constants jj ba ,  at frequencies Ljnj ,...,1),/(2 =Δπ  simultaneously. This results 
in a system of equations Eq. (2), but with 
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It is easy to see that 2σ̂ncDcT = . As wcD = , hence 2

2211 ˆ... σnwcwcwc LL
T =++= . 

Therefore, we define ELS periodogram (ELSP) as the contribution of 
frequencies to the sample variance, i.e., 
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 ))(2/(1)( LjLjjjjELS wcwcI +++= πλ . (5) 
 
Although every frequency jλ  is affected by frequencies not involved in the 
estimation procedure, the accuracy of ELSP is expected to be higher than the 
accuracy of LSP. This is because ELSP is defined for the entire set of 
frequencies Ljj ,...,1, =λ  and not for particular frequencies separately. Properties 
of ELSP will be discussed in Section 4. 

3. Estimating spectra 

A stationary stochastic process exhibits red noise spectrum when its spectral 
density function satisfies ωλωλ <≥ ),()( ff  for every ( ]πωλ ,0, ∈ . Estimation of a 
spectral density corresponding to this definition is now based on an LS 
technique. The solution of the LS problem 
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can be obtained using a procedure called isotonic regression (IR). Namely, 
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for Lj ,...,1= , and )(ˆ λf  is left-continuous otherwise (Zhao and Woodroofe, 
2012), where *I  can be either I, ILS, or IELS. Note that )(ˆ λf  is monotone 
decreasing and is stepwise constant over certain frequency ranges. 

Behavior of periodogram elements at frequencies close to possibly existing 
discrete frequencies (frequencies contributing to discrete spectra) substantially 
differs from the behavior of the majority of periodogram elements. Thus, 
periodogram elements at these frequencies should be taken as outliers, and an 
IR, robust against outliers has to be found. Álvarez and Yohai (2011) proposed a 
robust IR technique that can thus be used as a method to estimate the spectral 
density of the red background noise without any assumption on its analytical 
form. A possibility to find essential frequencies is to detect significant 
deviations of the periodogram from this background noise utilizing the statistical 
properties of robust IR (Matyasovszky, 2013b). Another way is to give up the 
background noise concept and estimate the spectral density non-robustly and 
without monotonicity constraint. The nearly-isotonic regression (NIR) 
introduced by Tibshirani et al. (2011) permits the possibility of deviations from 
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monotonicity when necessary. The necessity of monotonicity violations is 
controlled via a parameter β  that is estimated within the procedure. The task is 
to find )(ˆ),...,(ˆ

1 Lff λλ  minimizing the quantity 
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where uu −=+)(  when u is negative, and zero otherwise. When 0=β , the 
solution is )()(ˆ

* jj If λλ = , and letting ∞→β , we obtain the isotonic regression. 
The optimal value of  β , which can be estimated (Tibshirani et al., 2011), gives 
a trade off between monotonicity and goodness-of-fit. The resulting )(ˆ λf  can 
thus correspond to red noise or colored noise with certain local peaks according 
to the shape of )(λf . 

4. Properties of periodograms 

4.1. Lomb-Scargle periodogram (LSP) 

Now we examine the probability distribution and the expected value of LSP. For 
this reason, take first a two-dimensional normal random vector ξ  with expected 
value zero and covariance matrix P . Let Q  be a positive definite matrix of size 

(2x2), and take the random variable ξξ Qq T= . This quadratic form can be 
rewritten as a linear combination of two independent chi-squared random 
variables with one degree of freedom, and the coefficients in this linear 
combination are the eigenvalues of PQ . If these coefficients are identical, q is 
distributed exponentially, but when difference between the coefficients is not 
too large, the probability distribution is also closely exponential (Yuan and 
Bentler, 2010). 

It is known from the LS theory that covariance matrix of c  is 11 −− DZBZD T  
(Nielsen, 2011), where (i,j)th element of B  is the covariance between )( itx  and 

)( jtx . As c  is distributed asymptotically normally, we recognize that the 
quadratic form Eq. (3) asymptotically corresponds to the above mentioned 
random variable q with 11 −−= DZBZDP T  and DQ )2/(1 π= . When x  comes from a 

white noise process, the eigenvalues of PQ = 1)2/(1 −DZBZ Tπ  are identical, and 
this is why LSP follows an exponential distribution under a white noise process. 
For other processes, the eigenvalues depend on length of the data set, spacing, 
autocovariances of the underlying process, and frequency. However, except for 
some degenerate cases, the difference between these eigenvalues is not too 
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large. Therefore, our final conclusion is that probability distribution of LSP is 
closely exponential even for processes different from white noise. 

