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Abstract⎯At present, the capacity of the new photovoltaic (PV) systems are growing 
rapidly in Hungary. The limit to growth can be estimated, but it is influenced by several 
things. Even a realistic goal for the next 20–30 years can be to reach the 20–25% variable 
renewable energy ratio in the electricity consumption. The main barrier is the variability 
of these systems, thus the grid integration is a huge challenge in the near future. A new 
dynamic data-driven forecasting methodology is worked out and tested by examining the 
Budapest District Heating Co. Ltd. top installed solar systems. The tested prediction 
method was only for 5 minutes ahead in the expected average performance in a 15-minute 
period. The main elements of the tested methodology and some main results will be 
presented in this article. 
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1. Introduction  

The aim of the Hungarian National Energy Strategy  is that the annual final 
energy consumption school dot exceed 692 PJ by 2030 compared to  the 
677 PJ/year in 2012 (Parliamentary Decision 77/2011). According to the 
National Environmental Programme, in the field of renewable energy sources in 
Hungary, it is desirable to put greater emphasis on decentralized, local 
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applications, in particular in relation to solar energy (Parliamentary Decision 
27/2015). In addition, the main national energy target is also fixed in this 
Decision by 2020. Therefore, the targeted share of renewable energy sources is 
14.65%, and the total reached energy savings could be 10% with environmental 
considerations. However, our national commitment towards the European Union 
is ‘only’ 13% share (Directive 2009/28/EC). In Hungary, the share of renewable 
energy has already reached 9.51% in 2014 (Szabó, 2016). For the 13% share in 
the period in 2015–2020 we have already reached 37% increase from the 2014 
level, but for the national target are still need 49% growing, if the country's 
gross energy consumption will not increase until 2020.  

 The individual Member States data of the renewable energy utilization can 
be traced from the Eurostat public databases (Eurostat Database, 2017). At the 
end of 2014, the renewable energy ratio was found to be 9.5% of the total 
energy consumption. Fig. 1 shows the changes in the renewable energy 
consumption achieved in Hungary compared to the 2009 data. Overall, we can 
see that near 10% gross inland renewable energy consumption growth is 
achieved in the previous six years. Now it seems, that at least nearly 30% 
surplus could be needed over the next five years. The obligated amount depends 
on the final energy consumption (FEC) in 2020. If it would be only 15% higher 
than it was in 2014, we would need near 40% growing until 2020. Moreover, the 
national target is higher than the EU obligation. All in all, this seems a serious 
challenge.  

 
 
 
 
 

 
Fig. 1. Changes in renewable energy consumption in Hungary. 
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However, it is important to point out that the share of the renewable energy 
in Hungary has been significantly modified from March 14, 2017, after the 
domestic energy methodologies update (Eurostat Database, 2017). Thus, the 
official share of renewable energies has increased to 14.6% in 2014 from the 
earlier presented 9.51%. Therefore, it seems presently, that Hungary was able to 
reach the renewable target without serious progress or greater emphasis on 
decentralized, local applications. 

Although, in 2015, the volume of electricity in the Hungarian feeding tariff 
system increased only by 1.1% (reaching the 25 MW PV capacity), due to the 
support system restructuring, significant growth is expected in 2016–2017 by 
the PV systems. Thus, more than 1.5 GW PV capacity is possible until 2018 due 
to new local applications. More weather-dependent power plants (variable 
energy resources) and complex development are needed. By the mitigation of 
the growing development and operational costs because of the larger variable 
energy production, one of the key elements is the predictability. 

It is important to see that there are huge differences between the different 
types of variable energy resources. Solar energy utilization is fundamentally 
governed by planetary conditions. Thus, a theoretically expected solar power 
curve as a guideline can be specified. However, the actual differences in 
meteorological conditions can cause significant differences in the power outputs 
from the PV systems. Besides the intensity of the light, the actual spectral 
composition of the sunshine also determines the actual power generation 
capacity of the solar cells. In case of small rooftop systems these effects are not 
measurable cost-effectively because of the relative very small produced energy 
amounts, and the real time data management also would be relatively expensive 
by one or more small PV systems. At the same time, unexpectable changes in 
the spectral composition and other important effects (e.g., air temperature) give 
information, if we have a god theoretical reference curve. So the light also could 
be an information carrier.  