It can be shown (Mathai and Provost, 1992) that the expected value of q is 
the trace of PQ , and therefore, the expected value of Eq. (3) is the trace of 

 
 1)2/(1 −DZBZ Tπ . 

 
Remember that trace of a quadratic matrix is the sum of diagonal elements 

of this matrix, which is identical with the sum of its eigenvalues. Utilizing basic 
trigonometric identities we obtain 
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where )(kB  is the autocovariance function of the process that generates the time 
series, 
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no data is available at time i, while equals with one when data is available at 
time i. Evidently, Eq. (6) for evenly sampled data has the well-known form 
 

 [ ] ∑
−

=
−+=

1

1
)cos()()/1(/2/)0()(

n

k
jj kkBnkBIE λππλ , or  (7) 

 

 [ ] ωλωωλ
π

π

dKgIE jnj )()()( −= ∫
−

 

 

with 0),()( ≥= ωωω fg , 0),()( <−= ωωω fg , and  

 ∑
−

−−=
=

1

)1(
)cos()()2/(1)(

n

nk
n kkuK ωπω , 

 
where nkku /1)( −= . Hence, )(ωnK  is the Fejér-kernel. In the frequency domain 
representation of 

 [ ] ωλωωλ
π

π

dKgIE jnjLS )()()( −= ∫
−

, 

)(ku corresponding to Eq. (6) is ( 2/))( 1−= DDtraceku k . Note that LSP is an 
unbiased estimator for white noise processes (see Eq. (7)). 
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4.2. Entire least squares periodogram (ELSP) 

As cwD =−1 , therefore iiii wwDwc )( 1−= . Additionally, the covariance matrix of w  
is ZBZ T . Utilizing these facts and basic trigonometric identities we obtain after 
Mathai and Provost (1992) that 
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Following Yuan and Bentler (2010) we observe that ELSP is also a linear 
combination of two independent chi-squared random variables with one degree 
of freedom, and if difference between coefficients in this linear combination is 
not very large, the probability distribution of ELSP is closely exponential. Eq. 
(8) for evenly sampled data also has the well-known form Eq. (7). In the 
frequency domain representation of 
 

 [ ] ωλωωλ
π
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)(ku corresponding to Eq. (8) is ({ } 2/))( 1
jkDDtraceku −= . Note that for both the 

LSP and ELSP, )(ωnK  depends not only on n but also on data spacing and jλ . 
However, ELSP is an unbiased estimator for white noise processes (see Eq. (8)). 

5. Examples 

5.1. Hallet Lake 

The Hallet Lake temperature proxy record (Mc Kay et al., 2008) from south-
central Alaska available for a period of AD 492-2005 is based on biogenic silica 
preserved in the lacustrina sediments. Its data spacing varies from 1 to 35 years 
with an average spacing of 10.15 years. Data (n=150) are standardized to have 
zero mean and unit variance. 
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Fig. 1 shows no substantial differences between LSP and ELSP. However, 
many small differences count for much, as NIR performed with LSP (NIR-LSP) 
provides a red noise spectral density, while NIR with ELSP (NIR-ELSP) 
delivers a colored noise density. In this latter case, a moderate but wide peak of 
the spectral density reinforces the importance of multi-decadal oscillations 
shown in other Alaskan proxy records (e.g., Wilson et al., 2007). 

 

 
 

Fig. 1. ELSP (circle), LSP (square), NIR-ELSP spectral density (solid line), and NIR-LSP 
spectral density (dashed line) of Hallet Lake temperature proxy record AD 492-2005. 

5.2. Vostok 

Vostok ice core deuterium content data are available for the last 422,766 years 
(Petit et al., 1999). Data spacing varies from 20 to 664 years with a mean spacing 
of 127.8 years. Data (n=3303) are standardized to have zero mean and unit 
variance. Not surprisingly, the highest peak of both the NIR-LSP and NIR-ELSP 
spectra appears at 105,500 years corresponding to the Earth eccentricity cycle 
(Fig. 2). The cycle related to obliquity can be seen at somewhat lower frequency 
(closer to the 41,000-year astronomical cycle) for NIR-ELSP than for NIR-LSP. 
More importantly, dominance of the eccentricity cycle is much clearer from NIR-
ELSP, since NIR-ELSP peak at this cycle is substantially higher than the NIR-LSP 
peak. The ratio of the magnitude of peak at eccentricity to peak at obliquity is 1.63 
for NIR-LSP, while it is 4.88 for NIR-ELSP. Peaks in an interval of 21,000-28,000 
years corresponding to the precession are considerably more modest for NIR-ELSP 
than for NIR-LSP. The third largest peak of NIR-LSP is around a 60,000-year 
cycle which cannot be explained by a direct astronomical forcing but is probably a 