In clear weather, with the greatest direct radiation ratio, the largest part of 
the intensity of the global radiation could produce electricity with photovoltaic 
effect, so this situation is more or less predictable. In cloudy weather, the 
indirect (diffuse) radiation component increases the spectral characteristics of 
the radiation changes, and the predictability declines. The differences in 
meteorological effects (the ratio between the direct and indirect components and 
spectral characteristics in the solar radiation or temperature conditions) from the 
expected values in the near past could give information for the near future. In 
this case, the main task of meteorological measurements can be to sign the huge 
changes in circumstances. Therefore, this could indicate if the information in the 
light from the near past is not or only partly applicable to predict the near future. 
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2. Assessment  

The latest generation of prediction methods works with a number of 
meteorological, temporal, and geographic parameters, such as temperature, 
relative humidity, wind speed, sunshine duration (SSD), day of the year, and 
location (latitude, longitude, and altitude) that affect the global radiation 
modeling values. A recent prediction method is generally based on artificial 
neural networks, where the expected net global radiation could be predicted by 
the values of these parameters (Hussain and Al-Alili, 2015). So the predictions 
are generally based on the experienced data and local knowledge. The so-called 
typical meteorological year is built of many time series parameters. The 
resulting values give a good approach in terms of long-term durability, but in 
terms of a given year, there may be significant inaccuracies. A further 
disadvantage is that the global and local environmental changes are not built into 
the calculations. Thus, analysis of trends and outline additional parameters are 
also required. These are very expensive methods. 

As a new direction, the typical meteorological year is determined only from 
easily and cheaply available data, but this simplified data set can only be treated 
as a first approximation, and the forecast can be based on the variation of this 
data set and some dynamically measured parameters (actual whether 
parameters). In the University of Leeds, the global radiation quantity with one 
minute dividing was predicted in this way (Bright at al, 2015). Developing the 
conditions for determining the accurate prediction of solar power systems 
considered to be a key factor contributing to the integration to the electricity 
network (Lorenz and Heinemann, 2012). By the optimal grid control and 
balancing activities, the relative error of short-term forecasting of energy 
production should be below 10% (Wu and Xia, 2015). A reliable network 
operation requires different forecast horizons (Kostylev and Pavloski, 2011). 
These aims can be categorized as follows:  

1. planning, optimization, network assessment, cost-benefit analysis, 
evaluation of alternatives, verification by supports; 

2. 15 minutes schedule giving an electricity trader; 
3. clarification of the planned schedule before the beginning of the relevant 

period; 
4. clarification of the planned schedule within the relevant 15-minute-long 

period;  
5. prediction for a very short (balancing) forecast, for example only 1 minute 

ahead. 
 

The demand for forecasts for shorter periods first appeared by the larger 
photovoltaic power generation systems. For larger PV plants, the cloud 
migration and its impact on the intensity changes can be followed. The average 
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intensity in an area can be estimated with moving averages of the radiation 
profiles (spatial smoothing effect) (Longhetto et al., 1989). The solar energy 
prediction by the high PV power plants can be managed by a wavelet variability 
model which uses 25 radiometer sensors around the plant (Dyreson at al., 2014). 
Solutions like the wavelet variability model, which are acceptable for multi-
megawatt power plants (Lave et al., 2013) even often do not provide cost 
effective solution for small scale sizes. This paper examines the possibilities 
suggested by the last two points and illustrates some of the results (Kapros, 
2017).  

3. Methods 

3.1. Individual prediction of PV systems 

Modeling the PV predictions could be based on stochastic assessments. 
However, the variability of PV generation does not follow any well described 
distribution. The stochastic models, which use standard or other type 
distributions, can be used for several hours, several days, or even longer period. 
Furthermore, it is not enough to know of the average external temperature 
conditions, because the PV system efficiency is determined also by other 
external parameters (e.g., spectral light irradiation, temporary cloud effects, 
etc.), and by the individual characteristics of the PV systems. For these reasons, 
the genetic algorithm method was applied in this study.  

A genetic algorithm approach is based on the observed mathematical 
regularities of genetic populations. Accordingly, the knowledge on the observed 
capabilities (as genetically determined values) in the starting position can 
determine the possibilities of the future capabilities in the probability space. 
Therefore, performance, which has the highest probability within a given set of 
possibilities, can be precisely defined. 