62 

side-effect of the aforementioned cycles (e.g., Rial and Anaclerio, 2000). Note, 
however, that this period is essentially missing in NIR-ELSP. Fig. 3 shows peaks at 
high frequencies, too. Cycles around 270 years are substantially stronger with NIR-
ELSP than with NIR-LSP. Similar fact can be mentioned for cycles corresponding 
to 500-525 years (almost double of the 270-year period). These cycles are clearly 
related to solar cycles listed in Schove (1983). 

 
Fig. 2. ELSP (circle), LSP (square), NIR-ELSP spectral density (solid line), and NIR-LSP 
spectral density (dashed line) for Vostok ice core deuterium content data for the last 
422,766 years at low frequencies. 

 
Fig. 3. NIR-ELSP spectral density (solid line) and NIR-LSP spectral density (dashed line) 
for Vostok ice core deuterium content data for the last 422,766 years at high frequencies. 
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5.3. GISP2 

Oxygen-isotope data from GISP2 ice core from Greenland (Groots and Stuvier, 
1997) are unevenly spaced in time, varying from 68 to 257 years with a mean 
spacing of Δ =125.8 years in the period between 15,000 and 60,000 BP. Data 
(n=358) are standardized to have zero mean and unit variance. Schulz and 
Mudelsee (2002) analyzed this record in order to detect a spectral peak at a 
1470-year cycle corresponding to the spacing of the well-known Dansgaard-
Oeschger events. Although the difference between ELSP and LSP does not seem 
substantial, NIR-LSP does not detect any spectral peak but does provide a red 
noise spectral density. In contrast, a peak at the above mentioned 1470-year 
cycle clearly appears when using the NIR method with ELSP (Fig. 4). 
 
 

 
Fig. 4. ELSP (circle), LSP (square), NIR-ELSP spectral density (solid line), and NIR-LSP 
spectral density (dashed line) for GISP2 oxygen-isotope data for period between 15,000 
and 60,000 BP. A big spectral peak around 40,000 years is not visible due to the vertical 
axis scale. 

 

6. Discussion and conclusions 

In order to demonstrate the ability of NIR and the drawback of AR(1) fitting, a 
simple example is taken by a stochastic process 
 
 tt XtY += )05.0cos(5.0 π , (9) 



64 

where the red background noise comes from a first order moving average 
(MA(1)) process 15.0 −−= ttt eeX , and te  is a white noise Gaussian process with  

1=eσ . Note that the variance corresponding to the discrete cycle )05.0cos(5.0 tπ  is 
only 10% of the background noise variance. A time series of tY  with n=400 is 
simulated and the spectrum is estimated with both the AR(1) fitting and the NIR 
method. The procedure is repeated 1,000 times. Fig. 5 shows that the mean of 
the 1,000 NIR spectra exhibits a very sharp peak recognizing the discrete 
frequency at π05.0 . At the rest of frequencies, NIR spectrum reproduces well the 
background noise spectrum as compared to the background noise obtained with 
AR(1) fitting. Note that AR(1) spectral density is around two times higher than 
the true background spectral density at low frequencies causing difficulties in 
detecting the discrete frequency with traditional techniques. When omitting the 
discrete frequency from Eq. (9), the AR(1) spectral density is almost the same as 
in the previous case involving discrete frequency, while the NIR spectral density 
essentially coincides with the true background noise spectral density. 
 

 
Fig. 5. Mean of NIR-ELSP spectral densities (solid line) and AR(1) spectral densities 
(dashed line) obtained from 1,000 simulated time series of length n=400 according to Eq. 
(9), and AR(1) spectral density (dotted line) of the background noise in Eq. (9). 