The genetic method was performed with an encoding process in the 
sampling period and a decoding process in the predicted period based on 
deviations between the typically expected and the measured real performance 
values. Thus, the fundamental part of this methodology was the developing of 
the expected typical performances for every minute in the examined period with 
physically based forecasts achievable free of charge. For getting the expected 
typical data some well-known equations for calculating the amount o electricity 
with relatively few required information and some free public databases were 
used. Therefore, for every minute of a year, the expected performance values 
were determined in a reproducible manner. The amount of electricity, generated 
by a photovoltaic system, is expressed by the following equation based on the 
effective global radiation (Earthscan, 2008): 
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 , PVMel AHq ××= ηβα , (1) 

 
where qel is the photovoltaic power generation capacity [W], Hα,β is the effective 
radiation with α tilt angle and β orientation of the PV modules[W/m2], ηM is the 
PV module efficiency [%], and Apv is the useful photovoltaic solar surface [m2].  

The aim of this study was to find results which are independent from the 
PV generators. For this reason, the equivalent peak load hours were calculated. 
Therefore, the codes which are used in the genetic algorithms were developed 
from the expected equivalent peak load hours based on physical modeling by 
typical conditions. The equivalent peak load hours (Sharma and Tiwari, 2012) 
are characterized by the energy-generating capacity in a given moment. It means 
that, if the same amount of power will produce in one year, the equivalent peak 
load hours are equal to the traditional peak load hours: 
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The dimension of the equivalent peak load hour (hekv) could be kWh/kW or 

hour. This is the ratio of a typical solar electricity generating capacity of a given 
t period (ξreal [kWh]) and the nominal capacity of the PV system (Pp [kWp]. If 
the performance is expressed as an equivalent peak load hour, the expected 
value can be written as follows: 
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where Gpv [W/m2] is the sum of the effective global radiation (effective direct 
normal to the plain) and diffuse solar radiation by south orientation. The 
equivalent peak load hours show a reachable capacity at a given moment. If the 
system is functioning at a given time at specific equivalent peak load hours, then 
in an imagined year with equal continuous output power, the same value would 
result for the peak load hours for that year. This value represents an actual 
capacity of the PV power plant, which is clear, meaningful, and comparable. 
Therefore, in every minute, we can get the expected equivalent peak load hours 
according to the following equation: 
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Therefore, it is enough to make a physically based model for the PV 

generator’ expected alternating current performance at a given time (PAC [W]), 
and this is easy to express this value in equivalent peak load hours. The invented 
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new method is a data-driven determination system, where expected values are 
physically modeled as in the forecasted time (t0), ehen they are dynamically and 
continuously changing depending on the sets of measured data in the monitoring 
period before t0 with Δt1, Δt2, ..., Δtn durations. This continuous changing is 
guided by the encoded metered data contents of the sampling period, which 
express also the currently unique and determinative effects for the electricity 
production. Therefore, the coding system is capable to capture the slightly or 
seriously unexpected behavior (the differences) in the sampling period as 
genetically deterministic properties. In this coding system, there are stock 
defined unique properties, and this gives the approximately parental genetic 
material. Thus, the code most likely and valid in the following short time can be 
determined.  

All in all, the probability of any next value can be calculated within the 
range which is designated by the recorded code set in the sampling period. This 
makes it possible to join different probabilities for different amounts of the 
future performances. However, the chances still remain for the decisive changes 
in extreme weather conditions. These effects are considered as genetic mutation 
effects. The mutation gives a performance, which has zero probability based on 
the genetic material of the sampling period. The above is determined by the 
differences between the observed (measured) and expected equivalent peak load 
hours according to the next equation:   
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where the expected equivalent peak load hours (h*

i) are determined by the 
physical-based modeling and analysis. The real equivalent peak load hours (hi) 
can be calculated from the measured performance values. The difference 
between these two values is the physically based prediction error, from which 
the specific error (Hi) was expressed. The past series of this specific error may 
also be defined in accordance with the Eq. (6) in the sampling period (before t 
time moment, between n and m time moments). From these, the average dH/dt 
change can be determined. In the following equation, the time is in seconds units 
according to the SI system: 
 

 .
)(...)()(

60 1211

mn

mmiiiiii

t

HHHHHH

t

H

dt

dH

−

+−−−

Δ
+++−+−=

Δ
Δ≈  (6) 

 
In Eq. (6), the length of the periods between Hi and Hm are the same 

according to the following equation: 
 

 .... 1211 mmiiii tttttt −==−=− +−−−  (7) 



352 

Thus, the error factor prediction is described as follows: 
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The 0.4 multiplier exponent was the most favorable during the test of 

Eq. (8). The reason is that the H specific errors during the sampling period are 
not fully independent from each other. Behind the variations of these specific 
error values, more stochastic processes can be assumed in the sampling period. 
Changing of the specific errors between the predicted and measured values in 
the period between m and n is made only partly by those natural effects, which 
occurs similarly after the t-n period in t time. Thus, the predicted equivalent 
peak load hours (κt) for t time at n time can be calculated by the following 
equation: 

 
 )1(***

tttttt HhhHh +×=×+=κ . (9) 
 

In the research, the duration of the predicted period was 1 minute, the n 
exponent was 5 minutes, and the m exponent was 15 minutes. Therefore, during 
the measurement and analysis, the series of κt was available 5 minutes before 
time t. This gave the opportunity to give a different forecast for the average 
performance in every 15 minutes with 5 minutes before the end of the period. 
During the test, the prediction for average performance (equivalent peak load 
hours) in 15-minute periods based on 5 minutes measured data and 10 minutes 
predicted data from this presented method. Thus, the predicted  
15-minute average data of the average equivalent peak load hours in the given 
Δt period (κq [h]) is illustrated with the following equations: 
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The significance of the error factor is stronger in these times when the 
radiation is more intensive, so the period between 10:00 and 16:00 in local time 
were also separately analyzed. 

3.2. Virtual PV systems group prediction 

The second part of this research examined the prediction possibilities for the 
virtual groups based on the former methodology. The prediction is based on 
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only one real-time monitored photovoltaic (VP) power plant, but the predicted 
performances were made related to the whole virtual PV power system. This 
methodology could be useful for some very small (micro) domestic PV systems 
which are built in a small region. In view of the methodology, the forecasting 
error between the analytical prediction and the real energy production in a 15 
minutes period by a monitored plan could correlate to this error by the other 
power plant. This correlation is determined by the following equation: 
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In the case of virtual a generator built by w+1 number of PV systems, the 
forecasts can be calculated with the weighted (as rated power) predictions by 
systems. So the virtual-group level forecast could be given by the following 
equation:  
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where the IP0 is the rated power of that reference PV power system, which is 
alone monitored directly and in real time by the whole virtual group.  

3.3. Measurement 

The test system was the solar power system of the FŐTÁV Ltd., which is built 
on the top of its central office building by 150 pieces of PV panels with 250 WP 
nominal rated capacities per units and eight inverters, which connect it to the 
public grid. The maximum output capacity of one inverter is 5 kW, and in six 
cases there are a ten solar panels formed string and a nine solar panels formed 
string parallel connected, and in two cases there are two parallel connected nine 
panel formed sting behind an inverter. Based on the measurement data of these 
eight inverters we could evaluate eight independent systems. The types of PV 
modules are AS-250 W 60P ECO polycrystalline silicon solar cells. The 
orientations of PV modules are +10.7 degrees (SSW), and their tilt angles are 
20 degrees. The nominal connection capacity of the whole PV plants to the grid 
is 40 kW. The research examined a reference power plant owned by the 
Budapest District Heating Co. Ltd. The PV plant is located in the company’s 
headquarter in Budapest on the top of the ‘D’ building. The research analyzed 
data from seven different days which was randomly selected (Table 1).  
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Table 1. The test days and characteristics 

No. Dates The serial 
number  

of the day 

Sunrise 
in local 

time 

Sunset 
in local 

time 

Azimuth  
at sunrise 

Azimuth  
at sunset 

Potential 
sunshine 

duration [h] 
1. Apr 1, 2014 91 6:23:09 19:13:13   -97.58o   97.89 o 12.84 

2. Apr 20, 2014 110 5:46:32 19:39:56 -108.07 o 108.37 o 13.89 

3. May 1, 2014 121 5:27:32 19:55:15 -113.55 o 113.89 o 14.16 

4. May 20, 201. 140 5:01:25 20:20:01 -121.36 o 121.58o 15.31 

5. Jun 1, 2014 152 4:50:58 20:32:51 -124.80o 124.96o 15.69 

6. Jun14, 2014 165 4:46:12 20:42:09 -126.86o 126.91o 15.93 

7. Jul 20, 2014 201 5:07:10 20:32:34 -122.58o 122.38o 15.42 

 
 
 
 
 

The reference power plant was considered only one part of the whole 
system (one inverter part Eq. (8)). With the same orientation and the same angle, 
19 panel units have a single inverter. The main data of the plant are: 
 

- Latitude: 47.4584oN, Longitude: 19.045oE; 

- PV module type: AS-60P 250 W ECO; 

- Rated power of a panel: 250 Wp; 

- The number of solar panels installed: 150; 

- Position: +10.7 degrees (SSW) (determined by measuring from map);  

- Angle of inclination: 20 degrees; 

- The PV power plant nominal connection capacity: 40 kW. 