 
 
 

Comparison of properties of LSP and ELSP is illustrated with the third data 
set in Section 5.3. As it was mentioned earlier, both the LSP and ELSP can be 
written as 

 2211* )( ξξλ hhI j += , (10) 
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where )(* jI λ  is either LSP or ELSP, and 1ξ  and 2ξ  are independent chi-squared 
random variables with one degree of freedom. For simplicity, dependence on the 
frequency of 1h  and 2h  is not indicated. If coefficients 21, hh  are identical, )(* jI λ  
is distributed exponentially, but when the ratio { } { }2121 ,min/,max hhhhr =  is not 
too large, the probability distribution is closely exponential. Approximating the 
true probability distribution with an exponential distribution is highly accurate 
for ratios from r=1 to at least r=2-3 (Yuan and Bentler, 2010). Calculation of r 
(Yuan and Bentler, 2010) requires the autocorrelations of the underlying process. 
These are here substituted by autocorrelations corresponding to the AR(1) model 
fitted to data with a procedure described in Schulz and Mudelsee (2002). Fig. 6 
shows this ratio against frequencies. It is obvious that both periodograms can be 
taken as they are distributed exponentially. At very high frequencies, the 
distribution tends to deviate from the exponential one, but with smaller degree 
for ELSP than for LSP. Note that exponential approximation of the distribution 
of ELSP is accurate even at highest frequencies. 
 

 
Fig. 6. Ratio { } { }2121 ,min/,max hhhh  against frequencies for ELSP (solid line) and LSP 
(dotted line), where coefficients 21, hh  are defined in Eq. (10). 

 
 
 

Another important property of both the LSP and ELSP is that these 
periodogram elements at different frequencies are correlated for unevenly 
spaced data. Fig. 7 shows the correlation between )( jLSI λ  and )( jiLSI λλ −  
against the frequency jλ  and frequency shift ji λλ −  for Lji ,...,1, = . It is apparent 
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that correlations are essentially zero at any frequencies and any frequency shifts 
except for the highest frequencies. At highest frequencies, the correlations are 
not negligible but only within narrow frequency shift intervals. The overall 
picture for ELSP (the corresponding figure is not shown) is the same but with 
slightly lower correlations. For instance, the largest correlation under every 
combination of jλ  and ji λλ −  is 0.47 for LSP, while it is 0.43 for ELSP. These 
results are consistent with findings obtained for exponential approximation to 
the distribution of ELSP and LSP. The distribution of ELSP and LSP tends to 
deviate from the exponential distribution, when correlation between sinusoid 
and cosinusoid parts of the periodogram at a given frequency increases. 
Somewhat similar phenomenon can be found in Vio et al. (2010) but only for 
LSP and for time series simulated from white noise processes. It is to be 
mentioned that calculating the correlation between two periodogram elements 
utilizes that c  has an asymptotic multivariate normal distribution. Hence, the 
mentioned correlation consists of fourth-order central moments of c . These 
moments, due to the normality of c , can be expressed via second order central 
moments, ie., via the covariance matrix of c . Finally, this covariance matrix can 
be approximated using the autocorrelations corresponding to the AR(1) model 
fitted to data. 

 
 

 
Fig. 7. Correlation between LSP elements at different frequencies and different frequency 
shifts. 
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Similar calculations shows that main conclusions discussed in the last two 
paragraphs are applicable for data sets of Sections 5.1 and 5.2. 

Originally, LSP has been developed for time series generated by stochastic 
processes consisting of a certain number of periodic components plus a white 
noise process. Later, it has been using to estimate not only discrete spectra but 
spectral densities, too (e.g., Schulz and Mudelsee, 2002). Recognizing that LSP at 
a given frequency can be highly affected by other frequencies, Stoica et al. (2009) 
introduced a weighted least square fit at every separate frequency, where the 
weights are related to other LSP elements. The procedure thus necessitates an 
iterative technique requiring bigger computational effort than ELSP. More 
importantly, the weights are chosen with an approximation that holds accurately 
only for evenly spaced data. Such a simplification appears also in Nygrén and 
Ulich (2010). Here, after performing the entire least squares technique, the matrix 
D  is taken diagonal with elements n/2. Hence, their periodogram ))(4/( 22

Ljj ccn ++π  
provides a biased estimator even for white noise processes and does not integrate 
to 2σ̂  (except for evenly spacing data) in contrast to our Eq. (5). 

The matrix D  is generally close to being singular for large values of n, and 
solving Eq. (2) for c  to form ELSP is not easy. Our experience is that traditional 
techniques such as Gauss-Seidel, successive over-relaxation, or conjugate 
gradient methods might be unsuccessful. Therefore, Eq. (2) was solved with a 
Monte Carlo technique (e.g., Liu, 2001), as this procedure is carried out 
numerically with a totally different scheme than the previous techniques. 
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