 
The group forecast is based on the measurement and forecast data of a 

single system. Two PV generator groups with different characters were made 
virtually. The homogeneous group was the photovoltaic system of the FŐTÁV 
in the Kalotaszeg street as a whole (eight independent and measured inverter 
units). The heterogeneous group was built partly from the homogeneous virtual 
group. It contained the number 1, the number 3 (both 4750 WP), and the number 
7 (4500 WP) inverters, but partly it was consisted of two other small scale PV 
systems with different locations and products (both 2160 WP). Table 2 shows the 
main data. 
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Table 2. The homogeneous and the heterogeneous groups 

Homo-
geneous 
group 

Place Rated power Hetero-
geneous 
group 

Place Rated power 

Inv. 1. Kalotaszeg str. 4750 WP Inv. 1. Kalotaszeg str. 4750 WP 

Inv. 2. Kalotaszeg str. 4750 WP Inv. 3. Kalotaszeg str. 4750 WP 

Inv. 3. Kalotaszeg str. 4750 WP Inv. 7. Kalotaszeg str. 4500 WP 

Inv. 4. Kalotaszeg str. 4750 WP HADR  Hadriánusz str. 2160 WP 

Inv. 5. Kalotaszeg str. 4750 WP LEIB Leibstück str. 2160 WP 

Inv. 6. Kalotaszeg str. 4750 WP    

Inv. 7. Kalotaszeg str. 4500 WP    

Inv. 8 Kalotaszeg str. 4500 WP    

Total rated power 37 500 WP Total rated power 18 320 WP 

 

4. Measured data and statistical analysis 

The results of the forecast by a clear sky are demonstrated in Fig. 2. The 
numerical error of the forecast is also important. The uncertainty effects are 
characterized, which are caused by the PV system in the network's stability (Fig. 
2.). The dynamic forecast error in most cases is below 500 hours, and only one 
case was more than 2000 hours with a short oscillation. It seems that if the effect 
which caused the error and its length would be known, the forecast could be 
more accurate by attenuating the errors caused by oscillatio. 

April 1, 2014 was the second least volatile day from the seven tested days, 
which was slightly cloudy, basically sunny, and there were stable light 
conditions. Predictability is difficult for these types of weather, because the bell 
curve is not clearly outlined, and significant differences may occur compared to 
the expected values. However, the changes in the lighting conditions are less 
dynamic, which is favorable in view of the developed genetic algorithm 
methodology. So the relative errors of the prediction between 10 and 16 hours 
were only typically below 5%. Furthermore, we noticed that some major faults, 
which caused by short-acting dynamic changes, can incorporate into the 
forecast. and later can cause an opposite distortion. In Fig. 2 the measured 
values and the experienced prediction errors of the equivalent peak load hours 
also are shown. The forecast distortion and oscillations are well-observed. For 
the oscillation damping. it may be sufficient to use some real-time measurement, 
of the typical conditions (light intensity, wind speed, spectral conditions), 
because the real-time tracking could be useful to filter the mutations effects out 
of their following there lifetime. 
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Fig. 2. AC error of the forecast, calculated by Eq. (9) on April 1, 2014. 

 

Figs. 3 and 4 show the relative error according to the prediction calculated 
by Eq. (12), where the forecast is for a 15 minutes average equivalent peak load 
hour and it was made also 5 minutes earlier, than the end of the period. In a 
highly volatile day, the method was also tested. Even in this case, the forecast 
accuracy was an average of around 9% (Fig. 5.) 
 

 
Fig. 3. AC relative error of the forecast, calculated by Eq. (12) on April 1, 2014. 
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Fig. 4. AC error of the forecast, calculated by Eq. (12) on April 1, 2014. 
 
 

 
Fig. 5. AC error of the forecast, calculated by Eq. (12) on June 1, 2014. 

 
 
 

Considering the researched seven days, the average relative error was 
below 6%. In three days of seven, all errors by each period between 10 and 
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16 hours were below 10%. On average of these seven days, the prediction errors 
remain below 5% with 65% probability.  

Based on the differences between the predicted values and the 
measurement data, the absolute and relative errors for each minutes were 
determined with the following equations. The results of the prediction are shown 
in Tables 3 and 4. The results of the forecast for virtual group in the tested day 
are shown in Table 5. 
 

 .**
, ttekvt hhh −=Δ  (15) 

 

 .100
,tekv

t
h h

h
h

Δ×=  (16) 

 
 

Table 3. 1-minute forecast performance data between 10:00 and 16:00 hours 

 Errors (equivalent peak load hour)  Relative errors  

Date Averag
e error 

Above 
200 hour 

Between 
100 and 
200 hour  

Under 
100 

hour 
Average 

error 
Above 
15% 

Between 
10% and 

15%  

Between 
5% and 

10%  
Under 

5% 

Apr 1. 235 37.95% 20.22% 41.83% 4.34% 4.43% 5.26% 19.11% 71.19% 

Apr 20. 885 55.68% 13.85% 30.47% 20.68% 30.47% 13.02% 16.07% 40.44% 

May 1. 693 55.40% 24.38% 20.22% 17.18% 26.59% 12.47% 22.71% 38.23% 

May 20. 798 29.64% 17.73% 52.63% 34.56% 15.51% 0.55% 4.16% 79.78% 

Jun 1. 1 203 80.33% 9.97% 9.70% 28.74% 54.85% 12.19% 13.57% 19.39% 

Jun 16. 1 880 72.58% 13.02% 14.40% 55.75% 47.92% 5.54% 12.47% 34.07% 

Jul 20. 175 12.19% 16.90% 70.91% 3.87% 3.60% 1.39% 4.99% 90.03% 

 
 

 

Table 4. 15-minute forecast performance data between 10:00 and 16:00 hours (5 minutes 
before the end of the period) 

 
Absolute errors (equivalent peak load 

hour)  Relative errors  

Date Average 
error 

Above 
200 

hour 

Between 
100 and 
200 hour  

Under 
100 hour 

Average 
error 

Above 
15% 

Between 
10% and 

15%  

Between 
5% and 

10%  
Under 

5% 

Apr 1 87 12.50% 25.00% 62.50% 1.55% 0.00% 0.00% 4.17% 95.83% 

Apr 20 302 37.50% 16.67% 45.83% 6.63% 12.50% 0.00% 29.17% 58.33% 

May 1 256 37.50% 29.17% 33.33% 5.92% 12.50% 8.33% 25.00% 54.17% 

May 20 260 29.17% 8.33% 62.50% 4.36% 8.33% 8.33% 4.17% 79.17% 

Jun 1 397 58.33% 20.83% 20.83% 9.29% 20.83% 12.50% 20.83% 45.83% 

Jun 16 694 75.00% 8.33% 16.67% 13.09% 37.50% 12.50% 16.67% 33.33% 

Jul 20 56 8.33% 4.17% 87.50% 0.93% 0.00% 0.00% 8.33% 91.67% 
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Table 5. 15-minute forecast performance data for a virtual power plan (5 minutes before 
the end of the period) 

Date 
Evaluated 

periods 

Absolute errors  
(equivalent peak load hour) 

Relative errors 

2014 
Homo-
geneous 

Hetero-
geneous 

Homo-
geneous 

Hetero-
geneous 

Apr 1 
7:08-18:36 79 89 3.01% 3.42% 
10:00-16:00 90 102 1.60% 1.77% 

May 20 
6:25-19:09 473 331 9.78% 9.51% 
10:00-16:00 665 466 9.65% 7.67% 

Jun 1 
7:34-19:14 273 429 11.28% 19.55% 
10:00-16:00 402 567 8.94% 14.81% 

Jul 20 
6:32-19:14 61 161 1.86% 4.78% 
10:00-16:00 80 214 1.31% 3.47% 

Average 
whole daytime 222 253 6.48% 9.32% 

10:00-16:00 309 337 5.38  6.93 

 

 

5. Conclusions 

The overall conclusion is that the developed dynamic prediction method appears 
to be an applicable method in case of the small-scale solar systems. It is verified 
that the prediction for each 15-minute period within five minutes before the end 
has a good accuracy even under strongly variable weather. Although the 
measurements were made by a relatively small system, the results get special 
actuality by the expected huge increases of the almost 500 kWP domestic 
photovoltaic systems. Thus, the applicability of this dynamic forecasting method 
for the individual larger system would be useful to test. 

The presented group-level prediction method for the micro PV systems 
could be an essential tool for the so-called aggregator services, because they 
would be able to use this information with their demand side management 
activities for the timetable of the virtual smart grid.  

The presented method is a good example for the less costly dynamic 
forecasting solution demonstrating, that the active measures with reasonable 
accuracy in most cases would be ensured. 

References 

Bright, J., Crook, R., and Taylor, P.G., 2015: Methodology to stochastically generate synthetic 1-minute 
irradiance time-series derived from mean hourly weather observational data. Proceedings of the 
ISES Solar World Congress 2015, Daegu, Korea, 08-12. November, 2015, 142–151.  



360 

Dyreson, A.R., Morgan, E.R., Monger, S.H., and Acker T.L., 2014: Modeling solar irradiance 
smoothing for large PV power plants using a 45-sensor network and Wavelet Variability Model. 
Solar Energy 110, 482–495. 

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion 
of the use of energy from renewable sources and amending and subsequently. Annex I. National 
overall targets for the share of energy from renewable sources in gross final consumption of 
energy in 2020 repealing Directives 2001/77/EC and 2003/30/EC, 

Earthscan, 2008: Planning and installing photovoltaic systems. A guide for installers, architects and 
engineers. Earthscan Publications Ltd. 

Eurostat Database, Complete energy balances - annual data (nrg_110a). Downloading is on 10. 
February 2017. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_110a&lang=en  

Eurostat Database, Share of energy from renewable sources (nrg_ind_335a). Downloading is on 2. 
May 2017. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_ind_335a&lang=en  

Eurostat Database, Supply, transformation and consumption of renewable energies - annual data.  
Downloading is on 10. February 2017. 
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_107a&lang=en  

Hussain, S. and Al-Alili, A., 2015: Selection of relevant input parameters for solar radiation, ISES 
Solar World Congress, 8-12. November 2015, Daegu, Korea, 2 p. Downloading is on 10. 
December 2015. http://swc2015.org/index.php?g_page=program&m_page=program11 

Kapros, Z., 2017: Autonomous and grid collaborative photovoltaic system optimization. PhD thesis, 
Szent István University, Gödöllő. 

Kostylev, V. and Pavlovski, A., 2011: Solar power forecasting performance towards industry standards. 
Proceedings of the 1st International Workshop on the Integration of Solar Power into Power 
Systems, 24. October 2011, Aarhus, Denmark, 8 p. Downloading is on 28. December 
2015.https://ams.confex.com/ams/92Annual/webprogram/Manuscript/Paper203131/AMS_VK_
%20AP_Paper%202011%20submitted.pdf  

Lave, M., Kleissl, J. and Stein, J.S. 2013: A wavelet-based variability model (WVM) for solar PV 
power Plants, IEEE Trans. Sustain Energy 4, 501–509. 

Longhetto, A., Elisei, G. and Giraud, C., 1989: Effect of correlations in time and spatial extent on 
performance of very large solar conversion systems, Solar Energy 43, 77–84. 

Lorenz, E., and Heinemann, D., 2012: Prediction of solar irradiance and photovoltaic power. Compr. 
Renew. Energy. 239–292. 

Parliamentary Decision 77/2011 (X. 14.) about the implementation of the National Energy Strategy 
Parliamentary Decision 27/2015 (VI. 17.) about the National Environmental Programme for 2015-

2020 
Sharma, R. and Tiwari, G.N., 2012: Technical performance evaluation of stand-alone photovoltaic 

array for outdoor field conditions of New Delhi. Applied Energy 92, 644–652. 
Szabó, Zs., 2016: A megújuló energia termelés Magyarországon, A megújuló villamosenergia-

támogatási rendszer (METÁR) jövőbeni keretei Magyarországon. REKK Energiapolitikai 
Fórum, 2016. június 9. Budapest. (In Hungarian). Downloading is on 15. December 2016. 
http://rekk.hu/downloads/events/Sz.Zs._REKK_20160609_final.pdf  

Wu, Z. and Xia, X., 2015: Optimal switching renewable energy system for demand side management. 
Solar Energy 114, 278–288. 

 


